Application of new quintic polynomial B-spline approximation for numerical investigation of Kuramoto–Sivashinsky equation

A spline is a piecewise defined special function that is usually comprised of polynomials of a certain degree. These polynomials are supposed to generate a smooth curve by connecting at given data points. In this work, an application of fifth degree basis spline functions is presented for a numerica...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in difference equations Ročník 2020; číslo 1; s. 1 - 21
Hlavní autoři: Iqbal, Muhammad Kashif, Abbas, Muhammad, Nazir, Tahir, Ali, Nouman
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 07.10.2020
SpringerOpen
Témata:
ISSN:1687-1847, 1687-1847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A spline is a piecewise defined special function that is usually comprised of polynomials of a certain degree. These polynomials are supposed to generate a smooth curve by connecting at given data points. In this work, an application of fifth degree basis spline functions is presented for a numerical investigation of the Kuramoto–Sivashinsky equation. The finite forward difference formula is used for temporal integration, whereas the basis splines, together with a new approximation for fourth order spatial derivative, are brought into play for discretization in space direction. In order to corroborate the presented numerical algorithm, some test problems are considered and the computational results are compared with existing methods.
ISSN:1687-1847
1687-1847
DOI:10.1186/s13662-020-03007-y