Augmenting Outerplanar Graphs to Meet Diameter Requirements

Given an undirected graph G=(V,E) and an integer D≥1, we consider the problem of augmenting G by a minimum set of new edges so that the diameter becomes at most D. It is known that no constant factor approximation algorithms to this problem with an arbitrary graph G can be obtained unless P=NP, whil...

Full description

Saved in:
Bibliographic Details
Published in:Journal of graph theory Vol. 74; no. 4; pp. 392 - 416
Main Author: Ishii, Toshimasa
Format: Journal Article
Language:English
Published: Hoboken Blackwell Publishing Ltd 01.12.2013
Wiley Subscription Services, Inc
Subjects:
ISSN:0364-9024, 1097-0118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Given an undirected graph G=(V,E) and an integer D≥1, we consider the problem of augmenting G by a minimum set of new edges so that the diameter becomes at most D. It is known that no constant factor approximation algorithms to this problem with an arbitrary graph G can be obtained unless P=NP, while the problem with only a few graph classes such as forests is approximable within a constant factor. In this article, we give the first constant factor approximation algorithm to the problem with an outerplanar graph G. We also show that if the target diameter D is even, then the case where G is a partial 2‐tree is also approximable within a constant.
AbstractList Given an undirected graph G=(V,E) and an integer D≥1, we consider the problem of augmenting G by a minimum set of new edges so that the diameter becomes at most D. It is known that no constant factor approximation algorithms to this problem with an arbitrary graph G can be obtained unless P=NP, while the problem with only a few graph classes such as forests is approximable within a constant factor. In this article, we give the first constant factor approximation algorithm to the problem with an outerplanar graph G. We also show that if the target diameter D is even, then the case where G is a partial 2‐tree is also approximable within a constant.
Given an undirected graph and an integer , we consider the problem of augmenting G by a minimum set of new edges so that the diameter becomes at most D . It is known that no constant factor approximation algorithms to this problem with an arbitrary graph G can be obtained unless , while the problem with only a few graph classes such as forests is approximable within a constant factor. In this article, we give the first constant factor approximation algorithm to the problem with an outerplanar graph G . We also show that if the target diameter D is even, then the case where G is a partial 2‐tree is also approximable within a constant.
Given an undirected graph G = ( V , E ) and an integer D ≥ 1, we consider the problem of augmenting G by a minimum set of new edges so that the diameter becomes at most D. It is known that no constant factor approximation algorithms to this problem with an arbitrary graph G can be obtained unless P = N P, while the problem with only a few graph classes such as forests is approximable within a constant factor. In this article, we give the first constant factor approximation algorithm to the problem with an outerplanar graph G. We also show that if the target diameter D is even, then the case where G is a partial 2-tree is also approximable within a constant. [PUBLICATION ABSTRACT]
Author Ishii, Toshimasa
Author_xml – sequence: 1
  givenname: Toshimasa
  surname: Ishii
  fullname: Ishii, Toshimasa
  email: ishii@res.otaru-uc.ac.jp
  organization: DEPARTMENT OF INFORMATION AND MANAGEMENT SCIENCE, OTARU UNIVERSITY OF COMMERCE, 047-8501, OTARU, JAPAN
BookMark eNp1kF1PwjAUhhuDiYhe-A-WeOXFoN3atY1XBHV-IASD8bLptg6LYxttF-XfOwS9MHp1knOe5z3Jeww6ZVUqAM4Q7CMIg8Fy4foBoogfgC6CnPoQIdYBXRhG2OcwwEfg2NolbNcEsi64HDaLlSqdLhfetHHK1IUspfFiI-tX67nKe1TKeVdarlR79Z7UutFGbRV7Ag5zWVh1up898HxzPR_d-uNpfDcajv0UQ8T9LEkVpoREiQxwximjKWZZwJFCJOM5S0iWUohkghHHGc55IjEkURBGkWQMhWEPnO9ya1OtG2WdWFaNKduXAmFMMI1CBltqsKNSU1lrVC5S7aTTVemM1IVAUGwbEm1D4quh1rj4ZdRGr6TZ_Mnu0991oTb_g-I-nn8b_s7Q1qmPH0OaNxHRkBLxMokF4mwWTWaBeAg_Afc6hSc
CODEN JGTHDO
CitedBy_id crossref_primary_10_1016_j_tcs_2022_07_028
crossref_primary_10_1016_j_jcss_2017_05_016
crossref_primary_10_1016_j_comgeo_2018_06_004
crossref_primary_10_1016_j_comgeo_2021_101759
crossref_primary_10_1016_j_tcs_2021_09_014
Cites_doi 10.1137/S0895480193253415
10.1007/s004930050035
10.1016/0196-6774(86)90023-4
10.1002/jgt.3190110315
10.1002/1097-0118(200011)35:3<161::AID-JGT1>3.0.CO;2-Y
10.1016/j.tcs.2011.05.014
10.1145/301250.301447
10.1016/0167-6377(92)90007-P
10.1007/3-540-45477-2_19
10.1007/s00453-005-1183-9
10.1016/j.disopt.2005.10.006
10.1007/978-3-540-74208-1_5
10.1007/s00453-001-0113-8
10.1145/1077464.1077468
10.1137/S0097539793251219
ContentType Journal Article
Copyright 2013 Wiley Periodicals, Inc.
Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: 2013 Wiley Periodicals, Inc.
– notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/jgt.21719
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0118
EndPage 416
ExternalDocumentID 3110250201
10_1002_jgt_21719
JGT21719
ark_67375_WNG_198Q6NQ2_K
Genre article
GrantInformation_xml – fundername: Ministry of Education, Culture, Sports, Science and Technology of Japan
– fundername: Kayamori Foundation of Informational Science Advancement
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
AAYXX
CITATION
O8X
ID FETCH-LOGICAL-c4019-dbce47556ba24d9787c48d291e15d9f8b5dc701ab4194d4f9ba40562366a88133
IEDL.DBID DRFUL
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326180900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0364-9024
IngestDate Fri Jul 25 12:11:47 EDT 2025
Tue Nov 18 22:20:06 EST 2025
Sat Nov 29 03:03:47 EST 2025
Wed Apr 02 05:42:47 EDT 2025
Sun Sep 21 06:23:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4019-dbce47556ba24d9787c48d291e15d9f8b5dc701ab4194d4f9ba40562366a88133
Notes istex:6D44827327797D04192FB30DA0828FE8BEC8CCC1
ark:/67375/WNG-198Q6NQ2-K
ArticleID:JGT21719
An extended abstract of this article was presented at 18th Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia, February 2012, pp. 123-132.
Ministry of Education, Culture, Sports, Science and Technology of Japan
Kayamori Foundation of Informational Science Advancement
An extended abstract of this article was presented at 18th Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia, February 2012, pp. 123–132.
Contract grant sponsor: Ministry of Education, Culture, Sports, Science and Technology of Japan; Contract grant sponsor: Kayamori Foundation of Informational Science Advancement.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1445476380
PQPubID 1006407
PageCount 25
ParticipantIDs proquest_journals_1445476380
crossref_citationtrail_10_1002_jgt_21719
crossref_primary_10_1002_jgt_21719
wiley_primary_10_1002_jgt_21719_JGT21719
istex_primary_ark_67375_WNG_198Q6NQ2_K
PublicationCentury 2000
PublicationDate December 2013
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: December 2013
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of graph theory
PublicationTitleAlternate J. Graph Theory
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References T. Ishii, S. Yamamoto, and H. Nagamochi, Augmenting forests to meet odd diameter requirements, Discrete Optim 3 (2006), 154-164.
V. Chepoi, B. Estellon, K. Nouioua, and Y. Vaxès, Mixed covering of trees and the augmentation problem with odd diameter constraints, Algorithmica 45 (2006), 209-226.
D. Bilò, L. Gualà, and G. Proietti, Improved approximability and non-approximability results for graph diameter decreasing problems, Theor Comput Sci 417 (2012), 12-22.
E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Fixed-parameter algorithms for (k,r)-center in planar graphs and map graphs, ACM Trans Algorithms 1 (2005), 33-47.
N. Alon, A. Gyárfás, and M. Ruszinkó, Decreasing the diameter of bounded degree graphs, J Graph Theory 35 (2000), 161-172.
C. Li, S. McCormick, and D. Simchi-Levi, On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems, Oper Res Lett 11 (1992), 303-308.
V. Chepoi and Y. Vaxès, Augmenting trees to meet biconnectivity and diameter constraints, Algorithmica 33 (2002), 243-262.
C. Berge, Hypergraphs, Elsevier, North-Holland, Amsterdam, 1989.
N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J Algorithms 7 (1986), 309-322.
P. Erdős, A. Gyárfás, and M. Ruszinkó, How to decrease the diameter of triangle-free graphs, Combinatorica 18(4) (1998), 493-501.
H. L. Bodlaender, a linear time algorithm for finding tree-decompositions of small treewidth, SIAM J Comput 25 (1996), 1305-1317.
A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin, Dually chordal graphs, SIAM J Discrete Math 11(3) (1998), 437-455.
F. R. K. Chung, Diameter of graphs: Old problems and new results, Congr Numer 60 (1987), 295-317.
A. A. Schoone, H. L. Bodlaendar, and J. van Leeuwen, Diameter increase caused by edge deletion, J Graph Theory 11 (3) (1987), 409-427.
1998; 18
1987; 11
2006; 45
1987; 60
2001
1986; 7
2000; 35
2002; 33
2005; 1
2006; 3
1996; 25
1992; 11
1998; 11
1989
2012; 417
1999
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Berge C. (e_1_2_8_3_1) 1989
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
Chung F. R. K. (e_1_2_8_10_1) 1987; 60
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – reference: H. L. Bodlaender, a linear time algorithm for finding tree-decompositions of small treewidth, SIAM J Comput 25 (1996), 1305-1317.
– reference: N. Alon, A. Gyárfás, and M. Ruszinkó, Decreasing the diameter of bounded degree graphs, J Graph Theory 35 (2000), 161-172.
– reference: C. Berge, Hypergraphs, Elsevier, North-Holland, Amsterdam, 1989.
– reference: A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin, Dually chordal graphs, SIAM J Discrete Math 11(3) (1998), 437-455.
– reference: N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J Algorithms 7 (1986), 309-322.
– reference: V. Chepoi and Y. Vaxès, Augmenting trees to meet biconnectivity and diameter constraints, Algorithmica 33 (2002), 243-262.
– reference: E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Fixed-parameter algorithms for (k,r)-center in planar graphs and map graphs, ACM Trans Algorithms 1 (2005), 33-47.
– reference: P. Erdős, A. Gyárfás, and M. Ruszinkó, How to decrease the diameter of triangle-free graphs, Combinatorica 18(4) (1998), 493-501.
– reference: T. Ishii, S. Yamamoto, and H. Nagamochi, Augmenting forests to meet odd diameter requirements, Discrete Optim 3 (2006), 154-164.
– reference: D. Bilò, L. Gualà, and G. Proietti, Improved approximability and non-approximability results for graph diameter decreasing problems, Theor Comput Sci 417 (2012), 12-22.
– reference: V. Chepoi, B. Estellon, K. Nouioua, and Y. Vaxès, Mixed covering of trees and the augmentation problem with odd diameter constraints, Algorithmica 45 (2006), 209-226.
– reference: A. A. Schoone, H. L. Bodlaendar, and J. van Leeuwen, Diameter increase caused by edge deletion, J Graph Theory 11 (3) (1987), 409-427.
– reference: F. R. K. Chung, Diameter of graphs: Old problems and new results, Congr Numer 60 (1987), 295-317.
– reference: C. Li, S. McCormick, and D. Simchi-Levi, On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems, Oper Res Lett 11 (1992), 303-308.
– volume: 25
  start-page: 1305
  year: 1996
  end-page: 1317
  article-title: a linear time algorithm for finding tree‐decompositions of small treewidth
  publication-title: SIAM J Comput
– article-title: Algorithmes de couverture et d'augmentation de graphes sous contraintes de distance
– volume: 417
  start-page: 12
  year: 2012
  end-page: 22
  article-title: Improved approximability and non‐approximability results for graph diameter decreasing problems
  publication-title: Theor Comput Sci
– volume: 33
  start-page: 243
  year: 2002
  end-page: 262
  article-title: Augmenting trees to meet biconnectivity and diameter constraints
  publication-title: Algorithmica
– start-page: 201
  year: 2001
  end-page: 216
  article-title: Small ‐dominating sets in planar graphs with applications
– volume: 35
  start-page: 161
  year: 2000
  end-page: 172
  article-title: Decreasing the diameter of bounded degree graphs
  publication-title: J Graph Theory
– volume: 60
  start-page: 295
  year: 1987
  end-page: 317
  article-title: Diameter of graphs: Old problems and new results
  publication-title: Congr Numer
– volume: 7
  start-page: 309
  year: 1986
  end-page: 322
  article-title: Graph minors. II. Algorithmic aspects of tree‐width
  publication-title: J Algorithms
– year: 1989
– volume: 1
  start-page: 33
  year: 2005
  end-page: 47
  article-title: Fixed‐parameter algorithms for ( )‐center in planar graphs and map graphs
  publication-title: ACM Trans Algorithms
– volume: 3
  start-page: 154
  year: 2006
  end-page: 164
  article-title: Augmenting forests to meet odd diameter requirements
  publication-title: Discrete Optim
– start-page: 750
  year: 1999
  end-page: 759
  article-title: Designing networks with bounded pairwise distance
– volume: 11
  start-page: 437
  issue: 3
  year: 1998
  end-page: 455
  article-title: Dually chordal graphs
  publication-title: SIAM J Discrete Math
– volume: 45
  start-page: 209
  year: 2006
  end-page: 226
  article-title: Mixed covering of trees and the augmentation problem with odd diameter constraints
  publication-title: Algorithmica
– volume: 18
  start-page: 493
  issue: 4
  year: 1998
  end-page: 501
  article-title: How to decrease the diameter of triangle‐free graphs
  publication-title: Combinatorica
– volume: 11
  start-page: 303
  year: 1992
  end-page: 308
  article-title: On the minimum‐cardinality‐bounded‐diameter and the bounded‐cardinality‐minimum‐diameter edge addition problems
  publication-title: Oper Res Lett
– article-title: Packing and covering δ‐hyperbolic spaces by balls, approximation, randomization, and combinatorial optimization
– volume: 11
  start-page: 409
  issue: 3
  year: 1987
  end-page: 427
  article-title: Diameter increase caused by edge deletion
  publication-title: J Graph Theory
– ident: e_1_2_8_6_1
  doi: 10.1137/S0895480193253415
– ident: e_1_2_8_13_1
  doi: 10.1007/s004930050035
– ident: e_1_2_8_14_1
– ident: e_1_2_8_18_1
  doi: 10.1016/0196-6774(86)90023-4
– ident: e_1_2_8_19_1
  doi: 10.1002/jgt.3190110315
– ident: e_1_2_8_2_1
  doi: 10.1002/1097-0118(200011)35:3<161::AID-JGT1>3.0.CO;2-Y
– ident: e_1_2_8_4_1
  doi: 10.1016/j.tcs.2011.05.014
– ident: e_1_2_8_12_1
  doi: 10.1145/301250.301447
– ident: e_1_2_8_17_1
  doi: 10.1016/0167-6377(92)90007-P
– ident: e_1_2_8_15_1
  doi: 10.1007/3-540-45477-2_19
– volume: 60
  start-page: 295
  year: 1987
  ident: e_1_2_8_10_1
  article-title: Diameter of graphs: Old problems and new results
  publication-title: Congr Numer
– ident: e_1_2_8_8_1
  doi: 10.1007/s00453-005-1183-9
– ident: e_1_2_8_16_1
  doi: 10.1016/j.disopt.2005.10.006
– ident: e_1_2_8_7_1
  doi: 10.1007/978-3-540-74208-1_5
– volume-title: Hypergraphs
  year: 1989
  ident: e_1_2_8_3_1
– ident: e_1_2_8_9_1
  doi: 10.1007/s00453-001-0113-8
– ident: e_1_2_8_11_1
  doi: 10.1145/1077464.1077468
– ident: e_1_2_8_5_1
  doi: 10.1137/S0097539793251219
SSID ssj0011508
Score 2.0711586
Snippet Given an undirected graph G=(V,E) and an integer D≥1, we consider the problem of augmenting G by a minimum set of new edges so that the diameter becomes at...
Given an undirected graph and an integer , we consider the problem of augmenting G by a minimum set of new edges so that the diameter becomes at most D . It is...
Given an undirected graph G = ( V , E ) and an integer D ≥ 1, we consider the problem of augmenting G by a minimum set of new edges so that the diameter...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 392
SubjectTerms Algorithms
constant factor approximation algorithm
Decision trees
diameter
graph augmentation problem
outerplanar graphs
partial 2-trees
undirected graph
Title Augmenting Outerplanar Graphs to Meet Diameter Requirements
URI https://api.istex.fr/ark:/67375/WNG-198Q6NQ2-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.21719
https://www.proquest.com/docview/1445476380
Volume 74
WOSCitedRecordID wos000326180900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011508
  issn: 0364-9024
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5k14MefIvriyIiXqptNps2eBJ1V3ysDxS9hUmbLr66y7aKP98k7VYFBcFbD1Ma5pH5Jpl-A7AZaxTOOEEXE6Su4R9xETFxg1BqvCC9KPSkHTYRdLvh_T2_HIO90b8wBT9EdeBmIsPu1ybAUWa7n6Shj718R-NpQ_lZJ9pvaQ3qh9ft27PqEsFQnRdXldTlOheNiIU8slu9_C0d1Y1m379hza-I1aac9vS_FjsDUyXSdPYL15iFMZXOweR5RdOazcPe_mvPtgulPefCzHYYPGOKQ6djWKwzJ-8750rlzuEDvpiuGedamb5he6CYLcBt--jm4Ngtpym4ka6huBvLSNGg1WISCY118RhENIwJ95XfinmibRNHgeejpD6nMU24RGrREWMYhrqUXYRa2k_VEjgRSyTTlW2TspgGVCJvMtR1X6gIooZMDdgeKVVEJdW4mXjxLAqSZCK0PoTVRwM2KtFBwa_xk9CWtUwlgcMn05AWtMRdtyN8Hl6x7hURpw1YHZlOlLGY6eLGkJbpfcbT67JG-v1L4qRzYx-W_y66AhPEzMiwPS6rUMuHr2oNxqO3_CEbrpdO-QEdj-K8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6hpBL0UFoeamharAohLgbbrNde0UtUmqQlMQ8FwW01a68jXgbFBvHzu7t2DJFAQuLmw1hezcPzze7sNwAbiULhlHloY4rE1vwjNiKmdhAKhReEE4eOMMMmgigKz8_Z0Rz8mt6FKfkh6g03HRnmf60DXG9I7zyxhl6Oi20FqDXnZ5MoN_Ib0Nw_6Z4O6lMEzXVenlUSm6lkNGUWcryd-uWZfNTUqn2cAZvPIavJOd3F9632M3yqsKbVKZ3jC8zJbAk-Dmui1nwZ9jr3Y9MwlI2tQz3d4e4aM5xYPc1jnVvFrTWUsrD2L_BG981YJ1J3DpstxXwFTrt_Rr_7djVPwY5VFcXsRMSSBL5PBXokUeVjEJMw8ZgrXT9hqbJOEgeOi4K4jCQkZQKJwUeUYhiqYnYVGtltJr-CFdNUUFXb7hKakIAIZLsUVeUXSg9RgaYWbE21yuOKbFzPvLjmJU2yx5U-uNFHC37Wonclw8ZLQpvGNLUETq50S1rg87Oox10WHtPo2OMHLWhPbceraMxVeaNpy5SLOGpdxkqvf4n_643Mw9rbRddhvj8aDvjgb3TwDRY8PTHDdLy0oVFM7uV3-BA_FBf55Eflof8Bu-PmrA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4hiib2MPaDaWVsiyY07SVrEhwnFryglXYbbdYi0PpmnWOn4leokoD487GdNANpkybtLQ8Xxbrz2d9nX74D2JEahVMWoIsZEtfoj7iImLlRLDReEF4ae8I2m4iSJJ7N2GQF9pf_wtT6EO2Bm8kMu16bBFcLmfV-q4aez6svGlAbzc8OCRnVadnpHw9OR-0tgtE6r-8qicv0ZrRUFvKCXvvyo_2oY1x79whsPoSsds8ZbPzfaJ_DswZrOgf15HgBKyp_CU_HrVBr-Qr2Dm7mtmAonzs_TXeHxSXmWDhDo2NdOtW1M1aqcvpneGXqZpxjZSqH7ZFiuQmng8OTr9_cpp-Cm2oWxVwpUkWiMKQCAyI1fYxSEsuA-coPJct0dGQaeT4K4jMiScYEEouPKMU41mT2Nazm17l6A05KM0E1t90lVJKICGS7FDXzi1WAqEFTFz4vvcrTRmzc9Ly45LVMcsC1P7j1Rxc-tqaLWmHjT0afbGhaCywuTElaFPJfyZD7LJ7SZBrwoy5sL2PHm2wsNb0xsmV6pfH0uGyU_v4l_mN4Yh-2_t30AzyZ9Ad89D05egvrgWmYYQtetmG1Km7UO1hLb6uzsnjfTNB7a6zmJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Augmenting+Outerplanar+Graphs+to+Meet+Diameter+Requirements&rft.jtitle=Journal+of+graph+theory&rft.au=Ishii%2C+Toshimasa&rft.date=2013-12-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=74&rft.issue=4&rft.spage=392&rft.epage=416&rft_id=info:doi/10.1002%2Fjgt.21719&rft.externalDBID=10.1002%252Fjgt.21719&rft.externalDocID=JGT21719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon