Application of new quintic polynomial B-spline approximation for numerical investigation of Kuramoto–Sivashinsky equation
A spline is a piecewise defined special function that is usually comprised of polynomials of a certain degree. These polynomials are supposed to generate a smooth curve by connecting at given data points. In this work, an application of fifth degree basis spline functions is presented for a numerica...
Uloženo v:
| Vydáno v: | Advances in difference equations Ročník 2020; číslo 1; s. 1 - 21 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
07.10.2020
SpringerOpen |
| Témata: | |
| ISSN: | 1687-1847, 1687-1847 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A spline is a piecewise defined special function that is usually comprised of polynomials of a certain degree. These polynomials are supposed to generate a smooth curve by connecting at given data points. In this work, an application of fifth degree basis spline functions is presented for a numerical investigation of the Kuramoto–Sivashinsky equation. The finite forward difference formula is used for temporal integration, whereas the basis splines, together with a new approximation for fourth order spatial derivative, are brought into play for discretization in space direction. In order to corroborate the presented numerical algorithm, some test problems are considered and the computational results are compared with existing methods. |
|---|---|
| AbstractList | Abstract A spline is a piecewise defined special function that is usually comprised of polynomials of a certain degree. These polynomials are supposed to generate a smooth curve by connecting at given data points. In this work, an application of fifth degree basis spline functions is presented for a numerical investigation of the Kuramoto–Sivashinsky equation. The finite forward difference formula is used for temporal integration, whereas the basis splines, together with a new approximation for fourth order spatial derivative, are brought into play for discretization in space direction. In order to corroborate the presented numerical algorithm, some test problems are considered and the computational results are compared with existing methods. A spline is a piecewise defined special function that is usually comprised of polynomials of a certain degree. These polynomials are supposed to generate a smooth curve by connecting at given data points. In this work, an application of fifth degree basis spline functions is presented for a numerical investigation of the Kuramoto–Sivashinsky equation. The finite forward difference formula is used for temporal integration, whereas the basis splines, together with a new approximation for fourth order spatial derivative, are brought into play for discretization in space direction. In order to corroborate the presented numerical algorithm, some test problems are considered and the computational results are compared with existing methods. |
| ArticleNumber | 558 |
| Author | Iqbal, Muhammad Kashif Nazir, Tahir Ali, Nouman Abbas, Muhammad |
| Author_xml | – sequence: 1 givenname: Muhammad Kashif orcidid: 0000-0003-4442-7498 surname: Iqbal fullname: Iqbal, Muhammad Kashif email: kashifiqbal@gcuf.edu.pk organization: Department of Mathematics, Government College University – sequence: 2 givenname: Muhammad orcidid: 0000-0002-0491-1528 surname: Abbas fullname: Abbas, Muhammad organization: Department of Mathematics, University of Sargodha – sequence: 3 givenname: Tahir surname: Nazir fullname: Nazir, Tahir organization: Department of Mathematics, University of Sargodha – sequence: 4 givenname: Nouman surname: Ali fullname: Ali, Nouman organization: Department of Software Engineering, Mirpur University of Science & Technology |
| BookMark | eNp9kc1O3DAUha0KpPL3Aqz8AmltJ-M4S0C0HYHEorC2Ls711NOMHeyEEnXTd-gb8iSYSUEVC1bXujrf0T0--2THB4-EHHP2iXMlPydeSikKJljBSsbqYvpA9rhUdcFVVe_89_5I9lNaMyaaSqk98vuk7ztnYHDB02Cpx1_0bnR-cIb2oZt82Djo6GmRsswjhb6P4cFtZsCGSP24wZgdOur8PabBrV7NLsYImzCExz9_v7t7SD-cTz8ninfjVnJIdi10CY_-zQNy8-X8-uxbcXn1dXl2clmYivGh4Ab5bbUwIieUbS2kaHkjUPAWSqgayxvZ3BpbComVBcVMq1jFLEcl7QKEKQ_IcvZtA6x1H_P1cdIBnN4uQlxpiDlwh7oFW5raNBJLVTEFjTAcmoUwC4GoBM9eavYyMaQU0Wrjhm2aIYLrNGf6uRA9F6JzIXpbiJ4yKt6gL6e8C5UzlLLYrzDqdRijz9_1HvUEEpSlcQ |
| CitedBy_id | crossref_primary_10_1007_s00366_025_02131_1 crossref_primary_10_1088_1402_4896_ac54d0 crossref_primary_10_3390_fractalfract8020093 crossref_primary_10_1016_j_matcom_2023_12_036 crossref_primary_10_3390_math12132137 crossref_primary_10_1515_phys_2025_0191 crossref_primary_10_1007_s40819_022_01439_6 crossref_primary_10_1515_phys_2023_0120 crossref_primary_10_1007_s00366_021_01490_9 crossref_primary_10_1007_s12008_023_01513_3 crossref_primary_10_1016_j_wavemoti_2022_103045 crossref_primary_10_3934_mmc_2025017 |
| Cites_doi | 10.1002/mma.6347 10.1016/j.jksus.2010.07.023 10.1016/0167-2789(86)90055-2 10.1080/00036811.2015.1132310 10.1016/j.chaos.2020.109811 10.1002/mma.5950 10.1515/ijnsns-2015-0190 10.1007/978-3-540-39808-0_1 10.1080/16583655.2019.1651988 10.1063/1.5084035 10.21833/ijaas.2020.06.007 10.3390/math8040558 10.1093/comjnl/12.2.188 10.1016/j.cnsns.2009.11.012 10.1146/annurev.fl.15.010183.001143 10.3390/fractalfract3020033 10.1016/j.apm.2011.07.028 10.1007/s11075-013-9731-x 10.1016/j.chaos.2019.109467 10.1016/j.aml.2019.06.028 10.1007/978-1-4612-6333-3 10.1016/j.physa.2009.01.005 10.3389/fphy.2020.00064 10.1371/journal.pone.0095774 10.1063/1.865160 10.1016/j.jnnms.2016.03.002 10.1016/0167-2789(86)90166-1 10.1016/j.chaos.2018.07.032 10.3390/math8030360 10.1016/j.aej.2020.04.019 10.1186/s13662-020-02684-z 10.1016/j.chaos.2020.109619 10.1016/j.camwa.2008.03.013 10.1080/16583655.2019.1618547 10.2298/FIL1603853E 10.1002/mma.6297 10.1093/imamat/hxw011 10.22436/jmcs.020.01.04 10.1016/j.amc.2009.02.037 10.1016/j.amc.2018.03.025 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 |
| Copyright_xml | – notice: The Author(s) 2020 |
| DBID | C6C AAYXX CITATION DOA |
| DOI | 10.1186/s13662-020-03007-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1687-1847 |
| EndPage | 21 |
| ExternalDocumentID | oai_doaj_org_article_daf3c7c96e38408a92c1a952c52ee821 10_1186_s13662_020_03007_y |
| GroupedDBID | -A0 23M 2WC 3V. 4.4 40G 5GY 5VS 6J9 8FE 8FG 8R4 8R5 AAFWJ AAYZJ ABDBF ABJCF ABUWG ACGFO ACGFS ACIPV ACIWK ACUHS ADBBV ADINQ AEGXH AENEX AFKRA AFPKN AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DWQXO EBS ESX GNUQQ GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M0N M7S M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ TUS U2A UPT ~8M AAYXX CITATION OVT |
| ID | FETCH-LOGICAL-c401t-1ce1b45c26626d7262d192e21da3a49f1969bcf326e4fa80cd8040f1e86f5a2c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578545400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1687-1847 |
| IngestDate | Fri Oct 03 12:43:16 EDT 2025 Sat Nov 29 01:43:48 EST 2025 Tue Nov 18 20:50:39 EST 2025 Fri Feb 21 02:36:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Von Neumann stability analysis Quintic polynomial B-spline functions Spline approximations Kuramoto–Sivashinsky equation Crank–Nicolson scheme |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c401t-1ce1b45c26626d7262d192e21da3a49f1969bcf326e4fa80cd8040f1e86f5a2c3 |
| ORCID | 0000-0002-0491-1528 0000-0003-4442-7498 |
| OpenAccessLink | https://doaj.org/article/daf3c7c96e38408a92c1a952c52ee821 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_daf3c7c96e38408a92c1a952c52ee821 crossref_citationtrail_10_1186_s13662_020_03007_y crossref_primary_10_1186_s13662_020_03007_y springer_journals_10_1186_s13662_020_03007_y |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-07 |
| PublicationDateYYYYMMDD | 2020-10-07 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationTitle | Advances in difference equations |
| PublicationTitleAbbrev | Adv Differ Equ |
| PublicationYear | 2020 |
| Publisher | Springer International Publishing SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: SpringerOpen |
| References | Iqbal, Iftikhar, Iqbal, Abbas (CR40) 2020; 7 Gomes, Papageorgiou, Pavliotis (CR32) 2017; 82 Akgül (CR17) 2019; 13 Kumar, Ghosh, Samet, Goufo (CR11) 2020; 43 Akgül (CR16) 2018; 114 Michelson (CR5) 1986; 19 Khater, Temsah (CR24) 2008; 56 Uddin, Haq (CR26) 2009; 212 Kumar, Ahmadian, Kumar, Kumar, Singh, Baleanu, Salimi (CR12) 2020; 8 Rageha, Ismaila, Salemb, El-Salamc (CR30) 2015; 13 Mittal, Dahiya (CR6) 2017; 18 Baleanu, Jleli, Kumar, Samet (CR15) 2020; 2020 Rashidinia, Jokar (CR33) 2017; 96 Akgül, Cordero, Torregrosa (CR23) 2020; 43 Conte (CR3) 2003 Kumar, Ghosh, Lotayif, Samet (CR14) 2020; 59 Akgül, Karatas Akgül (CR18) 2019; 3 Kumar, Kumar, Cattani, Samet (CR9) 2020; 135 Hyman, Nicolaenko (CR4) 1986; 18 Alshabanat, Jleli, Kumar, Samet (CR13) 2020; 8 Goufo, Kumar, Mugisha (CR7) 2020; 130 Boor (CR35) 1978 Nazir, Abbas, Iqbal (CR36) 2020; 20 Baleanu, Fernandez, Akgül (CR22) 2020; 8 Ghanbari, Kumar, Kumar (CR8) 2020; 133 Zin, Abbas, Majid, Ismail (CR41) 2014; 9 Kumar, Kumar, Agarwal, Samet (CR10) 2020; 43 Xu, Lang (CR39) 2014; 66 Porshokouhi, Ghanbari (CR28) 2011; 23 Sivashinsky (CR2) 1983; 15 Akgül (CR20) 2019; 29 Lakestani, Dehghan (CR29) 2012; 36 Hooper, Grimshaw (CR1) 1985; 28 Mittal, Arora (CR27) 2010; 15 Akgül, Cordero, Torregrosa (CR19) 2019; 98 Lodhi, Mishra (CR38) 2016; 35 Ersoy, Dag (CR31) 2016; 30 Akgül, Bonyah (CR34) 2019; 13 Fyfe (CR37) 1969; 12 Soleymani, Akgül, Akgül (CR21) 2019; 27 Iqbal, Abbas, Wasim (CR42) 2018; 331 Lai, Ma (CR25) 2009; 388 D. Baleanu (3007_CR15) 2020; 2020 R.C. Mittal (3007_CR27) 2010; 15 T.M. Rageha (3007_CR30) 2015; 13 B. Ghanbari (3007_CR8) 2020; 133 A. Akgül (3007_CR16) 2018; 114 E.K. Akgül (3007_CR20) 2019; 29 S.N. Gomes (3007_CR32) 2017; 82 M. Lakestani (3007_CR29) 2012; 36 X.P. Xu (3007_CR39) 2014; 66 R.K. Lodhi (3007_CR38) 2016; 35 D. Baleanu (3007_CR22) 2020; 8 J. Rashidinia (3007_CR33) 2017; 96 D. Michelson (3007_CR5) 1986; 19 S. Kumar (3007_CR10) 2020; 43 O. Ersoy (3007_CR31) 2016; 30 A. Akgül (3007_CR23) 2020; 43 E.F.D. Goufo (3007_CR7) 2020; 130 S. Kumar (3007_CR14) 2020; 59 S.M. Zin (3007_CR41) 2014; 9 S. Kumar (3007_CR12) 2020; 8 C.D. Boor (3007_CR35) 1978 A. Akgül (3007_CR34) 2019; 13 M.K. Iqbal (3007_CR40) 2020; 7 A. Khater (3007_CR24) 2008; 56 M.K. Iqbal (3007_CR42) 2018; 331 R. Conte (3007_CR3) 2003 D. Fyfe (3007_CR37) 1969; 12 G.I. Sivashinsky (3007_CR2) 1983; 15 H. Lai (3007_CR25) 2009; 388 R. Mittal (3007_CR6) 2017; 18 A. Hooper (3007_CR1) 1985; 28 A. Alshabanat (3007_CR13) 2020; 8 J.M. Hyman (3007_CR4) 1986; 18 A. Akgül (3007_CR17) 2019; 13 S. Kumar (3007_CR11) 2020; 43 F. Soleymani (3007_CR21) 2019; 27 S. Kumar (3007_CR9) 2020; 135 A. Akgül (3007_CR18) 2019; 3 M.G. Porshokouhi (3007_CR28) 2011; 23 A. Akgül (3007_CR19) 2019; 98 M. Uddin (3007_CR26) 2009; 212 T. Nazir (3007_CR36) 2020; 20 |
| References_xml | – volume: 212 start-page: 458 issue: 2 year: 2009 end-page: 469 ident: CR26 article-title: A mesh-free numerical method for solution of the family of Kuramoto–Sivashinsky equations publication-title: Appl. Math. Comput. – volume: 43 start-page: 6062 issue: 9 year: 2020 end-page: 6080 ident: CR11 article-title: An analysis for heat equations arises in diffusion process using new Yang–Abdel–Aty–Cattani fractional operator publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6347 – volume: 23 start-page: 407 issue: 4 year: 2011 end-page: 411 ident: CR28 article-title: Application of He’s variational iteration method for solution of the family of Kuramoto–Sivashinsky equations publication-title: J. King Saud Univ., Sci. doi: 10.1016/j.jksus.2010.07.023 – volume: 19 start-page: 89 issue: 1 year: 1986 end-page: 111 ident: CR5 article-title: Steady solutions of the Kuramoto–Sivashinsky equation publication-title: Phys. D: Nonlinear Phenom. doi: 10.1016/0167-2789(86)90055-2 – volume: 96 start-page: 293 issue: 2 year: 2017 end-page: 306 ident: CR33 article-title: Polynomial scaling functions for numerical solution of generalized Kuramoto–Sivashinsky equation publication-title: Appl. Anal. doi: 10.1080/00036811.2015.1132310 – volume: 135 year: 2020 ident: CR9 article-title: Chaotic behaviour of fractional predator-prey dynamical system publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109811 – volume: 43 start-page: 1349 issue: 3 year: 2020 end-page: 1358 ident: CR23 article-title: Solutions of fractional gas dynamics equation by a new technique publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5950 – volume: 18 start-page: 103 issue: 2 year: 2017 end-page: 114 ident: CR6 article-title: A quintic B-spline based differential quadrature method for numerical solution of Kuramoto–Sivashinsky equation publication-title: Int. J. Nonlinear Sci. Numer. Simul. doi: 10.1515/ijnsns-2015-0190 – start-page: 1 year: 2003 end-page: 83 ident: CR3 article-title: Exact solutions of nonlinear partial differential equations by singularity analysis publication-title: Direct and Inverse Methods in Nonlinear Evolution Equations doi: 10.1007/978-3-540-39808-0_1 – volume: 13 start-page: 858 issue: 1 year: 2019 end-page: 863 ident: CR17 article-title: Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell–Eyring non-Newtonian fluid publication-title: J. Taibah Univ. Sci. doi: 10.1080/16583655.2019.1651988 – volume: 29 issue: 2 year: 2019 ident: CR20 article-title: Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives publication-title: Chaos, Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.5084035 – volume: 7 start-page: 48 issue: 6 year: 2020 end-page: 56 ident: CR40 article-title: Numerical treatment of fourth-order singular boundary value problems using new quintic B-spline approximation technique publication-title: Int. J. Adv. Appl. Sci. doi: 10.21833/ijaas.2020.06.007 – volume: 8 issue: 4 year: 2020 ident: CR12 article-title: An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets publication-title: Mathematics doi: 10.3390/math8040558 – volume: 12 start-page: 188 issue: 2 year: 1969 end-page: 192 ident: CR37 article-title: The use of cubic splines in the solution of two-point boundary value problems publication-title: Comput. J. doi: 10.1093/comjnl/12.2.188 – volume: 15 start-page: 2798 issue: 10 year: 2010 end-page: 2808 ident: CR27 article-title: Quintic B-spline collocation method for numerical solution of the Kuramoto–Sivashinsky equation publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2009.11.012 – volume: 15 start-page: 179 issue: 1 year: 1983 end-page: 199 ident: CR2 article-title: Instabilities, pattern formation, and turbulence in flames publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.15.010183.001143 – volume: 3 issue: 2 year: 2019 ident: CR18 article-title: A novel method for solutions of fourth-order fractional boundary value problems publication-title: Fractal Fract. doi: 10.3390/fractalfract3020033 – volume: 36 start-page: 605 issue: 2 year: 2012 end-page: 617 ident: CR29 article-title: Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.07.028 – volume: 66 start-page: 223 issue: 2 year: 2014 end-page: 240 ident: CR39 article-title: Quintic B-spline method for function reconstruction from integral values of successive subintervals publication-title: Numer. Algorithms doi: 10.1007/s11075-013-9731-x – volume: 130 year: 2020 ident: CR7 article-title: Similarities in a fifth-order evolution equation with and with no singular kernel publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.109467 – volume: 98 start-page: 344 year: 2019 end-page: 351 ident: CR19 article-title: A fractional Newton method with 2 th-order of convergence and its stability publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.06.028 – year: 1978 ident: CR35 publication-title: A Practical Guide to Splines doi: 10.1007/978-1-4612-6333-3 – volume: 388 start-page: 1405 issue: 8 year: 2009 end-page: 1412 ident: CR25 article-title: Lattice Boltzmann method for the generalized Kuramoto–Sivashinsky equation publication-title: Phys. A, Stat. Mech. Appl. doi: 10.1016/j.physa.2009.01.005 – volume: 8 year: 2020 ident: CR13 article-title: Generalization of Caputo–Fabrizio fractional derivative and applications to electrical circuits publication-title: Front. Phys. doi: 10.3389/fphy.2020.00064 – volume: 27 start-page: 207 issue: 3 year: 2019 end-page: 230 ident: CR21 article-title: On an improved computational solution for the 3D HCIR PDE in finance publication-title: An. Ştiinţ. Univ. ‘Ovidius’ Constanţa, Ser. Mat. – volume: 9 issue: 5 year: 2014 ident: CR41 article-title: A new trigonometric spline approach to numerical solution of generalized nonlinear Klein–Gordon equation publication-title: PLoS ONE doi: 10.1371/journal.pone.0095774 – volume: 28 start-page: 37 issue: 1 year: 1985 end-page: 45 ident: CR1 article-title: Nonlinear instability at the interface between two viscous fluids publication-title: Phys. Fluids doi: 10.1063/1.865160 – volume: 35 start-page: 257 issue: 1 year: 2016 end-page: 265 ident: CR38 article-title: Solution of a class of fourth order singular singularly perturbed boundary value problems by quintic B-spline method publication-title: J. Niger. Math. Soc. doi: 10.1016/j.jnnms.2016.03.002 – volume: 18 start-page: 113 issue: 1–3 year: 1986 end-page: 126 ident: CR4 article-title: The Kuramoto–Sivashinsky equation: a bridge between PDEs and dynamical systems publication-title: Phys. D: Nonlinear Phenom. doi: 10.1016/0167-2789(86)90166-1 – volume: 114 start-page: 478 year: 2018 end-page: 482 ident: CR16 article-title: A novel method for a fractional derivative with non-local and non-singular kernel publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.07.032 – volume: 8 issue: 3 year: 2020 ident: CR22 article-title: On a fractional operator combining proportional and classical differintegrals publication-title: Mathematics doi: 10.3390/math8030360 – volume: 59 start-page: 1435 issue: 3 year: 2020 end-page: 1449 ident: CR14 article-title: A model for describing the velocity of a particle in Brownian motion by robotnov function based fractional operator publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.04.019 – volume: 2020 year: 2020 ident: CR15 article-title: A fractional derivative with two singular kernels and application to a heat conduction problem publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-020-02684-z – volume: 133 year: 2020 ident: CR8 article-title: A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109619 – volume: 56 start-page: 1465 issue: 6 year: 2008 end-page: 1472 ident: CR24 article-title: Numerical solutions of the generalized Kuramoto–Sivashinsky equation by Chebyshev spectral collocation methods publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.03.013 – volume: 13 start-page: 661 issue: 1 year: 2019 end-page: 669 ident: CR34 article-title: Reproducing kernel Hilbert space method for the solutions of generalized Kuramoto–Sivashinsky equation publication-title: J. Taibah Univ. Sci. doi: 10.1080/16583655.2019.1618547 – volume: 30 start-page: 853 issue: 3 year: 2016 end-page: 861 ident: CR31 article-title: The exponential cubic B-spline collocation method for the Kuramoto–Sivashinsky equation publication-title: Filomat doi: 10.2298/FIL1603853E – volume: 331 start-page: 319 year: 2018 end-page: 333 ident: CR42 article-title: New cubic B-spline approximation for solving third order Emden–Flower type equations publication-title: Appl. Math. Comput. – volume: 43 start-page: 5564 issue: 8 year: 2020 end-page: 5578 ident: CR10 article-title: A study on population dynamics of two interacting species by Haar wavelet and Adam’s–Bashforth–Moulton methods publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6297 – volume: 13 start-page: 29 issue: 1 year: 2015 end-page: 38 ident: CR30 article-title: Restrictive approximation algorithm for Kuramoto–Sivashinsky equation publication-title: Int. J. Mod. Math. Sci. – volume: 82 start-page: 158 issue: 1 year: 2017 end-page: 194 ident: CR32 article-title: Stabilizing non-trivial solutions of the generalized Kuramoto–Sivashinsky equation using feedback and optimal control: Lighthill–Thwaites prize publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/hxw011 – volume: 20 start-page: 30 issue: 1 year: 2020 end-page: 42 ident: CR36 article-title: A new quintic B-spline approximation for numerical treatment of Boussinesq equation publication-title: J. Math. Comput. Sci. doi: 10.22436/jmcs.020.01.04 – volume: 13 start-page: 29 issue: 1 year: 2015 ident: 3007_CR30 publication-title: Int. J. Mod. Math. Sci. – volume: 13 start-page: 661 issue: 1 year: 2019 ident: 3007_CR34 publication-title: J. Taibah Univ. Sci. doi: 10.1080/16583655.2019.1618547 – volume: 7 start-page: 48 issue: 6 year: 2020 ident: 3007_CR40 publication-title: Int. J. Adv. Appl. Sci. doi: 10.21833/ijaas.2020.06.007 – volume: 8 issue: 4 year: 2020 ident: 3007_CR12 publication-title: Mathematics doi: 10.3390/math8040558 – volume: 96 start-page: 293 issue: 2 year: 2017 ident: 3007_CR33 publication-title: Appl. Anal. doi: 10.1080/00036811.2015.1132310 – volume: 28 start-page: 37 issue: 1 year: 1985 ident: 3007_CR1 publication-title: Phys. Fluids doi: 10.1063/1.865160 – volume: 12 start-page: 188 issue: 2 year: 1969 ident: 3007_CR37 publication-title: Comput. J. doi: 10.1093/comjnl/12.2.188 – volume: 66 start-page: 223 issue: 2 year: 2014 ident: 3007_CR39 publication-title: Numer. Algorithms doi: 10.1007/s11075-013-9731-x – volume: 43 start-page: 1349 issue: 3 year: 2020 ident: 3007_CR23 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5950 – volume: 15 start-page: 2798 issue: 10 year: 2010 ident: 3007_CR27 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2009.11.012 – volume: 133 year: 2020 ident: 3007_CR8 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109619 – volume: 18 start-page: 103 issue: 2 year: 2017 ident: 3007_CR6 publication-title: Int. J. Nonlinear Sci. Numer. Simul. doi: 10.1515/ijnsns-2015-0190 – volume: 43 start-page: 6062 issue: 9 year: 2020 ident: 3007_CR11 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6347 – volume: 82 start-page: 158 issue: 1 year: 2017 ident: 3007_CR32 publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/hxw011 – volume: 43 start-page: 5564 issue: 8 year: 2020 ident: 3007_CR10 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6297 – volume: 27 start-page: 207 issue: 3 year: 2019 ident: 3007_CR21 publication-title: An. Ştiinţ. Univ. ‘Ovidius’ Constanţa, Ser. Mat. – volume: 130 year: 2020 ident: 3007_CR7 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.109467 – volume: 212 start-page: 458 issue: 2 year: 2009 ident: 3007_CR26 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.02.037 – volume: 35 start-page: 257 issue: 1 year: 2016 ident: 3007_CR38 publication-title: J. Niger. Math. Soc. doi: 10.1016/j.jnnms.2016.03.002 – volume: 36 start-page: 605 issue: 2 year: 2012 ident: 3007_CR29 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.07.028 – volume: 331 start-page: 319 year: 2018 ident: 3007_CR42 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2018.03.025 – volume: 2020 year: 2020 ident: 3007_CR15 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-020-02684-z – volume: 13 start-page: 858 issue: 1 year: 2019 ident: 3007_CR17 publication-title: J. Taibah Univ. Sci. doi: 10.1080/16583655.2019.1651988 – volume: 56 start-page: 1465 issue: 6 year: 2008 ident: 3007_CR24 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.03.013 – volume: 3 issue: 2 year: 2019 ident: 3007_CR18 publication-title: Fractal Fract. doi: 10.3390/fractalfract3020033 – volume: 19 start-page: 89 issue: 1 year: 1986 ident: 3007_CR5 publication-title: Phys. D: Nonlinear Phenom. doi: 10.1016/0167-2789(86)90055-2 – volume: 20 start-page: 30 issue: 1 year: 2020 ident: 3007_CR36 publication-title: J. Math. Comput. Sci. doi: 10.22436/jmcs.020.01.04 – volume: 8 issue: 3 year: 2020 ident: 3007_CR22 publication-title: Mathematics doi: 10.3390/math8030360 – volume: 59 start-page: 1435 issue: 3 year: 2020 ident: 3007_CR14 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.04.019 – volume: 23 start-page: 407 issue: 4 year: 2011 ident: 3007_CR28 publication-title: J. King Saud Univ., Sci. doi: 10.1016/j.jksus.2010.07.023 – volume: 114 start-page: 478 year: 2018 ident: 3007_CR16 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.07.032 – volume: 29 issue: 2 year: 2019 ident: 3007_CR20 publication-title: Chaos, Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.5084035 – volume: 98 start-page: 344 year: 2019 ident: 3007_CR19 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.06.028 – volume: 15 start-page: 179 issue: 1 year: 1983 ident: 3007_CR2 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.15.010183.001143 – volume: 8 year: 2020 ident: 3007_CR13 publication-title: Front. Phys. doi: 10.3389/fphy.2020.00064 – volume: 30 start-page: 853 issue: 3 year: 2016 ident: 3007_CR31 publication-title: Filomat doi: 10.2298/FIL1603853E – volume: 18 start-page: 113 issue: 1–3 year: 1986 ident: 3007_CR4 publication-title: Phys. D: Nonlinear Phenom. doi: 10.1016/0167-2789(86)90166-1 – volume: 135 year: 2020 ident: 3007_CR9 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109811 – volume: 388 start-page: 1405 issue: 8 year: 2009 ident: 3007_CR25 publication-title: Phys. A, Stat. Mech. Appl. doi: 10.1016/j.physa.2009.01.005 – volume: 9 issue: 5 year: 2014 ident: 3007_CR41 publication-title: PLoS ONE doi: 10.1371/journal.pone.0095774 – start-page: 1 volume-title: Direct and Inverse Methods in Nonlinear Evolution Equations year: 2003 ident: 3007_CR3 doi: 10.1007/978-3-540-39808-0_1 – volume-title: A Practical Guide to Splines year: 1978 ident: 3007_CR35 doi: 10.1007/978-1-4612-6333-3 |
| SSID | ssj0029488 |
| Score | 2.3408787 |
| Snippet | A spline is a piecewise defined special function that is usually comprised of polynomials of a certain degree. These polynomials are supposed to generate a... Abstract A spline is a piecewise defined special function that is usually comprised of polynomials of a certain degree. These polynomials are supposed to... |
| SourceID | doaj crossref springer |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Analysis Applications Crank–Nicolson scheme Difference and Functional Equations Functional Analysis Kuramoto–Sivashinsky equation Mathematics Mathematics and Statistics Methods Ordinary Differential Equations Partial Differential Equations Quintic polynomial B-spline functions Spline approximations Topics in Special Functions and q-Special Functions: Theory Von Neumann stability analysis |
| Title | Application of new quintic polynomial B-spline approximation for numerical investigation of Kuramoto–Sivashinsky equation |
| URI | https://link.springer.com/article/10.1186/s13662-020-03007-y https://doaj.org/article/daf3c7c96e38408a92c1a952c52ee821 |
| Volume | 2020 |
| WOSCitedRecordID | wos000578545400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1687-1847 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0029488 issn: 1687-1847 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSiQxFA0is9CF6Dhi-yKL2TnBrlRVHkuVEWFABmYEdyGVuoFimmrt6hYbN_6Df-iXeJNU-2DA2cy2yKPIOSHnktxzCfla2rLSyksGmcUABUCwSoNl2nlb21w6DXUsNiEvLtTVlf75ptRXeBOW7IHTwh3V1ucOuwjIMRZRVnOXWV1yV3IAFVPI-VDqRTDVh1oaeblIkVHiqMtyITgLoRKSeijZ_N0xFN36_7oKjSfM2TpZ66UhPU6_tEGWoP1MVt8YBm6S--PX-2Y69hQ1Mb2ZNS32oNfj0TzkGOMQJ6wLibZAo2P4XZPSEynqU9rO0hXNiDavDhtpsB-ziUXgxk8Pj7-a21hkqfszp3CT3MC_kMuz779Pz1lfPoE5DJqmLHOQVUXp8AjmopZc8BrlHPAMMbCF9sEYp3Ie9RsU3qqhqxXuaJ-BEr603OVbZLkdt7BNqHWSQyzT4aAAL6vSFzWqpdzlQ4saZkCyxWoa13uLhxIXIxNjDCVMQsAgAiYiYOYDcvjS5zo5a3zY-iSA9NIyuGLHD8gV03PF_IsrA_JtAbHpt2r3wZw7_2POXbLCA-_CmwO5R5ankxnsk0_udtp0k4PI2meoUvRu |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+new+quintic+polynomial+B-spline+approximation+for+numerical+investigation+of+Kuramoto%E2%80%93Sivashinsky+equation&rft.jtitle=Advances+in+difference+equations&rft.au=Iqbal%2C+Muhammad+Kashif&rft.au=Abbas%2C+Muhammad&rft.au=Nazir%2C+Tahir&rft.au=Ali%2C+Nouman&rft.date=2020-10-07&rft.pub=Springer+International+Publishing&rft.eissn=1687-1847&rft.volume=2020&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-020-03007-y&rft.externalDocID=10_1186_s13662_020_03007_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon |