Application of new quintic polynomial B-spline approximation for numerical investigation of Kuramoto–Sivashinsky equation

A spline is a piecewise defined special function that is usually comprised of polynomials of a certain degree. These polynomials are supposed to generate a smooth curve by connecting at given data points. In this work, an application of fifth degree basis spline functions is presented for a numerica...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in difference equations Ročník 2020; číslo 1; s. 1 - 21
Hlavní autoři: Iqbal, Muhammad Kashif, Abbas, Muhammad, Nazir, Tahir, Ali, Nouman
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 07.10.2020
SpringerOpen
Témata:
ISSN:1687-1847, 1687-1847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A spline is a piecewise defined special function that is usually comprised of polynomials of a certain degree. These polynomials are supposed to generate a smooth curve by connecting at given data points. In this work, an application of fifth degree basis spline functions is presented for a numerical investigation of the Kuramoto–Sivashinsky equation. The finite forward difference formula is used for temporal integration, whereas the basis splines, together with a new approximation for fourth order spatial derivative, are brought into play for discretization in space direction. In order to corroborate the presented numerical algorithm, some test problems are considered and the computational results are compared with existing methods.
AbstractList Abstract A spline is a piecewise defined special function that is usually comprised of polynomials of a certain degree. These polynomials are supposed to generate a smooth curve by connecting at given data points. In this work, an application of fifth degree basis spline functions is presented for a numerical investigation of the Kuramoto–Sivashinsky equation. The finite forward difference formula is used for temporal integration, whereas the basis splines, together with a new approximation for fourth order spatial derivative, are brought into play for discretization in space direction. In order to corroborate the presented numerical algorithm, some test problems are considered and the computational results are compared with existing methods.
A spline is a piecewise defined special function that is usually comprised of polynomials of a certain degree. These polynomials are supposed to generate a smooth curve by connecting at given data points. In this work, an application of fifth degree basis spline functions is presented for a numerical investigation of the Kuramoto–Sivashinsky equation. The finite forward difference formula is used for temporal integration, whereas the basis splines, together with a new approximation for fourth order spatial derivative, are brought into play for discretization in space direction. In order to corroborate the presented numerical algorithm, some test problems are considered and the computational results are compared with existing methods.
ArticleNumber 558
Author Iqbal, Muhammad Kashif
Nazir, Tahir
Ali, Nouman
Abbas, Muhammad
Author_xml – sequence: 1
  givenname: Muhammad Kashif
  orcidid: 0000-0003-4442-7498
  surname: Iqbal
  fullname: Iqbal, Muhammad Kashif
  email: kashifiqbal@gcuf.edu.pk
  organization: Department of Mathematics, Government College University
– sequence: 2
  givenname: Muhammad
  orcidid: 0000-0002-0491-1528
  surname: Abbas
  fullname: Abbas, Muhammad
  organization: Department of Mathematics, University of Sargodha
– sequence: 3
  givenname: Tahir
  surname: Nazir
  fullname: Nazir, Tahir
  organization: Department of Mathematics, University of Sargodha
– sequence: 4
  givenname: Nouman
  surname: Ali
  fullname: Ali, Nouman
  organization: Department of Software Engineering, Mirpur University of Science & Technology
BookMark eNp9kc1O3DAUha0KpPL3Aqz8AmltJ-M4S0C0HYHEorC2Ls711NOMHeyEEnXTd-gb8iSYSUEVC1bXujrf0T0--2THB4-EHHP2iXMlPydeSikKJljBSsbqYvpA9rhUdcFVVe_89_5I9lNaMyaaSqk98vuk7ztnYHDB02Cpx1_0bnR-cIb2oZt82Djo6GmRsswjhb6P4cFtZsCGSP24wZgdOur8PabBrV7NLsYImzCExz9_v7t7SD-cTz8ninfjVnJIdi10CY_-zQNy8-X8-uxbcXn1dXl2clmYivGh4Ab5bbUwIieUbS2kaHkjUPAWSqgayxvZ3BpbComVBcVMq1jFLEcl7QKEKQ_IcvZtA6x1H_P1cdIBnN4uQlxpiDlwh7oFW5raNBJLVTEFjTAcmoUwC4GoBM9eavYyMaQU0Wrjhm2aIYLrNGf6uRA9F6JzIXpbiJ4yKt6gL6e8C5UzlLLYrzDqdRijz9_1HvUEEpSlcQ
CitedBy_id crossref_primary_10_1007_s00366_025_02131_1
crossref_primary_10_1088_1402_4896_ac54d0
crossref_primary_10_3390_fractalfract8020093
crossref_primary_10_1016_j_matcom_2023_12_036
crossref_primary_10_3390_math12132137
crossref_primary_10_1515_phys_2025_0191
crossref_primary_10_1007_s40819_022_01439_6
crossref_primary_10_1515_phys_2023_0120
crossref_primary_10_1007_s00366_021_01490_9
crossref_primary_10_1007_s12008_023_01513_3
crossref_primary_10_1016_j_wavemoti_2022_103045
crossref_primary_10_3934_mmc_2025017
Cites_doi 10.1002/mma.6347
10.1016/j.jksus.2010.07.023
10.1016/0167-2789(86)90055-2
10.1080/00036811.2015.1132310
10.1016/j.chaos.2020.109811
10.1002/mma.5950
10.1515/ijnsns-2015-0190
10.1007/978-3-540-39808-0_1
10.1080/16583655.2019.1651988
10.1063/1.5084035
10.21833/ijaas.2020.06.007
10.3390/math8040558
10.1093/comjnl/12.2.188
10.1016/j.cnsns.2009.11.012
10.1146/annurev.fl.15.010183.001143
10.3390/fractalfract3020033
10.1016/j.apm.2011.07.028
10.1007/s11075-013-9731-x
10.1016/j.chaos.2019.109467
10.1016/j.aml.2019.06.028
10.1007/978-1-4612-6333-3
10.1016/j.physa.2009.01.005
10.3389/fphy.2020.00064
10.1371/journal.pone.0095774
10.1063/1.865160
10.1016/j.jnnms.2016.03.002
10.1016/0167-2789(86)90166-1
10.1016/j.chaos.2018.07.032
10.3390/math8030360
10.1016/j.aej.2020.04.019
10.1186/s13662-020-02684-z
10.1016/j.chaos.2020.109619
10.1016/j.camwa.2008.03.013
10.1080/16583655.2019.1618547
10.2298/FIL1603853E
10.1002/mma.6297
10.1093/imamat/hxw011
10.22436/jmcs.020.01.04
10.1016/j.amc.2009.02.037
10.1016/j.amc.2018.03.025
ContentType Journal Article
Copyright The Author(s) 2020
Copyright_xml – notice: The Author(s) 2020
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1186/s13662-020-03007-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1687-1847
EndPage 21
ExternalDocumentID oai_doaj_org_article_daf3c7c96e38408a92c1a952c52ee821
10_1186_s13662_020_03007_y
GroupedDBID -A0
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAYZJ
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADINQ
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EBS
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
UPT
~8M
AAYXX
CITATION
OVT
ID FETCH-LOGICAL-c401t-1ce1b45c26626d7262d192e21da3a49f1969bcf326e4fa80cd8040f1e86f5a2c3
IEDL.DBID DOA
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578545400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-1847
IngestDate Fri Oct 03 12:43:16 EDT 2025
Sat Nov 29 01:43:48 EST 2025
Tue Nov 18 20:50:39 EST 2025
Fri Feb 21 02:36:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Von Neumann stability analysis
Quintic polynomial B-spline functions
Spline approximations
Kuramoto–Sivashinsky equation
Crank–Nicolson scheme
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-1ce1b45c26626d7262d192e21da3a49f1969bcf326e4fa80cd8040f1e86f5a2c3
ORCID 0000-0002-0491-1528
0000-0003-4442-7498
OpenAccessLink https://doaj.org/article/daf3c7c96e38408a92c1a952c52ee821
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_daf3c7c96e38408a92c1a952c52ee821
crossref_citationtrail_10_1186_s13662_020_03007_y
crossref_primary_10_1186_s13662_020_03007_y
springer_journals_10_1186_s13662_020_03007_y
PublicationCentury 2000
PublicationDate 2020-10-07
PublicationDateYYYYMMDD 2020-10-07
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-07
  day: 07
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Advances in difference equations
PublicationTitleAbbrev Adv Differ Equ
PublicationYear 2020
Publisher Springer International Publishing
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: SpringerOpen
References Iqbal, Iftikhar, Iqbal, Abbas (CR40) 2020; 7
Gomes, Papageorgiou, Pavliotis (CR32) 2017; 82
Akgül (CR17) 2019; 13
Kumar, Ghosh, Samet, Goufo (CR11) 2020; 43
Akgül (CR16) 2018; 114
Michelson (CR5) 1986; 19
Khater, Temsah (CR24) 2008; 56
Uddin, Haq (CR26) 2009; 212
Kumar, Ahmadian, Kumar, Kumar, Singh, Baleanu, Salimi (CR12) 2020; 8
Rageha, Ismaila, Salemb, El-Salamc (CR30) 2015; 13
Mittal, Dahiya (CR6) 2017; 18
Baleanu, Jleli, Kumar, Samet (CR15) 2020; 2020
Rashidinia, Jokar (CR33) 2017; 96
Akgül, Cordero, Torregrosa (CR23) 2020; 43
Conte (CR3) 2003
Kumar, Ghosh, Lotayif, Samet (CR14) 2020; 59
Akgül, Karatas Akgül (CR18) 2019; 3
Kumar, Kumar, Cattani, Samet (CR9) 2020; 135
Hyman, Nicolaenko (CR4) 1986; 18
Alshabanat, Jleli, Kumar, Samet (CR13) 2020; 8
Goufo, Kumar, Mugisha (CR7) 2020; 130
Boor (CR35) 1978
Nazir, Abbas, Iqbal (CR36) 2020; 20
Baleanu, Fernandez, Akgül (CR22) 2020; 8
Ghanbari, Kumar, Kumar (CR8) 2020; 133
Zin, Abbas, Majid, Ismail (CR41) 2014; 9
Kumar, Kumar, Agarwal, Samet (CR10) 2020; 43
Xu, Lang (CR39) 2014; 66
Porshokouhi, Ghanbari (CR28) 2011; 23
Sivashinsky (CR2) 1983; 15
Akgül (CR20) 2019; 29
Lakestani, Dehghan (CR29) 2012; 36
Hooper, Grimshaw (CR1) 1985; 28
Mittal, Arora (CR27) 2010; 15
Akgül, Cordero, Torregrosa (CR19) 2019; 98
Lodhi, Mishra (CR38) 2016; 35
Ersoy, Dag (CR31) 2016; 30
Akgül, Bonyah (CR34) 2019; 13
Fyfe (CR37) 1969; 12
Soleymani, Akgül, Akgül (CR21) 2019; 27
Iqbal, Abbas, Wasim (CR42) 2018; 331
Lai, Ma (CR25) 2009; 388
D. Baleanu (3007_CR15) 2020; 2020
R.C. Mittal (3007_CR27) 2010; 15
T.M. Rageha (3007_CR30) 2015; 13
B. Ghanbari (3007_CR8) 2020; 133
A. Akgül (3007_CR16) 2018; 114
E.K. Akgül (3007_CR20) 2019; 29
S.N. Gomes (3007_CR32) 2017; 82
M. Lakestani (3007_CR29) 2012; 36
X.P. Xu (3007_CR39) 2014; 66
R.K. Lodhi (3007_CR38) 2016; 35
D. Baleanu (3007_CR22) 2020; 8
J. Rashidinia (3007_CR33) 2017; 96
D. Michelson (3007_CR5) 1986; 19
S. Kumar (3007_CR10) 2020; 43
O. Ersoy (3007_CR31) 2016; 30
A. Akgül (3007_CR23) 2020; 43
E.F.D. Goufo (3007_CR7) 2020; 130
S. Kumar (3007_CR14) 2020; 59
S.M. Zin (3007_CR41) 2014; 9
S. Kumar (3007_CR12) 2020; 8
C.D. Boor (3007_CR35) 1978
A. Akgül (3007_CR34) 2019; 13
M.K. Iqbal (3007_CR40) 2020; 7
A. Khater (3007_CR24) 2008; 56
M.K. Iqbal (3007_CR42) 2018; 331
R. Conte (3007_CR3) 2003
D. Fyfe (3007_CR37) 1969; 12
G.I. Sivashinsky (3007_CR2) 1983; 15
H. Lai (3007_CR25) 2009; 388
R. Mittal (3007_CR6) 2017; 18
A. Hooper (3007_CR1) 1985; 28
A. Alshabanat (3007_CR13) 2020; 8
J.M. Hyman (3007_CR4) 1986; 18
A. Akgül (3007_CR17) 2019; 13
S. Kumar (3007_CR11) 2020; 43
F. Soleymani (3007_CR21) 2019; 27
S. Kumar (3007_CR9) 2020; 135
A. Akgül (3007_CR18) 2019; 3
M.G. Porshokouhi (3007_CR28) 2011; 23
A. Akgül (3007_CR19) 2019; 98
M. Uddin (3007_CR26) 2009; 212
T. Nazir (3007_CR36) 2020; 20
References_xml – volume: 212
  start-page: 458
  issue: 2
  year: 2009
  end-page: 469
  ident: CR26
  article-title: A mesh-free numerical method for solution of the family of Kuramoto–Sivashinsky equations
  publication-title: Appl. Math. Comput.
– volume: 43
  start-page: 6062
  issue: 9
  year: 2020
  end-page: 6080
  ident: CR11
  article-title: An analysis for heat equations arises in diffusion process using new Yang–Abdel–Aty–Cattani fractional operator
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6347
– volume: 23
  start-page: 407
  issue: 4
  year: 2011
  end-page: 411
  ident: CR28
  article-title: Application of He’s variational iteration method for solution of the family of Kuramoto–Sivashinsky equations
  publication-title: J. King Saud Univ., Sci.
  doi: 10.1016/j.jksus.2010.07.023
– volume: 19
  start-page: 89
  issue: 1
  year: 1986
  end-page: 111
  ident: CR5
  article-title: Steady solutions of the Kuramoto–Sivashinsky equation
  publication-title: Phys. D: Nonlinear Phenom.
  doi: 10.1016/0167-2789(86)90055-2
– volume: 96
  start-page: 293
  issue: 2
  year: 2017
  end-page: 306
  ident: CR33
  article-title: Polynomial scaling functions for numerical solution of generalized Kuramoto–Sivashinsky equation
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2015.1132310
– volume: 135
  year: 2020
  ident: CR9
  article-title: Chaotic behaviour of fractional predator-prey dynamical system
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109811
– volume: 43
  start-page: 1349
  issue: 3
  year: 2020
  end-page: 1358
  ident: CR23
  article-title: Solutions of fractional gas dynamics equation by a new technique
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5950
– volume: 18
  start-page: 103
  issue: 2
  year: 2017
  end-page: 114
  ident: CR6
  article-title: A quintic B-spline based differential quadrature method for numerical solution of Kuramoto–Sivashinsky equation
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/ijnsns-2015-0190
– start-page: 1
  year: 2003
  end-page: 83
  ident: CR3
  article-title: Exact solutions of nonlinear partial differential equations by singularity analysis
  publication-title: Direct and Inverse Methods in Nonlinear Evolution Equations
  doi: 10.1007/978-3-540-39808-0_1
– volume: 13
  start-page: 858
  issue: 1
  year: 2019
  end-page: 863
  ident: CR17
  article-title: Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell–Eyring non-Newtonian fluid
  publication-title: J. Taibah Univ. Sci.
  doi: 10.1080/16583655.2019.1651988
– volume: 29
  issue: 2
  year: 2019
  ident: CR20
  article-title: Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives
  publication-title: Chaos, Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.5084035
– volume: 7
  start-page: 48
  issue: 6
  year: 2020
  end-page: 56
  ident: CR40
  article-title: Numerical treatment of fourth-order singular boundary value problems using new quintic B-spline approximation technique
  publication-title: Int. J. Adv. Appl. Sci.
  doi: 10.21833/ijaas.2020.06.007
– volume: 8
  issue: 4
  year: 2020
  ident: CR12
  article-title: An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets
  publication-title: Mathematics
  doi: 10.3390/math8040558
– volume: 12
  start-page: 188
  issue: 2
  year: 1969
  end-page: 192
  ident: CR37
  article-title: The use of cubic splines in the solution of two-point boundary value problems
  publication-title: Comput. J.
  doi: 10.1093/comjnl/12.2.188
– volume: 15
  start-page: 2798
  issue: 10
  year: 2010
  end-page: 2808
  ident: CR27
  article-title: Quintic B-spline collocation method for numerical solution of the Kuramoto–Sivashinsky equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2009.11.012
– volume: 15
  start-page: 179
  issue: 1
  year: 1983
  end-page: 199
  ident: CR2
  article-title: Instabilities, pattern formation, and turbulence in flames
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.15.010183.001143
– volume: 3
  issue: 2
  year: 2019
  ident: CR18
  article-title: A novel method for solutions of fourth-order fractional boundary value problems
  publication-title: Fractal Fract.
  doi: 10.3390/fractalfract3020033
– volume: 36
  start-page: 605
  issue: 2
  year: 2012
  end-page: 617
  ident: CR29
  article-title: Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.07.028
– volume: 66
  start-page: 223
  issue: 2
  year: 2014
  end-page: 240
  ident: CR39
  article-title: Quintic B-spline method for function reconstruction from integral values of successive subintervals
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-013-9731-x
– volume: 130
  year: 2020
  ident: CR7
  article-title: Similarities in a fifth-order evolution equation with and with no singular kernel
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.109467
– volume: 98
  start-page: 344
  year: 2019
  end-page: 351
  ident: CR19
  article-title: A fractional Newton method with 2 th-order of convergence and its stability
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.06.028
– year: 1978
  ident: CR35
  publication-title: A Practical Guide to Splines
  doi: 10.1007/978-1-4612-6333-3
– volume: 388
  start-page: 1405
  issue: 8
  year: 2009
  end-page: 1412
  ident: CR25
  article-title: Lattice Boltzmann method for the generalized Kuramoto–Sivashinsky equation
  publication-title: Phys. A, Stat. Mech. Appl.
  doi: 10.1016/j.physa.2009.01.005
– volume: 8
  year: 2020
  ident: CR13
  article-title: Generalization of Caputo–Fabrizio fractional derivative and applications to electrical circuits
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2020.00064
– volume: 27
  start-page: 207
  issue: 3
  year: 2019
  end-page: 230
  ident: CR21
  article-title: On an improved computational solution for the 3D HCIR PDE in finance
  publication-title: An. Ştiinţ. Univ. ‘Ovidius’ Constanţa, Ser. Mat.
– volume: 9
  issue: 5
  year: 2014
  ident: CR41
  article-title: A new trigonometric spline approach to numerical solution of generalized nonlinear Klein–Gordon equation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0095774
– volume: 28
  start-page: 37
  issue: 1
  year: 1985
  end-page: 45
  ident: CR1
  article-title: Nonlinear instability at the interface between two viscous fluids
  publication-title: Phys. Fluids
  doi: 10.1063/1.865160
– volume: 35
  start-page: 257
  issue: 1
  year: 2016
  end-page: 265
  ident: CR38
  article-title: Solution of a class of fourth order singular singularly perturbed boundary value problems by quintic B-spline method
  publication-title: J. Niger. Math. Soc.
  doi: 10.1016/j.jnnms.2016.03.002
– volume: 18
  start-page: 113
  issue: 1–3
  year: 1986
  end-page: 126
  ident: CR4
  article-title: The Kuramoto–Sivashinsky equation: a bridge between PDEs and dynamical systems
  publication-title: Phys. D: Nonlinear Phenom.
  doi: 10.1016/0167-2789(86)90166-1
– volume: 114
  start-page: 478
  year: 2018
  end-page: 482
  ident: CR16
  article-title: A novel method for a fractional derivative with non-local and non-singular kernel
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.07.032
– volume: 8
  issue: 3
  year: 2020
  ident: CR22
  article-title: On a fractional operator combining proportional and classical differintegrals
  publication-title: Mathematics
  doi: 10.3390/math8030360
– volume: 59
  start-page: 1435
  issue: 3
  year: 2020
  end-page: 1449
  ident: CR14
  article-title: A model for describing the velocity of a particle in Brownian motion by robotnov function based fractional operator
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.04.019
– volume: 2020
  year: 2020
  ident: CR15
  article-title: A fractional derivative with two singular kernels and application to a heat conduction problem
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-020-02684-z
– volume: 133
  year: 2020
  ident: CR8
  article-title: A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109619
– volume: 56
  start-page: 1465
  issue: 6
  year: 2008
  end-page: 1472
  ident: CR24
  article-title: Numerical solutions of the generalized Kuramoto–Sivashinsky equation by Chebyshev spectral collocation methods
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.03.013
– volume: 13
  start-page: 661
  issue: 1
  year: 2019
  end-page: 669
  ident: CR34
  article-title: Reproducing kernel Hilbert space method for the solutions of generalized Kuramoto–Sivashinsky equation
  publication-title: J. Taibah Univ. Sci.
  doi: 10.1080/16583655.2019.1618547
– volume: 30
  start-page: 853
  issue: 3
  year: 2016
  end-page: 861
  ident: CR31
  article-title: The exponential cubic B-spline collocation method for the Kuramoto–Sivashinsky equation
  publication-title: Filomat
  doi: 10.2298/FIL1603853E
– volume: 331
  start-page: 319
  year: 2018
  end-page: 333
  ident: CR42
  article-title: New cubic B-spline approximation for solving third order Emden–Flower type equations
  publication-title: Appl. Math. Comput.
– volume: 43
  start-page: 5564
  issue: 8
  year: 2020
  end-page: 5578
  ident: CR10
  article-title: A study on population dynamics of two interacting species by Haar wavelet and Adam’s–Bashforth–Moulton methods
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6297
– volume: 13
  start-page: 29
  issue: 1
  year: 2015
  end-page: 38
  ident: CR30
  article-title: Restrictive approximation algorithm for Kuramoto–Sivashinsky equation
  publication-title: Int. J. Mod. Math. Sci.
– volume: 82
  start-page: 158
  issue: 1
  year: 2017
  end-page: 194
  ident: CR32
  article-title: Stabilizing non-trivial solutions of the generalized Kuramoto–Sivashinsky equation using feedback and optimal control: Lighthill–Thwaites prize
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxw011
– volume: 20
  start-page: 30
  issue: 1
  year: 2020
  end-page: 42
  ident: CR36
  article-title: A new quintic B-spline approximation for numerical treatment of Boussinesq equation
  publication-title: J. Math. Comput. Sci.
  doi: 10.22436/jmcs.020.01.04
– volume: 13
  start-page: 29
  issue: 1
  year: 2015
  ident: 3007_CR30
  publication-title: Int. J. Mod. Math. Sci.
– volume: 13
  start-page: 661
  issue: 1
  year: 2019
  ident: 3007_CR34
  publication-title: J. Taibah Univ. Sci.
  doi: 10.1080/16583655.2019.1618547
– volume: 7
  start-page: 48
  issue: 6
  year: 2020
  ident: 3007_CR40
  publication-title: Int. J. Adv. Appl. Sci.
  doi: 10.21833/ijaas.2020.06.007
– volume: 8
  issue: 4
  year: 2020
  ident: 3007_CR12
  publication-title: Mathematics
  doi: 10.3390/math8040558
– volume: 96
  start-page: 293
  issue: 2
  year: 2017
  ident: 3007_CR33
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2015.1132310
– volume: 28
  start-page: 37
  issue: 1
  year: 1985
  ident: 3007_CR1
  publication-title: Phys. Fluids
  doi: 10.1063/1.865160
– volume: 12
  start-page: 188
  issue: 2
  year: 1969
  ident: 3007_CR37
  publication-title: Comput. J.
  doi: 10.1093/comjnl/12.2.188
– volume: 66
  start-page: 223
  issue: 2
  year: 2014
  ident: 3007_CR39
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-013-9731-x
– volume: 43
  start-page: 1349
  issue: 3
  year: 2020
  ident: 3007_CR23
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5950
– volume: 15
  start-page: 2798
  issue: 10
  year: 2010
  ident: 3007_CR27
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2009.11.012
– volume: 133
  year: 2020
  ident: 3007_CR8
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109619
– volume: 18
  start-page: 103
  issue: 2
  year: 2017
  ident: 3007_CR6
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/ijnsns-2015-0190
– volume: 43
  start-page: 6062
  issue: 9
  year: 2020
  ident: 3007_CR11
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6347
– volume: 82
  start-page: 158
  issue: 1
  year: 2017
  ident: 3007_CR32
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxw011
– volume: 43
  start-page: 5564
  issue: 8
  year: 2020
  ident: 3007_CR10
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6297
– volume: 27
  start-page: 207
  issue: 3
  year: 2019
  ident: 3007_CR21
  publication-title: An. Ştiinţ. Univ. ‘Ovidius’ Constanţa, Ser. Mat.
– volume: 130
  year: 2020
  ident: 3007_CR7
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.109467
– volume: 212
  start-page: 458
  issue: 2
  year: 2009
  ident: 3007_CR26
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.02.037
– volume: 35
  start-page: 257
  issue: 1
  year: 2016
  ident: 3007_CR38
  publication-title: J. Niger. Math. Soc.
  doi: 10.1016/j.jnnms.2016.03.002
– volume: 36
  start-page: 605
  issue: 2
  year: 2012
  ident: 3007_CR29
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.07.028
– volume: 331
  start-page: 319
  year: 2018
  ident: 3007_CR42
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2018.03.025
– volume: 2020
  year: 2020
  ident: 3007_CR15
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-020-02684-z
– volume: 13
  start-page: 858
  issue: 1
  year: 2019
  ident: 3007_CR17
  publication-title: J. Taibah Univ. Sci.
  doi: 10.1080/16583655.2019.1651988
– volume: 56
  start-page: 1465
  issue: 6
  year: 2008
  ident: 3007_CR24
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.03.013
– volume: 3
  issue: 2
  year: 2019
  ident: 3007_CR18
  publication-title: Fractal Fract.
  doi: 10.3390/fractalfract3020033
– volume: 19
  start-page: 89
  issue: 1
  year: 1986
  ident: 3007_CR5
  publication-title: Phys. D: Nonlinear Phenom.
  doi: 10.1016/0167-2789(86)90055-2
– volume: 20
  start-page: 30
  issue: 1
  year: 2020
  ident: 3007_CR36
  publication-title: J. Math. Comput. Sci.
  doi: 10.22436/jmcs.020.01.04
– volume: 8
  issue: 3
  year: 2020
  ident: 3007_CR22
  publication-title: Mathematics
  doi: 10.3390/math8030360
– volume: 59
  start-page: 1435
  issue: 3
  year: 2020
  ident: 3007_CR14
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.04.019
– volume: 23
  start-page: 407
  issue: 4
  year: 2011
  ident: 3007_CR28
  publication-title: J. King Saud Univ., Sci.
  doi: 10.1016/j.jksus.2010.07.023
– volume: 114
  start-page: 478
  year: 2018
  ident: 3007_CR16
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.07.032
– volume: 29
  issue: 2
  year: 2019
  ident: 3007_CR20
  publication-title: Chaos, Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.5084035
– volume: 98
  start-page: 344
  year: 2019
  ident: 3007_CR19
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.06.028
– volume: 15
  start-page: 179
  issue: 1
  year: 1983
  ident: 3007_CR2
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.15.010183.001143
– volume: 8
  year: 2020
  ident: 3007_CR13
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2020.00064
– volume: 30
  start-page: 853
  issue: 3
  year: 2016
  ident: 3007_CR31
  publication-title: Filomat
  doi: 10.2298/FIL1603853E
– volume: 18
  start-page: 113
  issue: 1–3
  year: 1986
  ident: 3007_CR4
  publication-title: Phys. D: Nonlinear Phenom.
  doi: 10.1016/0167-2789(86)90166-1
– volume: 135
  year: 2020
  ident: 3007_CR9
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109811
– volume: 388
  start-page: 1405
  issue: 8
  year: 2009
  ident: 3007_CR25
  publication-title: Phys. A, Stat. Mech. Appl.
  doi: 10.1016/j.physa.2009.01.005
– volume: 9
  issue: 5
  year: 2014
  ident: 3007_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0095774
– start-page: 1
  volume-title: Direct and Inverse Methods in Nonlinear Evolution Equations
  year: 2003
  ident: 3007_CR3
  doi: 10.1007/978-3-540-39808-0_1
– volume-title: A Practical Guide to Splines
  year: 1978
  ident: 3007_CR35
  doi: 10.1007/978-1-4612-6333-3
SSID ssj0029488
Score 2.3407867
Snippet A spline is a piecewise defined special function that is usually comprised of polynomials of a certain degree. These polynomials are supposed to generate a...
Abstract A spline is a piecewise defined special function that is usually comprised of polynomials of a certain degree. These polynomials are supposed to...
SourceID doaj
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Applications
Crank–Nicolson scheme
Difference and Functional Equations
Functional Analysis
Kuramoto–Sivashinsky equation
Mathematics
Mathematics and Statistics
Methods
Ordinary Differential Equations
Partial Differential Equations
Quintic polynomial B-spline functions
Spline approximations
Topics in Special Functions and q-Special Functions: Theory
Von Neumann stability analysis
Title Application of new quintic polynomial B-spline approximation for numerical investigation of Kuramoto–Sivashinsky equation
URI https://link.springer.com/article/10.1186/s13662-020-03007-y
https://doaj.org/article/daf3c7c96e38408a92c1a952c52ee821
Volume 2020
WOSCitedRecordID wos000578545400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1847
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHvQgPrG-yMGbBptkN5s9qlgERQQVvIU0m8Bi2Wq3FYsX_4P_0F_iJNlWRdCL1yWPJd8XZobJfIPQXpJYYyU3BKxZThLHM6I554RLIdNEdKWLIkkX2eWlvLvLr760-vJvwqI8cDy4w0I7bjKTC8shFpE6Z4bqPGUmZdbKUELO2lk-CaaaUCsHXk5KZKQ4rCkXghEfKgGp2xkZfzNDQa3_Ryo0WJjOElpsXEN8FH9pGc3YagUtfBEMXEUvR5_5Ztx3GHxi_DgqK5iBH_q9sa8xhiWOSe0LbS0OiuHPZSxPxOCf4moUUzQ9XH4qbMTFzkcDDcD131_frsun0GSpvh9j-xjVwNfQbef05uSMNO0TiIGgaUiosbSbpAZMMBNFxgQrwJ2zjBaa6yR3Xhinaxz4bzZxWrZNIeFGO2qlcKlmhq-j2apf2Q2EAU_jtcy067qEZlS3wW1MU2ccuC-Cyhaik9NUptEW9y0ueirEGFKoiIACBFRAQI1baH865yEqa_w6-tiDNB3pVbHDB-CKarii_uJKCx1MIFbNVa1_2XPzP_bcQvPM886_Oci20exwMLI7aM48Dct6sBtY-wEurPK0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+new+quintic+polynomial+B-spline+approximation+for+numerical+investigation+of+Kuramoto%E2%80%93Sivashinsky+equation&rft.jtitle=Advances+in+difference+equations&rft.au=Iqbal%2C+Muhammad+Kashif&rft.au=Abbas%2C+Muhammad&rft.au=Nazir%2C+Tahir&rft.au=Ali%2C+Nouman&rft.date=2020-10-07&rft.issn=1687-1847&rft.eissn=1687-1847&rft.volume=2020&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-020-03007-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13662_020_03007_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon