Augmenting Outerplanar Graphs to Meet Diameter Requirements
Given an undirected graph G=(V,E) and an integer D≥1, we consider the problem of augmenting G by a minimum set of new edges so that the diameter becomes at most D. It is known that no constant factor approximation algorithms to this problem with an arbitrary graph G can be obtained unless P=NP, whil...
Uloženo v:
| Vydáno v: | Journal of graph theory Ročník 74; číslo 4; s. 392 - 416 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Blackwell Publishing Ltd
01.12.2013
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 0364-9024, 1097-0118 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Given an undirected graph G=(V,E) and an integer D≥1, we consider the problem of augmenting G by a minimum set of new edges so that the diameter becomes at most D. It is known that no constant factor approximation algorithms to this problem with an arbitrary graph G can be obtained unless P=NP, while the problem with only a few graph classes such as forests is approximable within a constant factor. In this article, we give the first constant factor approximation algorithm to the problem with an outerplanar graph G. We also show that if the target diameter D is even, then the case where G is a partial 2‐tree is also approximable within a constant. |
|---|---|
| AbstractList | Given an undirected graph G=(V,E) and an integer D≥1, we consider the problem of augmenting G by a minimum set of new edges so that the diameter becomes at most D. It is known that no constant factor approximation algorithms to this problem with an arbitrary graph G can be obtained unless P=NP, while the problem with only a few graph classes such as forests is approximable within a constant factor. In this article, we give the first constant factor approximation algorithm to the problem with an outerplanar graph G. We also show that if the target diameter D is even, then the case where G is a partial 2‐tree is also approximable within a constant. Given an undirected graph and an integer , we consider the problem of augmenting G by a minimum set of new edges so that the diameter becomes at most D . It is known that no constant factor approximation algorithms to this problem with an arbitrary graph G can be obtained unless , while the problem with only a few graph classes such as forests is approximable within a constant factor. In this article, we give the first constant factor approximation algorithm to the problem with an outerplanar graph G . We also show that if the target diameter D is even, then the case where G is a partial 2‐tree is also approximable within a constant. Given an undirected graph G = ( V , E ) and an integer D ≥ 1, we consider the problem of augmenting G by a minimum set of new edges so that the diameter becomes at most D. It is known that no constant factor approximation algorithms to this problem with an arbitrary graph G can be obtained unless P = N P, while the problem with only a few graph classes such as forests is approximable within a constant factor. In this article, we give the first constant factor approximation algorithm to the problem with an outerplanar graph G. We also show that if the target diameter D is even, then the case where G is a partial 2-tree is also approximable within a constant. [PUBLICATION ABSTRACT] |
| Author | Ishii, Toshimasa |
| Author_xml | – sequence: 1 givenname: Toshimasa surname: Ishii fullname: Ishii, Toshimasa email: ishii@res.otaru-uc.ac.jp organization: DEPARTMENT OF INFORMATION AND MANAGEMENT SCIENCE, OTARU UNIVERSITY OF COMMERCE, 047-8501, OTARU, JAPAN |
| BookMark | eNp1kF1PwjAUhhuDiYhe-A-WeOXFoN3atY1XBHV-IASD8bLptg6LYxttF-XfOwS9MHp1knOe5z3Jeww6ZVUqAM4Q7CMIg8Fy4foBoogfgC6CnPoQIdYBXRhG2OcwwEfg2NolbNcEsi64HDaLlSqdLhfetHHK1IUspfFiI-tX67nKe1TKeVdarlR79Z7UutFGbRV7Ag5zWVh1up898HxzPR_d-uNpfDcajv0UQ8T9LEkVpoREiQxwximjKWZZwJFCJOM5S0iWUohkghHHGc55IjEkURBGkWQMhWEPnO9ya1OtG2WdWFaNKduXAmFMMI1CBltqsKNSU1lrVC5S7aTTVemM1IVAUGwbEm1D4quh1rj4ZdRGr6TZ_Mnu0991oTb_g-I-nn8b_s7Q1qmPH0OaNxHRkBLxMokF4mwWTWaBeAg_Afc6hSc |
| CODEN | JGTHDO |
| CitedBy_id | crossref_primary_10_1016_j_tcs_2022_07_028 crossref_primary_10_1016_j_jcss_2017_05_016 crossref_primary_10_1016_j_comgeo_2018_06_004 crossref_primary_10_1016_j_comgeo_2021_101759 crossref_primary_10_1016_j_tcs_2021_09_014 |
| Cites_doi | 10.1137/S0895480193253415 10.1007/s004930050035 10.1016/0196-6774(86)90023-4 10.1002/jgt.3190110315 10.1002/1097-0118(200011)35:3<161::AID-JGT1>3.0.CO;2-Y 10.1016/j.tcs.2011.05.014 10.1145/301250.301447 10.1016/0167-6377(92)90007-P 10.1007/3-540-45477-2_19 10.1007/s00453-005-1183-9 10.1016/j.disopt.2005.10.006 10.1007/978-3-540-74208-1_5 10.1007/s00453-001-0113-8 10.1145/1077464.1077468 10.1137/S0097539793251219 |
| ContentType | Journal Article |
| Copyright | 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2013 Wiley Periodicals, Inc. – notice: Copyright © 2013 Wiley Periodicals, Inc. |
| DBID | BSCLL AAYXX CITATION |
| DOI | 10.1002/jgt.21719 |
| DatabaseName | Istex CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1097-0118 |
| EndPage | 416 |
| ExternalDocumentID | 3110250201 10_1002_jgt_21719 JGT21719 ark_67375_WNG_198Q6NQ2_K |
| Genre | article |
| GrantInformation_xml | – fundername: Ministry of Education, Culture, Sports, Science and Technology of Japan – fundername: Kayamori Foundation of Informational Science Advancement |
| GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 3-9 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 UPT V2E V8K VH1 VJK W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XJT XPP XV2 XXG YQT ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE AAYXX CITATION O8X |
| ID | FETCH-LOGICAL-c4019-dbce47556ba24d9787c48d291e15d9f8b5dc701ab4194d4f9ba40562366a88133 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326180900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0364-9024 |
| IngestDate | Fri Jul 25 12:11:47 EDT 2025 Tue Nov 18 22:20:06 EST 2025 Sat Nov 29 03:03:47 EST 2025 Wed Apr 02 05:42:47 EDT 2025 Sun Sep 21 06:23:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4019-dbce47556ba24d9787c48d291e15d9f8b5dc701ab4194d4f9ba40562366a88133 |
| Notes | istex:6D44827327797D04192FB30DA0828FE8BEC8CCC1 ark:/67375/WNG-198Q6NQ2-K ArticleID:JGT21719 An extended abstract of this article was presented at 18th Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia, February 2012, pp. 123-132. Ministry of Education, Culture, Sports, Science and Technology of Japan Kayamori Foundation of Informational Science Advancement An extended abstract of this article was presented at 18th Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia, February 2012, pp. 123–132. Contract grant sponsor: Ministry of Education, Culture, Sports, Science and Technology of Japan; Contract grant sponsor: Kayamori Foundation of Informational Science Advancement. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1445476380 |
| PQPubID | 1006407 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_1445476380 crossref_citationtrail_10_1002_jgt_21719 crossref_primary_10_1002_jgt_21719 wiley_primary_10_1002_jgt_21719_JGT21719 istex_primary_ark_67375_WNG_198Q6NQ2_K |
| PublicationCentury | 2000 |
| PublicationDate | December 2013 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: December 2013 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Journal of graph theory |
| PublicationTitleAlternate | J. Graph Theory |
| PublicationYear | 2013 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | T. Ishii, S. Yamamoto, and H. Nagamochi, Augmenting forests to meet odd diameter requirements, Discrete Optim 3 (2006), 154-164. V. Chepoi, B. Estellon, K. Nouioua, and Y. Vaxès, Mixed covering of trees and the augmentation problem with odd diameter constraints, Algorithmica 45 (2006), 209-226. D. Bilò, L. Gualà, and G. Proietti, Improved approximability and non-approximability results for graph diameter decreasing problems, Theor Comput Sci 417 (2012), 12-22. E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Fixed-parameter algorithms for (k,r)-center in planar graphs and map graphs, ACM Trans Algorithms 1 (2005), 33-47. N. Alon, A. Gyárfás, and M. Ruszinkó, Decreasing the diameter of bounded degree graphs, J Graph Theory 35 (2000), 161-172. C. Li, S. McCormick, and D. Simchi-Levi, On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems, Oper Res Lett 11 (1992), 303-308. V. Chepoi and Y. Vaxès, Augmenting trees to meet biconnectivity and diameter constraints, Algorithmica 33 (2002), 243-262. C. Berge, Hypergraphs, Elsevier, North-Holland, Amsterdam, 1989. N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J Algorithms 7 (1986), 309-322. P. Erdős, A. Gyárfás, and M. Ruszinkó, How to decrease the diameter of triangle-free graphs, Combinatorica 18(4) (1998), 493-501. H. L. Bodlaender, a linear time algorithm for finding tree-decompositions of small treewidth, SIAM J Comput 25 (1996), 1305-1317. A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin, Dually chordal graphs, SIAM J Discrete Math 11(3) (1998), 437-455. F. R. K. Chung, Diameter of graphs: Old problems and new results, Congr Numer 60 (1987), 295-317. A. A. Schoone, H. L. Bodlaendar, and J. van Leeuwen, Diameter increase caused by edge deletion, J Graph Theory 11 (3) (1987), 409-427. 1998; 18 1987; 11 2006; 45 1987; 60 2001 1986; 7 2000; 35 2002; 33 2005; 1 2006; 3 1996; 25 1992; 11 1998; 11 1989 2012; 417 1999 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 Berge C. (e_1_2_8_3_1) 1989 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 Chung F. R. K. (e_1_2_8_10_1) 1987; 60 e_1_2_8_11_1 e_1_2_8_12_1 |
| References_xml | – reference: H. L. Bodlaender, a linear time algorithm for finding tree-decompositions of small treewidth, SIAM J Comput 25 (1996), 1305-1317. – reference: N. Alon, A. Gyárfás, and M. Ruszinkó, Decreasing the diameter of bounded degree graphs, J Graph Theory 35 (2000), 161-172. – reference: C. Berge, Hypergraphs, Elsevier, North-Holland, Amsterdam, 1989. – reference: A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin, Dually chordal graphs, SIAM J Discrete Math 11(3) (1998), 437-455. – reference: N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J Algorithms 7 (1986), 309-322. – reference: V. Chepoi and Y. Vaxès, Augmenting trees to meet biconnectivity and diameter constraints, Algorithmica 33 (2002), 243-262. – reference: E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Fixed-parameter algorithms for (k,r)-center in planar graphs and map graphs, ACM Trans Algorithms 1 (2005), 33-47. – reference: P. Erdős, A. Gyárfás, and M. Ruszinkó, How to decrease the diameter of triangle-free graphs, Combinatorica 18(4) (1998), 493-501. – reference: T. Ishii, S. Yamamoto, and H. Nagamochi, Augmenting forests to meet odd diameter requirements, Discrete Optim 3 (2006), 154-164. – reference: D. Bilò, L. Gualà, and G. Proietti, Improved approximability and non-approximability results for graph diameter decreasing problems, Theor Comput Sci 417 (2012), 12-22. – reference: V. Chepoi, B. Estellon, K. Nouioua, and Y. Vaxès, Mixed covering of trees and the augmentation problem with odd diameter constraints, Algorithmica 45 (2006), 209-226. – reference: A. A. Schoone, H. L. Bodlaendar, and J. van Leeuwen, Diameter increase caused by edge deletion, J Graph Theory 11 (3) (1987), 409-427. – reference: F. R. K. Chung, Diameter of graphs: Old problems and new results, Congr Numer 60 (1987), 295-317. – reference: C. Li, S. McCormick, and D. Simchi-Levi, On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems, Oper Res Lett 11 (1992), 303-308. – volume: 25 start-page: 1305 year: 1996 end-page: 1317 article-title: a linear time algorithm for finding tree‐decompositions of small treewidth publication-title: SIAM J Comput – article-title: Algorithmes de couverture et d'augmentation de graphes sous contraintes de distance – volume: 417 start-page: 12 year: 2012 end-page: 22 article-title: Improved approximability and non‐approximability results for graph diameter decreasing problems publication-title: Theor Comput Sci – volume: 33 start-page: 243 year: 2002 end-page: 262 article-title: Augmenting trees to meet biconnectivity and diameter constraints publication-title: Algorithmica – start-page: 201 year: 2001 end-page: 216 article-title: Small ‐dominating sets in planar graphs with applications – volume: 35 start-page: 161 year: 2000 end-page: 172 article-title: Decreasing the diameter of bounded degree graphs publication-title: J Graph Theory – volume: 60 start-page: 295 year: 1987 end-page: 317 article-title: Diameter of graphs: Old problems and new results publication-title: Congr Numer – volume: 7 start-page: 309 year: 1986 end-page: 322 article-title: Graph minors. II. Algorithmic aspects of tree‐width publication-title: J Algorithms – year: 1989 – volume: 1 start-page: 33 year: 2005 end-page: 47 article-title: Fixed‐parameter algorithms for ( )‐center in planar graphs and map graphs publication-title: ACM Trans Algorithms – volume: 3 start-page: 154 year: 2006 end-page: 164 article-title: Augmenting forests to meet odd diameter requirements publication-title: Discrete Optim – start-page: 750 year: 1999 end-page: 759 article-title: Designing networks with bounded pairwise distance – volume: 11 start-page: 437 issue: 3 year: 1998 end-page: 455 article-title: Dually chordal graphs publication-title: SIAM J Discrete Math – volume: 45 start-page: 209 year: 2006 end-page: 226 article-title: Mixed covering of trees and the augmentation problem with odd diameter constraints publication-title: Algorithmica – volume: 18 start-page: 493 issue: 4 year: 1998 end-page: 501 article-title: How to decrease the diameter of triangle‐free graphs publication-title: Combinatorica – volume: 11 start-page: 303 year: 1992 end-page: 308 article-title: On the minimum‐cardinality‐bounded‐diameter and the bounded‐cardinality‐minimum‐diameter edge addition problems publication-title: Oper Res Lett – article-title: Packing and covering δ‐hyperbolic spaces by balls, approximation, randomization, and combinatorial optimization – volume: 11 start-page: 409 issue: 3 year: 1987 end-page: 427 article-title: Diameter increase caused by edge deletion publication-title: J Graph Theory – ident: e_1_2_8_6_1 doi: 10.1137/S0895480193253415 – ident: e_1_2_8_13_1 doi: 10.1007/s004930050035 – ident: e_1_2_8_14_1 – ident: e_1_2_8_18_1 doi: 10.1016/0196-6774(86)90023-4 – ident: e_1_2_8_19_1 doi: 10.1002/jgt.3190110315 – ident: e_1_2_8_2_1 doi: 10.1002/1097-0118(200011)35:3<161::AID-JGT1>3.0.CO;2-Y – ident: e_1_2_8_4_1 doi: 10.1016/j.tcs.2011.05.014 – ident: e_1_2_8_12_1 doi: 10.1145/301250.301447 – ident: e_1_2_8_17_1 doi: 10.1016/0167-6377(92)90007-P – ident: e_1_2_8_15_1 doi: 10.1007/3-540-45477-2_19 – volume: 60 start-page: 295 year: 1987 ident: e_1_2_8_10_1 article-title: Diameter of graphs: Old problems and new results publication-title: Congr Numer – ident: e_1_2_8_8_1 doi: 10.1007/s00453-005-1183-9 – ident: e_1_2_8_16_1 doi: 10.1016/j.disopt.2005.10.006 – ident: e_1_2_8_7_1 doi: 10.1007/978-3-540-74208-1_5 – volume-title: Hypergraphs year: 1989 ident: e_1_2_8_3_1 – ident: e_1_2_8_9_1 doi: 10.1007/s00453-001-0113-8 – ident: e_1_2_8_11_1 doi: 10.1145/1077464.1077468 – ident: e_1_2_8_5_1 doi: 10.1137/S0097539793251219 |
| SSID | ssj0011508 |
| Score | 2.0711586 |
| Snippet | Given an undirected graph G=(V,E) and an integer D≥1, we consider the problem of augmenting G by a minimum set of new edges so that the diameter becomes at... Given an undirected graph and an integer , we consider the problem of augmenting G by a minimum set of new edges so that the diameter becomes at most D . It is... Given an undirected graph G = ( V , E ) and an integer D ≥ 1, we consider the problem of augmenting G by a minimum set of new edges so that the diameter... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 392 |
| SubjectTerms | Algorithms constant factor approximation algorithm Decision trees diameter graph augmentation problem outerplanar graphs partial 2-trees undirected graph |
| Title | Augmenting Outerplanar Graphs to Meet Diameter Requirements |
| URI | https://api.istex.fr/ark:/67375/WNG-198Q6NQ2-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.21719 https://www.proquest.com/docview/1445476380 |
| Volume | 74 |
| WOSCitedRecordID | wos000326180900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1097-0118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011508 issn: 0364-9024 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6hXQ7lAIWCWKAoqlDVSyD22oktTgjYRW3ZFgQqN8uvrHgFtAlVfz62kw0gUQmJWw4TxZqH5xt78g3AlkqMZRKhOO9LFpM8xbHKqY5lYl0xYKlLETIMm8hGI3ZxwX_PwO70X5iaH6I9cPOREfZrH-BSlTtPpKFX42rb4WlP-dnFzm9pB7oHp4Pzn-0lgqc6r68qScxdLpoSCyV4p335RTrqes3-e4E1nyPWkHIGC-9a7EeYb5BmtFe7xiLM2GIJ5o5bmtbyE-zuPYxDu1Axjn752Q73N7KQk2joWazLqLqLjq2tooNLeeu7ZqJT6_uGw4FiuQzng8Oz_aO4maYQa1dD8dgobUlGaaokJsYVj5kmzGCOLKKG50xRo7MESUUQJ4bkXEkS0FGaSsZcKbsCneKusKsQIW1wX3FPhIOIzh3E1LbPcksTkxOepD34NlWq0A3VuJ94cSNqkmQsnD5E0EcPvrSi9zW_xmtCX4NlWgk5ufYNaRkVf0ZDgTg7SUcnWPzowcbUdKKJxdIVN560zO0ziVtXMNL_vyS-D8_Cw9rbRdfhA_YzMkKPywZ0qsmD_Qyz-m91WU42G6d8BNCS4xg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9VFGnjgY9tiPIZoWnaS0acOokteKkobYE2G6gI3izHdiq-AmoC4s_HdtJsSEyatLc8XBTrfJf73fn8O4CviScV4Qi5aZsTF6eh7yZpIFzuKZ0MqECHCG6HTURxTK6u6K8GHMzuwpT8EHXBzXiG_V8bBzcF6b3frKE3k-KHBtSG87OJtRlp-252z3sXw_oUwXCdl2eV2KU6GM2YhTx_r375TTxqGtW-vAGbf0JWG3N6S_-32mVYrLCm0ymNYwUaKvsEC6OaqDX_DPudp4ltGMomzk8z3eHxjmd86vQNj3XuFA_OSKnC6V7ze9M345wr0zlsS4r5F7joHY0PB241T8EVOouirkyEwlEQhAn3sdTpYyQwkT5FCgWSpiQJpIg8xBOMKJY4pQnHFh-FISdEJ7OrMJc9ZGoNHCSk306oocJBWKQaZArVJqkKPJli6oUt-D7TKhMV2biZeXHHSppkn2l9MKuPFuzWoo8lw8Z7Qt_s1tQSfHprWtKigF3GfYYoOQvjM5-dtmBztnes8sZcpzeGtkybiKfXZXfp719iJ_2xfVj_d9Ed-DAYj4ZseByfbsBH30zMsB0vmzBXTJ_UFsyL5-I6n25XFvoKc5DnCA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6h3apqDwVKUZfyiFBVcQnEWSexRS-I7S7PFBAIbpbjx4pXWG0C4ufXdrKhSCAhcctholhjj-cbe_J9AD-zQCrCEfJ1lxMf6zj0Mx0JnwfKFAMqMimCO7GJJE3JxQU9moLfk39hKn6I5sDNRobbr22Aq5HUG0-soVfDct0Aasv52cZWRKYF7d5J_-yguUWwXOfVXSX2qUlGE2ahINxoXn6Wj9rWtY_PwOb_kNXlnP70-0Y7A19qrOltVYtjFqZU_hU-HzZErcUcbG7dD13DUD70_lp1h9ENz_nYG1ge68Ir77xDpUqvd8lvbd-Md6Js57A7Uiy-wVn_z-n2jl_rKfjCVFHUl5lQOImiOOMhlqZ8TAQmMqRIoUhSTbJIiiRAPMOIYok1zTh2-CiOOSGmmJ2HVn6Xq-_gISHDbkYtFQ7CQhuQKVSXaBUFUmMaxB1Ym3iViZps3Gpe3LCKJjlkxh_M-aMDq43pqGLYeMnol5uaxoKPr21LWhKx83TAECXHcXocsv0OLE7mjtXRWJjyxtKWmZ0mMONys_T6l9je4NQ9LLzddAU-HvX67GA33f8Bn0IrmOEaXhahVY7v1RJ8EA_lZTFerhfoPyL95oM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Augmenting+Outerplanar+Graphs+to+Meet+Diameter+Requirements&rft.jtitle=Journal+of+graph+theory&rft.au=Ishii%2C+Toshimasa&rft.date=2013-12-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=74&rft.issue=4&rft.spage=392&rft.epage=416&rft_id=info:doi/10.1002%2Fjgt.21719&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jgt_21719 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon |