MolEM: a unified generative framework for molecular graphs and sequential orders

Abstract Structure-based drug design aims to generate molecules that fill the cavity of the protein pocket with a high binding affinity. Many contemporary studies employ sequential generative models. Their standard training method is to sequentialize molecular graphs into ordered sequences and then...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Briefings in bioinformatics Ročník 26; číslo 2
Hlavní autoři: Zhang, Hanwen, Xiong, Deng, Liu, Xianggen, Lv, Jiancheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 04.03.2025
Oxford Publishing Limited (England)
Témata:
ISSN:1467-5463, 1477-4054, 1477-4054
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Abstract Structure-based drug design aims to generate molecules that fill the cavity of the protein pocket with a high binding affinity. Many contemporary studies employ sequential generative models. Their standard training method is to sequentialize molecular graphs into ordered sequences and then maximize the likelihood of the resulting sequences. However, the exact likelihood is computationally intractable, which involves a sum over all possible sequential orders. Molecular graphs lack an inherent order and the number of orders is factorial in the graph size. To avoid the intractable full space of factorially-many orders, existing works pre-define a fixed node ordering scheme such as depth-first search to sequentialize the 3D molecular graphs. In these cases, the training objectives are loose lower bounds of the exact likelihoods which are suboptimal for generation. To address the challenges, we propose a unified generative framework named MolEM to learn the 3D molecular graphs and corresponding sequential orders jointly. We derive a tight lower bound of the likelihood and maximize it via variational expectation-maximization algorithm, opening a new line of research in learning-based ordering schemes for 3D molecular graph generation. Besides, we first incorporate the molecular docking method QuickVina 2 to manipulate the binding poses, leading to accurate and flexible ligand conformations. Experimental results demonstrate that MolEM significantly outperforms baseline models in generating molecules with high binding affinities and realistic structures. Our approach efficiently approximates the true marginal graph likelihood and identifies reasonable orderings for 3D molecular graphs, aligning well with relevant chemical priors.
AbstractList Structure-based drug design aims to generate molecules that fill the cavity of the protein pocket with a high binding affinity. Many contemporary studies employ sequential generative models. Their standard training method is to sequentialize molecular graphs into ordered sequences and then maximize the likelihood of the resulting sequences. However, the exact likelihood is computationally intractable, which involves a sum over all possible sequential orders. Molecular graphs lack an inherent order and the number of orders is factorial in the graph size. To avoid the intractable full space of factorially-many orders, existing works pre-define a fixed node ordering scheme such as depth-first search to sequentialize the 3D molecular graphs. In these cases, the training objectives are loose lower bounds of the exact likelihoods which are suboptimal for generation. To address the challenges, we propose a unified generative framework named MolEM to learn the 3D molecular graphs and corresponding sequential orders jointly. We derive a tight lower bound of the likelihood and maximize it via variational expectation-maximization algorithm, opening a new line of research in learning-based ordering schemes for 3D molecular graph generation. Besides, we first incorporate the molecular docking method QuickVina 2 to manipulate the binding poses, leading to accurate and flexible ligand conformations. Experimental results demonstrate that MolEM significantly outperforms baseline models in generating molecules with high binding affinities and realistic structures. Our approach efficiently approximates the true marginal graph likelihood and identifies reasonable orderings for 3D molecular graphs, aligning well with relevant chemical priors.
Structure-based drug design aims to generate molecules that fill the cavity of the protein pocket with a high binding affinity. Many contemporary studies employ sequential generative models. Their standard training method is to sequentialize molecular graphs into ordered sequences and then maximize the likelihood of the resulting sequences. However, the exact likelihood is computationally intractable, which involves a sum over all possible sequential orders. Molecular graphs lack an inherent order and the number of orders is factorial in the graph size. To avoid the intractable full space of factorially-many orders, existing works pre-define a fixed node ordering scheme such as depth-first search to sequentialize the 3D molecular graphs. In these cases, the training objectives are loose lower bounds of the exact likelihoods which are suboptimal for generation. To address the challenges, we propose a unified generative framework named MolEM to learn the 3D molecular graphs and corresponding sequential orders jointly. We derive a tight lower bound of the likelihood and maximize it via variational expectation-maximization algorithm, opening a new line of research in learning-based ordering schemes for 3D molecular graph generation. Besides, we first incorporate the molecular docking method QuickVina 2 to manipulate the binding poses, leading to accurate and flexible ligand conformations. Experimental results demonstrate that MolEM significantly outperforms baseline models in generating molecules with high binding affinities and realistic structures. Our approach efficiently approximates the true marginal graph likelihood and identifies reasonable orderings for 3D molecular graphs, aligning well with relevant chemical priors.Structure-based drug design aims to generate molecules that fill the cavity of the protein pocket with a high binding affinity. Many contemporary studies employ sequential generative models. Their standard training method is to sequentialize molecular graphs into ordered sequences and then maximize the likelihood of the resulting sequences. However, the exact likelihood is computationally intractable, which involves a sum over all possible sequential orders. Molecular graphs lack an inherent order and the number of orders is factorial in the graph size. To avoid the intractable full space of factorially-many orders, existing works pre-define a fixed node ordering scheme such as depth-first search to sequentialize the 3D molecular graphs. In these cases, the training objectives are loose lower bounds of the exact likelihoods which are suboptimal for generation. To address the challenges, we propose a unified generative framework named MolEM to learn the 3D molecular graphs and corresponding sequential orders jointly. We derive a tight lower bound of the likelihood and maximize it via variational expectation-maximization algorithm, opening a new line of research in learning-based ordering schemes for 3D molecular graph generation. Besides, we first incorporate the molecular docking method QuickVina 2 to manipulate the binding poses, leading to accurate and flexible ligand conformations. Experimental results demonstrate that MolEM significantly outperforms baseline models in generating molecules with high binding affinities and realistic structures. Our approach efficiently approximates the true marginal graph likelihood and identifies reasonable orderings for 3D molecular graphs, aligning well with relevant chemical priors.
Abstract Structure-based drug design aims to generate molecules that fill the cavity of the protein pocket with a high binding affinity. Many contemporary studies employ sequential generative models. Their standard training method is to sequentialize molecular graphs into ordered sequences and then maximize the likelihood of the resulting sequences. However, the exact likelihood is computationally intractable, which involves a sum over all possible sequential orders. Molecular graphs lack an inherent order and the number of orders is factorial in the graph size. To avoid the intractable full space of factorially-many orders, existing works pre-define a fixed node ordering scheme such as depth-first search to sequentialize the 3D molecular graphs. In these cases, the training objectives are loose lower bounds of the exact likelihoods which are suboptimal for generation. To address the challenges, we propose a unified generative framework named MolEM to learn the 3D molecular graphs and corresponding sequential orders jointly. We derive a tight lower bound of the likelihood and maximize it via variational expectation-maximization algorithm, opening a new line of research in learning-based ordering schemes for 3D molecular graph generation. Besides, we first incorporate the molecular docking method QuickVina 2 to manipulate the binding poses, leading to accurate and flexible ligand conformations. Experimental results demonstrate that MolEM significantly outperforms baseline models in generating molecules with high binding affinities and realistic structures. Our approach efficiently approximates the true marginal graph likelihood and identifies reasonable orderings for 3D molecular graphs, aligning well with relevant chemical priors.
Author Xiong, Deng
Lv, Jiancheng
Liu, Xianggen
Zhang, Hanwen
Author_xml – sequence: 1
  givenname: Hanwen
  orcidid: 0009-0001-4760-2338
  surname: Zhang
  fullname: Zhang, Hanwen
– sequence: 2
  givenname: Deng
  surname: Xiong
  fullname: Xiong, Deng
– sequence: 3
  givenname: Xianggen
  surname: Liu
  fullname: Liu, Xianggen
  email: liuxianggen@scu.edu.cn
– sequence: 4
  givenname: Jiancheng
  surname: Lv
  fullname: Lv, Jiancheng
  email: lvjiancheng@scu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40163755$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1LHDEUxYNY_GqffC-BQimU0WSSbGZ8kSLWFhT7YJ9DPm7W2JlkTXYU__tm2VW0D326F-6Pc8-9Zx9txxQBoUNKjijp2bEJ5tgY7UnPt9Ae5VI2nAi-vepnshF8xnbRfil3hLREdnQH7XJCZ0wKsYd-XaXh_OoEazzF4AM4PIcIWS_DA2Cf9QiPKf_BPmU8pgHsNOiM51kvbgvW0eEC9xPEZdADTtlBLu_RO6-HAh829QD9_n5-c_ajuby--Hn27bKxdfmyYdBzaw3veAvUdZSBNN4S6VxrfOeIML10lkrrZS-IBO2pFq02XtPWekbYATpd6y4mM4Kz1UTWg1rkMOr8pJIO6u0khls1Tw-K0l7IdsarwpeNQk71iLJUYygWhkFHSFNRjHZcSEF6UdFP_6B3acqx3qdYy7tO1H-uLH18benFy_O3K_B1DdicSsngXxBK1CpLVbNUmywr_XlNp2nxX_AvwKmgWw
Cites_doi 10.1039/D1SC04444C
10.1021/acs.jcim.1c00203
10.1038/s43588-023-00530-2
10.1093/bioinformatics/btv082
10.1111/j.2517-6161.1977.tb01600.x
10.1145/3366423.3380201
10.1016/j.sbi.2023.102548
10.1006/jmbi.1996.0897
10.1021/acs.jmedchem.1c01830
10.1038/s43588-023-00511-5
10.1093/bib/bbac520
10.1039/D1SC05976A
10.1038/s41467-024-48837-6
10.1093/bib/bbab072
10.1093/bib/bbad323
10.1038/s43588-024-00627-2
10.1002/jcc.21256
10.1186/s13321-015-0069-3
10.1021/acs.jcim.2c01057
10.1016/j.addr.2012.09.019
10.1021/acscentsci.3c00572
10.1021/jm020017n
10.1080/07391102.2023.2257800
10.1016/j.drudis.2022.103439
10.1021/jm0306430
10.1038/s42256-021-00409-9
10.1038/s41467-024-47011-2
10.1039/D3SC06803J
10.1038/s41467-024-46569-1
10.1039/D3SC04091G
10.1038/s41467-022-34692-w
10.1038/s42256-023-00775-6
10.1021/acs.jcim.0c00411
10.1038/s42256-024-00815-9
10.1038/s43588-024-00737-x
10.1038/s42256-024-00808-8
10.1021/cc9800071
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press. 2025
The Author(s) 2025. Published by Oxford University Press.
2025 The Author(s) 2025. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press. 2025
– notice: The Author(s) 2025. Published by Oxford University Press.
– notice: 2025 The Author(s) 2025. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbaf094
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE

Genetics Abstracts
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC11957264
40163755
10_1093_bib_bbaf094
10.1093/bib/bbaf094
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Sichuan Province
  grantid: 2023NSFSC1408
– fundername: Sichuan Province Engineering Technology Research Center of Broadband Electronics Intelligent Manufacturing
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 1082204112364
– fundername: National Natural Science Foundation of China
  grantid: 62206192
– fundername: National Major Scientific Instruments and Equipments Development Project of National Natural Science Foundation of China
  grantid: 62427820
– fundername: ;
– fundername: ;
  grantid: 62206192
– fundername: ;
  grantid: 1082204112364
– fundername: ;
  grantid: 62427820
– fundername: ;
  grantid: 2023NSFSC1408; 2024NSFTD0048
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
77I
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
CITATION
ROX
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c401t-3e94ccb4842e1d813e7bfc07dd2bf8d05b97dc17cf79507eaf1a52abfa12cf303
IEDL.DBID TOX
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001482373500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1467-5463
1477-4054
IngestDate Tue Sep 30 17:04:44 EDT 2025
Fri Sep 05 17:50:34 EDT 2025
Thu Nov 13 06:22:08 EST 2025
Mon Jul 21 05:41:37 EDT 2025
Sat Nov 29 08:08:21 EST 2025
Mon Nov 17 07:40:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords structure-based drug design
sequential generative model
molecular graph generation
variational expectation-maximization
sequential order
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2025. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-3e94ccb4842e1d813e7bfc07dd2bf8d05b97dc17cf79507eaf1a52abfa12cf303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0001-4760-2338
OpenAccessLink https://dx.doi.org/10.1093/bib/bbaf094
PMID 40163755
PQID 3248850160
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11957264
proquest_miscellaneous_3184575095
proquest_journals_3248850160
pubmed_primary_40163755
crossref_primary_10_1093_bib_bbaf094
oup_primary_10_1093_bib_bbaf094
PublicationCentury 2000
PublicationDate 2025-Mar-04
PublicationDateYYYYMMDD 2025-03-04
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-Mar-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2025
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Dempster (2025033118431917300_ref49) 1977; 39
Han (2025033118431917300_ref27) 2023; 24
Cohen-Karlik (2025033118431917300_ref14) 2024; 2024
Shuqi (2025033118431917300_ref6) 2024; 2024
Li (2025033118431917300_ref31) 2023; 24
Zhou (2025033118431917300_ref46)
Long (2025033118431917300_ref35) 2022; 35
Danel (2025033118431917300_ref51) 2023; 28
Zhang (2025033118431917300_ref56) 2021; 34
Masuda (2025033118431917300_ref8)
Zhang (2025033118431917300_ref34) 2023
Yuejiang (2025033118431917300_ref36)
Li (2025033118431917300_ref20)
Francoeur (2025033118431917300_ref59) 2020; 60
Méndez-Lucio (2025033118431917300_ref2) 2021; 3
Yanru (2025033118431917300_ref7)
Hongyan (2025033118431917300_ref5) 2023; 14
Goyal (2025033118431917300_ref21) 2020
Zhang (2025033118431917300_ref26) 2023; 3
Zhung (2025033118431917300_ref28) 2024; 15
Winter (2025033118431917300_ref22) 2021; 34
Min (2025033118431917300_ref57)
Isert (2025033118431917300_ref23) 2023; 79
Morris (2025033118431917300_ref39) 2009; 30
Corso (2025033118431917300_ref44) 2023
Meng (2025033118431917300_ref54) 2019
Friesner (2025033118431917300_ref42) 2004; 47
Peng (2025033118431917300_ref25) 2022
Bajusz (2025033118431917300_ref63) 2015; 7
Siebenmorgen (2025033118431917300_ref66) 2024; 4
Zhang (2025033118431917300_ref58) 2023
Zhu (2025033118431917300_ref38) 2024; 15
Eberhardt (2025033118431917300_ref40) 2021; 61
Wang (2025033118431917300_ref47) 2023; 24
Zhang (2025033118431917300_ref4)
Lipinski (2025033118431917300_ref61) 2012; 64
Ragoza (2025033118431917300_ref9)
Bryant (2025033118431917300_ref48) 2024; 15
Hongyu (2025033118431917300_ref3) 2023; 42
Powers (2025033118431917300_ref50) 2023
Jiang (2025033118431917300_ref29) 2024; 6
Wang (2025033118431917300_ref1) 2021; 22
Ragoza (2025033118431917300_ref10) 2022; 13
Guan (2025033118431917300_ref12) 2023
Schneuing (2025033118431917300_ref11)
Krasoulis (2025033118431917300_ref45) 2022; 62
Irwin (2025033118431917300_ref17)
Zhang (2025033118431917300_ref37) 2023; 3
Jiang (2025033118431917300_ref30) 2021; 64
Jones (2025033118431917300_ref43) 1997; 267
Tanimoto (2025033118431917300_ref64) 1958
Sun (2025033118431917300_ref55) 2020
Ghose (2025033118431917300_ref60) 1999; 1
Igashov (2025033118431917300_ref15) 2024; 6
Chen (2025033118431917300_ref18) 2021
Jing (2025033118431917300_ref33) 2022; 35
Norris (2025033118431917300_ref52) 1998
Kelvinius (2025033118431917300_ref19) 2023
Huang (2025033118431917300_ref13) 2024; 15
Li (2025033118431917300_ref65) 2022; 13
Borman (2025033118431917300_ref53)
Kong (2025033118431917300_ref16) 2023
Alhossary (2025033118431917300_ref41) 2015; 31
Feng (2025033118431917300_ref32) 2024; 6
Veber (2025033118431917300_ref62) 2002; 45
Li (2025033118431917300_ref24) 2021; 12
References_xml – volume: 35
  start-page: 24240
  year: 2022
  ident: 2025033118431917300_ref33
  article-title: Torsional diffusion for molecular conformer generation
  publication-title: Adv Neural Inf Process Syst
– volume: 12
  start-page: 13664
  year: 2021
  ident: 2025033118431917300_ref24
  article-title: Structure-based de novo drug design using 3D deep generative models
  publication-title: Chem Sci
  doi: 10.1039/D1SC04444C
– start-page: 17644
  volume-title: International Conference on Machine Learning
  year: 2022
  ident: 2025033118431917300_ref25
  article-title: Pocket2Mol: efficient molecular sampling based on 3D protein pockets
– volume: 61
  start-page: 3891
  year: 2021
  ident: 2025033118431917300_ref40
  article-title: AutoDock Vina 1.2. 0: new docking methods, expanded force field, and Python bindings
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.1c00203
– volume: 3
  start-page: 849
  year: 2023
  ident: 2025033118431917300_ref26
  article-title: Learning on topological surface and geometric structure for 3D molecular generation
  publication-title: Nat Comput Sci
  doi: 10.1038/s43588-023-00530-2
– volume: 31
  start-page: 2214
  year: 2015
  ident: 2025033118431917300_ref41
  article-title: Fast, accurate, and reliable molecular docking with QuickVina 2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv082
– volume: 34
  start-page: 3218
  year: 2021
  ident: 2025033118431917300_ref56
  article-title: VigDet: knowledge informed neural temporal point process for coordination detection on social media
  publication-title: Adv Neural Inf Process Syst
– volume: 39
  start-page: 1
  year: 1977
  ident: 2025033118431917300_ref49
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc B Methodol
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– start-page: 1253
  volume-title: Proceedings of the Web Conference 2020
  year: 2020
  ident: 2025033118431917300_ref21
  article-title: GraphGen: a scalable approach to domain-agnostic labeled graph generation
  doi: 10.1145/3366423.3380201
– volume: 79
  start-page: 102548
  year: 2023
  ident: 2025033118431917300_ref23
  article-title: Structure-based drug design with geometric deep learning
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2023.102548
– ident: 2025033118431917300_ref17
  article-title: Efficient 3D molecular generation with flow matching and scale optimal transport
– volume: 267
  start-page: 727
  year: 1997
  ident: 2025033118431917300_ref43
  article-title: Development and validation of a genetic algorithm for flexible docking
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1996.0897
– volume: 64
  start-page: 18209
  year: 2021
  ident: 2025033118431917300_ref30
  article-title: InteractionGraphNet: a novel and efficient deep graph representation learning framework for accurate protein–ligand interaction predictions
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.1c01830
– ident: 2025033118431917300_ref4
  article-title: A survey on graph diffusion models: generative AI in science for molecule, protein and material
– volume: 3
  start-page: 789
  year: 2023
  ident: 2025033118431917300_ref37
  article-title: Efficient and accurate large library ligand docking with KarmaDock
  publication-title: Nat Comput Sci
  doi: 10.1038/s43588-023-00511-5
– start-page: 9249
  volume-title: International Conference on Machine Learning
  year: 2020
  ident: 2025033118431917300_ref55
  article-title: An EM approach to non-autoregressive conditional sequence generation
– volume: 24
  year: 2023
  ident: 2025033118431917300_ref47
  article-title: A fully differentiable ligand pose optimization framework guided by deep learning and a traditional scoring function
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac520
– volume-title: Proceedings of the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research
  ident: 2025033118431917300_ref7
  article-title: MolCRAFT: structure-based drug design in continuous parameter space
– volume-title: International Conference on Machine Learning
  year: 2023
  ident: 2025033118431917300_ref19
  article-title: Autoregressive diffusion models with non-uniform generation order
– volume-title: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics
  year: 1998
  ident: 2025033118431917300_ref52
– volume: 35
  start-page: 23894
  year: 2022
  ident: 2025033118431917300_ref35
  article-title: Zero-shot 3D drug design by sketching and generating
  publication-title: Adv Neural Inf Process Syst
– ident: 2025033118431917300_ref53
  article-title: The expectation maximization algorithm-a short tutorial
– volume: 13
  start-page: 2701
  year: 2022
  ident: 2025033118431917300_ref10
  article-title: Generating 3D molecules conditional on receptor binding sites with deep generative models
  publication-title: Chem Sci
  doi: 10.1039/D1SC05976A
– volume: 15
  start-page: 4536
  year: 2024
  ident: 2025033118431917300_ref48
  article-title: Structure prediction of protein-ligand complexes from sequence information with Umol
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-48837-6
– volume: 22
  start-page: bbab072
  year: 2021
  ident: 2025033118431917300_ref1
  article-title: DeepDTAF: a deep learning method to predict protein–ligand binding affinity
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab072
– volume: 24
  year: 2023
  ident: 2025033118431917300_ref31
  article-title: 3D based generative protac linker design with reinforcement learning
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbad323
– volume: 4
  year: 2024
  ident: 2025033118431917300_ref66
  article-title: MISATO: machine learning dataset of protein–ligand complexes for structure-based drug discovery
  publication-title: Nat Comput Sci
  doi: 10.1038/s43588-024-00627-2
– volume: 2024
  year: 2024
  ident: 2025033118431917300_ref14
  article-title: Overcoming order in autoregressive graph generation
  publication-title: Transact Mach Learn Res
– volume: 30
  start-page: 2785
  year: 2009
  ident: 2025033118431917300_ref39
  article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21256
– start-page: 1630
  volume-title: International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research
  year: 2021
  ident: 2025033118431917300_ref18
  article-title: Order matters: probabilistic modeling of node sequence for graph generation
– volume: 7
  start-page: 1
  year: 2015
  ident: 2025033118431917300_ref63
  article-title: Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?
  publication-title: J Chem
  doi: 10.1186/s13321-015-0069-3
– ident: 2025033118431917300_ref9
  article-title: Learning a continuous representation of 3D molecular structures with deep generative models
– volume: 62
  start-page: 4642
  year: 2022
  ident: 2025033118431917300_ref45
  article-title: DENVIS: scalable and high-throughput virtual screening using graph neural networks with atomic and surface protein pocket features
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.2c01057
– volume: 34
  start-page: 9559
  year: 2021
  ident: 2025033118431917300_ref22
  article-title: Permutation-invariant variational autoencoder for graph-level representation learning
  publication-title: Adv Neural Inf Process Syst
– ident: 2025033118431917300_ref46
  article-title: Do deep learning methods really perform better in molecular conformation generation?
– volume: 64
  start-page: 4
  year: 2012
  ident: 2025033118431917300_ref61
  article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2012.09.019
– volume: 24
  start-page: 1
  year: 2023
  ident: 2025033118431917300_ref27
  article-title: Fitting autoregressive graph generative models through maximum likelihood estimation
  publication-title: J Mach Learn Res
– start-page: 17391
  volume-title: International Conference on Machine Learning
  year: 2023
  ident: 2025033118431917300_ref16
  article-title: Autoregressive diffusion model for graph generation
– start-page: 2257
  volume-title: Geometric Deep Learning for Structure-Based Ligand Design
  year: 2023
  ident: 2025033118431917300_ref50
  doi: 10.1021/acscentsci.3c00572
– volume-title: International Conference on Learning Representations
  year: 2023
  ident: 2025033118431917300_ref58
  article-title: Molecule generation for target protein binding with structural motifs
– volume: 45
  start-page: 2615
  year: 2002
  ident: 2025033118431917300_ref62
  article-title: Molecular properties that influence the oral bioavailability of drug candidates
  publication-title: J Med Chem
  doi: 10.1021/jm020017n
– start-page: 5241
  volume-title: International Conference on Machine Learning
  year: 2019
  ident: 2025033118431917300_ref54
  article-title: GMNN: graph Markov neural networks
– volume: 42
  start-page: 10565
  year: 2023
  ident: 2025033118431917300_ref3
  article-title: The binding mechanism of failed, in processing and succeed inhibitors target SARS-CoV-2 main protease
  publication-title: J Biomol Struct Dyn
  doi: 10.1080/07391102.2023.2257800
– volume: 28
  start-page: 103439
  year: 2023
  ident: 2025033118431917300_ref51
  article-title: Docking-based generative approaches in the search for new drug candidates
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2022.103439
– volume: 47
  start-page: 1739
  year: 2004
  ident: 2025033118431917300_ref42
  article-title: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy
  publication-title: J Med Chem
  doi: 10.1021/jm0306430
– volume: 3
  start-page: 1033
  year: 2021
  ident: 2025033118431917300_ref2
  article-title: A geometric deep learning approach to predict binding conformations of bioactive molecules
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-021-00409-9
– volume: 15
  year: 2024
  ident: 2025033118431917300_ref28
  article-title: 3D molecular generative framework for interaction-guided drug design
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-47011-2
– volume: 2024
  year: 2024
  ident: 2025033118431917300_ref6
  article-title: 3D molecular generation via virtual dynamics
  publication-title: Transact Mach Learn Res
– volume: 15
  start-page: 7926
  year: 2024
  ident: 2025033118431917300_ref38
  article-title: DiffBindFR: an SE (3) equivariant network for flexible protein–ligand docking
  publication-title: Chem Sci
  doi: 10.1039/D3SC06803J
– volume: 15
  start-page: 2657
  year: 2024
  ident: 2025033118431917300_ref13
  article-title: A dual diffusion model enables 3D molecule generation and lead optimization based on target pockets
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-46569-1
– volume-title: International Conference on Learning Representations
  year: 2023
  ident: 2025033118431917300_ref12
  article-title: 3D equivariant diffusion for target-aware molecule generation and affinity prediction
– ident: 2025033118431917300_ref20
  article-title: Learning deep generative models of graphs
– volume: 14
  start-page: 12166
  year: 2023
  ident: 2025033118431917300_ref5
  article-title: A flexible data-free framework for structure-based de novo drug design with reinforcement learning
  publication-title: Chem Sci
  doi: 10.1039/D3SC04091G
– volume: 13
  start-page: 6891
  year: 2022
  ident: 2025033118431917300_ref65
  article-title: Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-34692-w
– ident: 2025033118431917300_ref8
  article-title: Generating 3D molecular structures conditional on a receptor binding site with deep generative models
– ident: 2025033118431917300_ref36
  article-title: Do deep learning models really outperform traditional approaches in molecular docking?
– volume-title: International Conference on Learning Representations
  year: 2023
  ident: 2025033118431917300_ref44
  article-title: DiffDock: diffusion steps, twists, and turns for molecular docking
– volume: 6
  start-page: 62
  year: 2024
  ident: 2025033118431917300_ref32
  article-title: Generation of 3D molecules in pockets via a language model
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-023-00775-6
– ident: 2025033118431917300_ref57
  article-title: Transformer for graphs: an overview from architecture perspective
– volume: 60
  start-page: 4200
  year: 2020
  ident: 2025033118431917300_ref59
  article-title: Three-dimensional convolutional neural networks and a cross-docked data set for structure-based drug design
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.0c00411
– volume: 6
  start-page: 417
  year: 2024
  ident: 2025033118431917300_ref15
  article-title: Equivariant 3D-conditional diffusion model for molecular linker design
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-024-00815-9
– start-page: 41382
  volume-title: International Conference on Machine Learning
  year: 2023
  ident: 2025033118431917300_ref34
  article-title: Learning subpocket prototypes for generalizable structure-based drug design
– ident: 2025033118431917300_ref11
  article-title: Structure-based drug design with equivariant diffusion models
  doi: 10.1038/s43588-024-00737-x
– volume: 6
  start-page: 326
  year: 2024
  ident: 2025033118431917300_ref29
  article-title: Pocketflow is a data-and-knowledge-driven structure-based molecular generative model
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-024-00808-8
– volume: 1
  start-page: 55
  year: 1999
  ident: 2025033118431917300_ref60
  article-title: A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases
  publication-title: J Comb Chem
  doi: 10.1021/cc9800071
– volume-title: Elementary Mathematical Theory of Classification and Prediction
  year: 1958
  ident: 2025033118431917300_ref64
SSID ssj0020781
Score 2.42307
Snippet Abstract Structure-based drug design aims to generate molecules that fill the cavity of the protein pocket with a high binding affinity. Many contemporary...
Structure-based drug design aims to generate molecules that fill the cavity of the protein pocket with a high binding affinity. Many contemporary studies...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Affinity
Algorithms
Binding
Drug Design
Drug development
Graphs
Lower bounds
Molecular docking
Molecular Docking Simulation
Problem Solving Protocol
Proteins - chemistry
Proteins - metabolism
Software
Training
Title MolEM: a unified generative framework for molecular graphs and sequential orders
URI https://www.ncbi.nlm.nih.gov/pubmed/40163755
https://www.proquest.com/docview/3248850160
https://www.proquest.com/docview/3184575095
https://pubmed.ncbi.nlm.nih.gov/PMC11957264
Volume 26
WOSCitedRecordID wos001482373500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60KHjx_aiPGsHr0u5uYrLeRCpeWj0o9LZsHqMF3YrbCv57J7vbYouo58yyYSaTfEMm3wdwrqTtOI6cUjySAbdWBSqSIgiRG7wwUovElGITst9Xg0FyXzfIFj9c4SdxWw91W-sMqRChrTYUygsVPNwNZnWV56upHhHJwLO718_wFr6dO3jmHrN9w5SLrZHfzpqbjf_OchPWazTJrqrwb8GSy7dhtdKX_NyB-97opdu7ZBmb5EMksMmeSpZpv8UxnLZlMcKt7HUqk8tKCuuCZbllVZ817QEvrKToLHbh8ab7cH0b1BIKgaHCaRzELuHGaK545EKrwthJjaYjrY00KtsROpHWhJ6bKCFk6DIMMxFlGrMwMkjH2x408lHuDoDpWBuurFDGeMp21IgoUFKcQ0STRE04n_o3fauYMtLqhjtOyTlp7ZwmnJLvf7c4nsYlrROqSAn3KSU8HV4TzmbDlAr-fiPL3WhCNlStCo-ARBP2qzDO_kPeuIiloBE1F-CZgafZnh_Jh88l3bYnxZOEGw__nPkRrEVeHti3qPFjaIzfJ-4EVszHeFi8t2BZDlSrLPpb5QL-An8i7cI
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MolEM%3A+a+unified+generative+framework+for+molecular+graphs+and+sequential+orders&rft.jtitle=Briefings+in+bioinformatics&rft.au=Zhang%2C+Hanwen&rft.au=Xiong%2C+Deng&rft.au=Liu%2C+Xianggen&rft.au=Lv%2C+Jiancheng&rft.date=2025-03-04&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=26&rft.issue=2&rft_id=info:doi/10.1093%2Fbib%2Fbbaf094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbaf094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon