Deconstructing richness patterns by commonness and rarity reveals bioclimatic and spatial effects in black fly metacommunities

Summary Deconstructing biological communities by grouping species according to their commonness or rarity might improve our understanding about the processes driving variation in biological communities. Such an approach considers differences among organisms and emergent ecological patterns. In this...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Freshwater biology Ročník 61; číslo 6; s. 923 - 932
Hlavní autori: Roque, Fabio de O., Zampiva, Nayara K., Valente-Neto, Francisco, Menezes, Jorge F. S., Hamada, Neusa, Pepinelli, Mateus, Siqueira, Tadeu, Swan, Christopher
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.06.2016
Wiley Subscription Services, Inc
Predmet:
ISSN:0046-5070, 1365-2427
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Summary Deconstructing biological communities by grouping species according to their commonness or rarity might improve our understanding about the processes driving variation in biological communities. Such an approach considers differences among organisms and emergent ecological patterns. In this study, we addressed the relative role of spatial and large‐scale bioclimatic variables along a commonness and rarity gradient using Simuliidae (Diptera) species richness. A database of species occurrences at 459 locations in Brazil was used to estimate the distribution of 58 simuliid species. Total species richness at each location was estimated first using all occurrences and then by removing one species at a time, following a commonest to rarest gradient (CtR) and vice‐versa (RtC). Partial regression analysis was used to test the influence of sets of bioclimatic (E) and spatial (S) variables for Simuliidae species richness across both CtR and RtC gradients. In the CtR gradient, the pure spatial component alone explained between 40% and 60% of the variation in simuliid richness when the total number of species was greater than ˜35. After removal of the 35th most common species, the model fit decreased sharply reaching nearly zero when only rare species were present. Variation explained by the shared component E + S decreased continuously along the CtR gradient. The relative role of predictor variables on the RtC gradient was similar to CtR gradient. However, removing the rare species first did not change which components best explained species richness. Our gradual deconstructive approach revealed that common species contribute more to species richness variation than rare species, and that the role of predictors in explaining this pattern cannot be untangled by analysing richness of rare and common species in a categorical way.
AbstractList Summary Deconstructing biological communities by grouping species according to their commonness or rarity might improve our understanding about the processes driving variation in biological communities. Such an approach considers differences among organisms and emergent ecological patterns. In this study, we addressed the relative role of spatial and large-scale bioclimatic variables along a commonness and rarity gradient using Simuliidae (Diptera) species richness. A database of species occurrences at 459 locations in Brazil was used to estimate the distribution of 58 simuliid species. Total species richness at each location was estimated first using all occurrences and then by removing one species at a time, following a commonest to rarest gradient (CtR) and vice-versa (RtC). Partial regression analysis was used to test the influence of sets of bioclimatic (E) and spatial (S) variables for Simuliidae species richness across both CtR and RtC gradients. In the CtR gradient, the pure spatial component alone explained between 40% and 60% of the variation in simuliid richness when the total number of species was greater than 35. After removal of the 35th most common species, the model fit decreased sharply reaching nearly zero when only rare species were present. Variation explained by the shared component E + S decreased continuously along the CtR gradient. The relative role of predictor variables on the RtC gradient was similar to CtR gradient. However, removing the rare species first did not change which components best explained species richness. Our gradual deconstructive approach revealed that common species contribute more to species richness variation than rare species, and that the role of predictors in explaining this pattern cannot be untangled by analysing richness of rare and common species in a categorical way.
1. Deconstructing biological communities by grouping species according to their commonness or rarity might improve our understanding about the processes driving variation in biological communities. Such an approach considers differences among organisms and emergent ecological patterns. 2. In this study, we addressed the relative role of spatial and large-scale bioclimatic variables along a commonness and rarity gradient using Simuliidae (Diptera) species richness. A database of species occurrences at 459 locations in Brazil was used to estimate the distribution of 58 simuliid species. Total species richness at each location was estimated first using all occurrences and then by removing one species at a time, following a commonest to rarest gradient (CtR) and vice-versa (RtC). Partial regression analysis was used to test the influence of sets of bioclimatic (E) and spatial (S) variables for Simuliidae species richness across both CtR and RtC gradients. 3. In the CtR gradient, the pure spatial component alone explained between 40% and 60% of the variation in simuliid richness when the total number of species was greater than ~35. After removal of the 35th most common species, the model fit decreased sharply reaching nearly zero when only rare species were present. Variation explained by the shared component E + S decreased continuously along the CtR gradient. The relative role of predictor variables on the RtC gradient was similar to CtR gradient. However, removing the rare species first did not change which components best explained species richness. 4. Our gradual deconstructive approach revealed that common species contribute more to species richness variation than rare species, and that the role of predictors in explaining this pattern cannot be untangled by analysing richness of rare and common species in a categorical way.
Deconstructing biological communities by grouping species according to their commonness or rarity might improve our understanding about the processes driving variation in biological communities. Such an approach considers differences among organisms and emergent ecological patterns. In this study, we addressed the relative role of spatial and large‐scale bioclimatic variables along a commonness and rarity gradient using Simuliidae (Diptera) species richness. A database of species occurrences at 459 locations in Brazil was used to estimate the distribution of 58 simuliid species. Total species richness at each location was estimated first using all occurrences and then by removing one species at a time, following a commonest to rarest gradient (CtR) and vice‐versa (RtC). Partial regression analysis was used to test the influence of sets of bioclimatic (E) and spatial (S) variables for Simuliidae species richness across both CtR and RtC gradients. In the CtR gradient, the pure spatial component alone explained between 40% and 60% of the variation in simuliid richness when the total number of species was greater than ˜35. After removal of the 35th most common species, the model fit decreased sharply reaching nearly zero when only rare species were present. Variation explained by the shared component E + S decreased continuously along the CtR gradient. The relative role of predictor variables on the RtC gradient was similar to CtR gradient. However, removing the rare species first did not change which components best explained species richness. Our gradual deconstructive approach revealed that common species contribute more to species richness variation than rare species, and that the role of predictors in explaining this pattern cannot be untangled by analysing richness of rare and common species in a categorical way.
Summary Deconstructing biological communities by grouping species according to their commonness or rarity might improve our understanding about the processes driving variation in biological communities. Such an approach considers differences among organisms and emergent ecological patterns. In this study, we addressed the relative role of spatial and large‐scale bioclimatic variables along a commonness and rarity gradient using Simuliidae (Diptera) species richness. A database of species occurrences at 459 locations in Brazil was used to estimate the distribution of 58 simuliid species. Total species richness at each location was estimated first using all occurrences and then by removing one species at a time, following a commonest to rarest gradient (CtR) and vice‐versa (RtC). Partial regression analysis was used to test the influence of sets of bioclimatic (E) and spatial (S) variables for Simuliidae species richness across both CtR and RtC gradients. In the CtR gradient, the pure spatial component alone explained between 40% and 60% of the variation in simuliid richness when the total number of species was greater than ˜35. After removal of the 35th most common species, the model fit decreased sharply reaching nearly zero when only rare species were present. Variation explained by the shared component E + S decreased continuously along the CtR gradient. The relative role of predictor variables on the RtC gradient was similar to CtR gradient. However, removing the rare species first did not change which components best explained species richness. Our gradual deconstructive approach revealed that common species contribute more to species richness variation than rare species, and that the role of predictors in explaining this pattern cannot be untangled by analysing richness of rare and common species in a categorical way.
Deconstructing biological communities by grouping species according to their commonness or rarity might improve our understanding about the processes driving variation in biological communities. Such an approach considers differences among organisms and emergent ecological patterns. In this study, we addressed the relative role of spatial and large‐scale bioclimatic variables along a commonness and rarity gradient using Simuliidae (Diptera) species richness. A database of species occurrences at 459 locations in Brazil was used to estimate the distribution of 58 simuliid species. Total species richness at each location was estimated first using all occurrences and then by removing one species at a time, following a commonest to rarest gradient (CtR) and vice‐versa (RtC). Partial regression analysis was used to test the influence of sets of bioclimatic (E) and spatial (S) variables for Simuliidae species richness across both CtR and RtC gradients. In the CtR gradient, the pure spatial component alone explained between 40% and 60% of the variation in simuliid richness when the total number of species was greater than ˜35. After removal of the 35th most common species, the model fit decreased sharply reaching nearly zero when only rare species were present. Variation explained by the shared component E + S decreased continuously along the CtR gradient. The relative role of predictor variables on the RtC gradient was similar to CtR gradient. However, removing the rare species first did not change which components best explained species richness. Our gradual deconstructive approach revealed that common species contribute more to species richness variation than rare species, and that the role of predictors in explaining this pattern cannot be untangled by analysing richness of rare and common species in a categorical way.
Author Menezes, Jorge F. S.
Valente-Neto, Francisco
Siqueira, Tadeu
Pepinelli, Mateus
Zampiva, Nayara K.
Roque, Fabio de O.
Hamada, Neusa
Swan, Christopher
Author_xml – sequence: 1
  givenname: Fabio de O.
  surname: Roque
  fullname: Roque, Fabio de O.
  email: Correspondence: Fabio de O. Roque, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, CEP 79070-900, Campo Grande, Mato Grosso do Sul, Brazil., roque.eco@gmail.com
  organization: Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
– sequence: 2
  givenname: Nayara K.
  surname: Zampiva
  fullname: Zampiva, Nayara K.
  organization: Programa de Pós-graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Mato Grosso do Sul, Dourados, Brazil
– sequence: 3
  givenname: Francisco
  surname: Valente-Neto
  fullname: Valente-Neto, Francisco
  organization: Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, Brazil
– sequence: 4
  givenname: Jorge F. S.
  surname: Menezes
  fullname: Menezes, Jorge F. S.
  organization: Marco and Louise Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environmental & Energy Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
– sequence: 5
  givenname: Neusa
  surname: Hamada
  fullname: Hamada, Neusa
  organization: Instituto Nacional de Pesquisas da Amazônia, Amazonas, Manaus, Brazil
– sequence: 6
  givenname: Mateus
  surname: Pepinelli
  fullname: Pepinelli, Mateus
  organization: Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
– sequence: 7
  givenname: Tadeu
  surname: Siqueira
  fullname: Siqueira, Tadeu
  organization: Departamento de Ecologia, Instituto de Biociências, UNESP - Universidade Estadual Paulista, SP, Rio Claro, Brazil
– sequence: 8
  givenname: Christopher
  surname: Swan
  fullname: Swan, Christopher
  organization: University of Maryland, Baltimore County, MD, Baltimore, USA
BookMark eNqFkb1uFDEUhS0UJDaBgjewRAPFJPb8eV1CwgakiFCAFtFYnjvX4GTGXmxPkml4dry7QBEp4MaS_Z2je885JAfOOyTkOWfHPJ8Tc9sd81I04hFZ8KptirIuxQFZMFa3RcMEe0IOY7xijC0bUS7IzzME72IKEyTrvtFg4bvDGOlGp4TBRdrNFPw4erd71q6nQQebZhrwBvWQAethsKNOFnbfMUutHigag5AitY52g4ZraoaZjpj01m5yNlmMT8ljkz3w2e_7iHxevf10-q64uDx_f_r6ooCacVGYipdtK3sOvKvzegCm5p1E6Mum76VE0VfQCbNkwAB0WRrNOqx1A7Jr2bKujsjLve8m-B8TxqRGGwGHQTv0U1RlDqSupZDivygXksm25bLK6It76JWfgsuLZGopWJ653Rq-2lMQfIwBjdqEHFeYFWdqW5rKpaldaZk9uceCTTlO71LQdviX4tYOOD9srVbrN38UxV5hY8K7vwodrlWeVjRq_eFcrT6uvp5x8UWtq19w8rxS
CitedBy_id crossref_primary_10_1002_ecy_70121
crossref_primary_10_1007_s13744_016_0431_9
crossref_primary_10_1080_17550874_2018_1425505
crossref_primary_10_1111_fwb_13050
crossref_primary_10_1111_geb_13734
crossref_primary_10_1111_eff_12433
crossref_primary_10_1111_oik_05329
crossref_primary_10_1111_een_13307
crossref_primary_10_1016_j_ecolind_2019_105937
crossref_primary_10_1017_S0024282917000731
crossref_primary_10_1111_fwb_12895
crossref_primary_10_1111_fwb_13599
Cites_doi 10.1002/ece3.1439
10.1111/j.1461-0248.2006.00970.x
10.1002/joc.1276
10.4319/lo.2010.55.6.2397
10.1046/j.1365-2699.2000.00397.x
10.1017/S1367943003003044
10.1007/978-1-4419-7976-6
10.1093/jmedent/35.2.120
10.1111/j.1461-0248.2005.00820.x
10.1046/j.1461-0248.2004.00548.x
10.1111/j.1600-0587.2011.06875.x
10.1590/1519-6984.04413
10.1111/j.1752-4598.2010.00091.x
10.1093/bioinformatics/btg412
10.1007/s11284-007-0421-9
10.1111/geb.12372
10.1016/j.ecocom.2014.08.003
10.1016/S0304-3800(01)00501-4
10.1111/j.1365-2427.2009.02314.x
10.1111/ecog.00496
10.1111/j.1600-0587.2010.06669.x
10.1111/j.1466-8238.2006.00272.x
10.1016/j.actao.2012.05.005
10.1111/1365-2745.12025
10.1111/j.0307-6946.2005.00681.x
10.18637/jss.v040.i01
10.2307/1940179
10.1890/08-0851.1
10.1590/S1519-566X2009000300006
10.1111/j.1365-2427.2007.01767.x
10.1111/j.1600-0587.2013.00060.x
10.1046/j.1365-2427.2002.00778.x
10.4324/9780203211595
10.1016/j.actatropica.2014.07.018
10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2
10.1046/j.1365-3113.1999.00080.x
10.1186/2046-9063-8-14
10.2307/1939924
10.1111/j.1752-4598.2008.00017.x
10.1126/science.1182818
10.1111/j.0906-7590.2007.04894.x
10.1111/j.1466-8238.2009.00506.x
10.1111/j.0014-3820.2004.tb01713.x
10.1016/j.actao.2008.09.006
10.11646/zootaxa.1040.1.2
10.1111/oik.01493
10.1016/j.ecolmodel.2006.02.015
10.1016/j.biocon.2007.04.005
10.2307/1468478
ContentType Journal Article
Copyright 2016 John Wiley & Sons Ltd
Copyright © 2016 John Wiley & Sons Ltd
Copyright_xml – notice: 2016 John Wiley & Sons Ltd
– notice: Copyright © 2016 John Wiley & Sons Ltd
DBID BSCLL
AAYXX
CITATION
7QH
7SN
7SS
7UA
C1K
F1W
H95
L.G
M7N
7S9
L.6
DOI 10.1111/fwb.12757
DatabaseName Istex
CrossRef
Aqualine
Ecology Abstracts
Entomology Abstracts (Full archive)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
Entomology Abstracts
CrossRef

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Oceanography
EISSN 1365-2427
EndPage 932
ExternalDocumentID 4046237691
10_1111_fwb_12757
FWB12757
ark_67375_WNG_FPFZD17X_W
Genre article
GeographicLocations ASW, Brazil
Brazil
GeographicLocations_xml – name: ASW, Brazil
– name: Brazil
GrantInformation_xml – fundername: CAPES
  funderid: 99999.009654/2014‐03; 1073627
– fundername: CNPq‐CSF
  funderid: 205742/2014‐9
– fundername: CNPq/MCTI
  funderid: 475663/2012‐8
– fundername: São Paulo Research Foundation (FAPESP)
  funderid: 2013/50424‐1
– fundername: FUNDECT
– fundername: INPA/MCTI
– fundername: CNPq
– fundername: MCTI/CNPq/MEC/CAPES/PROTAX
  funderid: 562188/2010‐0
GroupedDBID -~X
..I
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29H
31~
33P
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QZG
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TWZ
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YZZ
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ESX
WRC
XJT
AAYXX
CITATION
O8X
7QH
7SN
7SS
7UA
C1K
F1W
H95
L.G
M7N
7S9
L.6
ID FETCH-LOGICAL-c4017-f312669d1c1b4127ccf41b9ecd25dd99e7d3cb7f80c0cca22fa0be4a5c9b60843
IEDL.DBID DRFUL
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376600100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0046-5070
IngestDate Fri Jul 11 18:26:13 EDT 2025
Tue Oct 07 10:07:28 EDT 2025
Fri Jul 25 10:58:58 EDT 2025
Sat Nov 29 06:13:58 EST 2025
Tue Nov 18 22:23:49 EST 2025
Wed Jan 22 16:27:27 EST 2025
Tue Nov 11 03:33:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4017-f312669d1c1b4127ccf41b9ecd25dd99e7d3cb7f80c0cca22fa0be4a5c9b60843
Notes CAPES - No. 99999.009654/2014-03; No. 1073627
CNPq-CSF - No. 205742/2014-9
INPA/MCTI
CNPq
São Paulo Research Foundation (FAPESP) - No. 2013/50424-1
MCTI/CNPq/MEC/CAPES/PROTAX - No. 562188/2010-0
istex:5E83B9B6F4BC1DA25A516D6031095ADA0A6F27AF
ark:/67375/WNG-FPFZD17X-W
CNPq/MCTI - No. 475663/2012-8
FUNDECT
ArticleID:FWB12757
Appendix S1. South America map showing the occurrence data of black flies used in our study.Appendix S2. Black fly species occurrence data from our study area.Video S1. Iterative deconstruction process of richness estimation, each time removing the nth commonest (CtR) species.Video S2. Iterative deconstruction process of richness estimation, each time removing the nth rarest (RtC) species.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1787026667
PQPubID 36547
PageCount 10
ParticipantIDs proquest_miscellaneous_2000449797
proquest_miscellaneous_1790966193
proquest_journals_1787026667
crossref_primary_10_1111_fwb_12757
crossref_citationtrail_10_1111_fwb_12757
wiley_primary_10_1111_fwb_12757_FWB12757
istex_primary_ark_67375_WNG_FPFZD17X_W
PublicationCentury 2000
PublicationDate 2016-06
June 2016
2016-06-00
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Freshwater biology
PublicationTitleAlternate Freshw Biol
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Hamada N. & Adler P.H. (1999) Cytotaxonomy of four species in the Simulium perflavum species group (Diptera: Simuliidae) from Brazilian Amazonia. Systematic Entomology, 24, 273-288.
Pearman P.B. & Weber D. (2007) Common species determine richness patterns in biodiversity indicator taxa. Biological Conservation, 138, 109-119.
Gaston K.J. (1994) Rarity. Chapman and Hall, London.
Diniz-Filho J.A.F., Rangel T.F. & Santos M.R. (2012) Extreme deconstruction supports niche conservatism driving New World Bird diversity. Acta Oecologica, 43, 16-21.
R Core Team. (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
Borcard D. & Legendre P. (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51-68.
Cottenie K. (2005) Integrating environmental and spatial processes in ecological comunity dynamics. Ecology Letters, 8, 1175-1182.
Heino J., Muotka T., Paavola R., Hämäläinen H. & Koskenniemi E. (2002) Correspondence between regional delineations and spatial patterns in macroinvertebrate assemblages of boreal headwater streams. Journal of the North American Benthological Society, 21, 397-413.
Lennon J.J., Beale C.M., Reid C.L., Kent M. & Pakeman R.J. (2011) Are richness patterns of common and rare species equally well explained by environmental variables? Ecography, 34, 529-539.
Paradis E., Claude J. & Strimmer K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290.
Sutherland W.J., Freckleton R.P., Godfray H.C.J., Beissinger S.R., Benton T., Cameron D.D. et al. (2013) Identification of 100 fundamental ecological questions. Journal of Ecology, 101, 58-67.
Borcard D., Legendre P. & Drapeau P. (1992) Partialling out the spatial component of ecological variation. Ecology, 73, 1045-1055.
Swan C.M. & Brown B.L. (2014) Using rarity to infer how dendritic network structure shapes biodiversity in riverine communities. Ecography, 37, 993-1001. doi:10.1111/ecog.00496.
Diniz-Filho J.A.F., De Marco P. Jr & Hawkins B.A. (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conservation and Diversity, 3, 172-179.
Heegaard E., Gjerde I. & Sætersdal M. (2013) Contribution of rare and common species to richness patterns at local scales. Ecography, 36, 937-946.
Burgman M.A. & Fox J.C. (2003) Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Animal Conservation, 6, 19-28.
Pennington R.T., Prado D.A. & Pendry C. (2000) Neotropical seasonally dry forests and Pleistocene vegetation changes. Journal of Biogeography, 27, 261-273.
Roque F.O., Siqueira T., Bini L.M., Ribeiro M.C., Tambosi L.R., Ciocheti G. et al. (2010) Untangling associations between chironomid taxa in Neotropical streams using local and landscape filters. Freshwater Biology, 55, 847-865.
Heino J., Melo A.S., Bini L.M., Altermatt F., Al-Shami S.A., Angeler D.G. et al. (2015) A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecology and Evolution, 5, 1235-1248.
Dray S., Legendre P. & Peres-Neto P.R. (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196, 483-493.
Roque F.O., Guimarães E.A., Ribeiro M.C., Escarpinati S.C., Suriano M.T. & Siqueira T. (2014) The taxonomic distinctness of macroinvertebrate communities of Atlantic Forest streams cannot be predicted by landscape and climate variables, but traditional biodiversity indices can. Brazilian Journal of Biology, 74, 991-999.
Hamada N., McCreadie J.W. & Adler P.H. (2002) Species richness and spatial distributions of black flies (Diptera: Simuliidae) among streams of Central Amazonia, Brazil. Freshwater Biology, 47, 31-40.
Alahuhta J., Johnson L.B., Olker J. & Heino J. (2014) Species sorting determines variation in the community composition of common and rare macrophytes at various spatial extents. Ecological Complexity, 20, 61-68.
Terribile L.C. & Diniz-Filho J.A.F. (2009) Spatial patterns of species richness in New World coral snakes and the metabolic theory of ecology. Acta Oecologica, 35, 163-173.
Wickham H. (2011) The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40, 1-29.
Landeiro V.L., Pepinelli M. & Hamada N. (2009) Species richness and distribution of blackflies (Diptera: Simuliidae) in the Chapada Diamantina Region, Bahia, Brazil. Neotropical Entomology, 38, 332-339.
Legendre P. & Legendre L. (1998) Numerical Ecology. Elsevier Science BV, Amsterdam.
McCreadie J.W. & Adler P.H. (2008) Spatial distribution of rare species in lotic habitats. Insect Conservation and Diversity, 1, 127-134.
Legendre P. (1993) Spatial autocorrelation: trouble or new paradigm? Ecology, 74, 1659-1673.
Stauffer D. (1985) Introduction to Percolation Theory. Taylor & Francis, London.
Griffith D.A. & Peres-Neto P.R. (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology, 87, 2603-2613.
McCreadie J.W., Adler P.H. & Hamada N. (2005) Patterns of species richness for blackflies (Diptera: Simuliidae) in the Neartic an Neotropical regions. Ecological Entomology, 30, 201-209.
Pyne M.I., Rader R.B. & Christensen W.F. (2007) Predicting local biological characteristics in streams: a comparison of landscape classifications. Freshwater Biology, 52, 1302-1321.
McCreadie J.W. & Adler P.H. (2012) The roles of abiotic factors, dispersal, and species interactions in structuring stream assemblages of black flies (Diptera: Simuliidae). Aquatic Biosystems, 8, 14-25.
Rondinini C., Wilson K.A., Boitani L., Grantham H. & Possingham H.P. (2006) Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecology Letters, 9, 1136-1145.
Nilsen E.B., Pedersen S. & Linnell J.D.C. (2008) Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions? Ecological Research, 23, 635-639.
Siqueira T., Bini L.M., Roque F.O., Couceiro S.R.M., Trivinho-Strixino S. & Cottenie K. (2012) Common and rare species respond to similar niche processes in macroinvertebrate metacommunities. Ecography, 35, 183-192.
Vellend M., Srivastava D.S., Anderson K.M., Brown C.D., Jankowski J.E., Kleynhans E.J. et al. (2014) Assessing the relative importance of neutral stochasticity in ecological communities. Oikos, 123, 1420-1430.
Adler P.H., Currie D.C. & Wood D.M. (2004) The Black Flies (Simuliidae) of North America. Cornell University Press, Ithaca.
Borcard D., Gillet F. & Legendre P. (2011) Numerical Ecology With R. Springer, New York.
Mykrä H., Heino J. & Muotka T. (2007) Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Global Ecology and Biogeography, 16, 149-159.
Heino J., Mykrä H., Kotanen J. & Muotka T. (2007) Ecological filters and variability in stream macroinvertebrate communities: do taxonomic and functional structure follow the same path? Ecography, 30, 217-230.
Heino J. & Soininen J. (2010) Are common species sufficient in describing turnover in aquatic metacommunities along environmental and spatial gradients? Limnology and Oceanography, 55, 2397-2402.
Hubbell S.P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.
Lennon J.L., Koleff P., Greenwood J.J.D. & Gaston K.J. (2004) Contribution of rarity and commonness to patterns of species richness. Ecology Letters, 7, 81-87.
Gaston K.J. (2010) Valuing common species. Science, 327, 154-155.
Pandit S.N., Kolasa J. & Cottenie K. (2009) Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology, 90, 2253-2262.
Pepinelli M., Hamada N. & Trivinho-Strixino S. (2005) Simulium (Thyrsopelma) duodenicornium n. sp., a new black fly species (Diptera: Simuliidae) from the Southeast region of Brazil. Zootaxa, 1040, 17-29.
Eaton D.P., Diaz L.A., Hans-Filho G., Santos V., Aoki V., Friedman H. et al. (1998) Comparison of black fly species (Diptera: Simuliidae) on an Amerindian reservation with a high prevalence of Fogo Selvagem to neighboring disease-free sites in the state of Mato Grosso do Sul, Brazil. Journal of Medical Entomology, 35, 120-131.
Peres-Neto P.R. & Legendre P. (2010) Estimating and controlling for spatial autocorrelation in the study of ecological communities. Global Ecology and Biogeography, 19, 174-184.
Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G. & Jarvis A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
Reddin C.J., Bothwell J.H. & Lennon J.J. (2015) Between-taxon matching of common and rare species richness patterns. Global Ecology and Biogeography, 24, 1476-1486.
Couceiro S.R., Hamada N., Sagot L.B. & Pepinelli M. (2014) Black-fly assemblage distribution patterns in streams in disturbed areas in southern Brazil. Acta Tropica, 140, 26-33.
Hamada N. & Grillet M.E. (2001) Black flies (Diptera: Simuliidae) of the Gran Sabana (Venezuela) and Pacaraima Region (Brazil): distributional data and identification keys for larvae and pupae. Entomotropica, 16, 29-49.
2010; 55
2004; 20
2002; 153
2010; 19
2004; 7
2007; 30
2008; 1
2014; 20
2005; 25
2002; 47
2007; 138
2001
2003; 6
2009; 90
1993; 74
2005; 30
2008; 23
1985
2005; 1040
2001; 16
2010; 3
2014; 123
2015; 5
2000; 27
2010; 327
2011
2006; 9
2011; 40
2006; 196
1999; 24
1998
2013; 101
2007
1994
2004
2011; 34
2007; 52
2012; 35
1992; 73
2007; 16
2015; 24
2009; 35
2013; 36
2006; 87
2005; 8
2002; 21
2014; 37
2015
2014; 140
2014
2014; 74
2012; 43
2009; 38
2012; 8
1998; 35
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_43_1
Legendre P. (e_1_2_6_33_1) 1998
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_5_1
e_1_2_6_7_1
Coscarón S. (e_1_2_6_9_1) 2007
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
Hubbell S.P. (e_1_2_6_30_1) 2001
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
Hamada N. (e_1_2_6_20_1) 2001; 16
Pepinelli M. (e_1_2_6_48_1) 2005; 1040
e_1_2_6_12_1
Adler P.H. (e_1_2_6_3_1) 2004
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
Marquet P.A. (e_1_2_6_36_1) 2004
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
Hamada N. (e_1_2_6_22_1) 2014
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
R Core Team (e_1_2_6_51_1) 2014
References_xml – reference: Gaston K.J. (2010) Valuing common species. Science, 327, 154-155.
– reference: McCreadie J.W. & Adler P.H. (2012) The roles of abiotic factors, dispersal, and species interactions in structuring stream assemblages of black flies (Diptera: Simuliidae). Aquatic Biosystems, 8, 14-25.
– reference: Cottenie K. (2005) Integrating environmental and spatial processes in ecological comunity dynamics. Ecology Letters, 8, 1175-1182.
– reference: Eaton D.P., Diaz L.A., Hans-Filho G., Santos V., Aoki V., Friedman H. et al. (1998) Comparison of black fly species (Diptera: Simuliidae) on an Amerindian reservation with a high prevalence of Fogo Selvagem to neighboring disease-free sites in the state of Mato Grosso do Sul, Brazil. Journal of Medical Entomology, 35, 120-131.
– reference: Peres-Neto P.R. & Legendre P. (2010) Estimating and controlling for spatial autocorrelation in the study of ecological communities. Global Ecology and Biogeography, 19, 174-184.
– reference: Pandit S.N., Kolasa J. & Cottenie K. (2009) Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology, 90, 2253-2262.
– reference: Wickham H. (2011) The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40, 1-29.
– reference: Landeiro V.L., Pepinelli M. & Hamada N. (2009) Species richness and distribution of blackflies (Diptera: Simuliidae) in the Chapada Diamantina Region, Bahia, Brazil. Neotropical Entomology, 38, 332-339.
– reference: Borcard D., Legendre P. & Drapeau P. (1992) Partialling out the spatial component of ecological variation. Ecology, 73, 1045-1055.
– reference: Griffith D.A. & Peres-Neto P.R. (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology, 87, 2603-2613.
– reference: Paradis E., Claude J. & Strimmer K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290.
– reference: Stauffer D. (1985) Introduction to Percolation Theory. Taylor & Francis, London.
– reference: Nilsen E.B., Pedersen S. & Linnell J.D.C. (2008) Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions? Ecological Research, 23, 635-639.
– reference: Lennon J.J., Beale C.M., Reid C.L., Kent M. & Pakeman R.J. (2011) Are richness patterns of common and rare species equally well explained by environmental variables? Ecography, 34, 529-539.
– reference: R Core Team. (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
– reference: Swan C.M. & Brown B.L. (2014) Using rarity to infer how dendritic network structure shapes biodiversity in riverine communities. Ecography, 37, 993-1001. doi:10.1111/ecog.00496.
– reference: Siqueira T., Bini L.M., Roque F.O., Couceiro S.R.M., Trivinho-Strixino S. & Cottenie K. (2012) Common and rare species respond to similar niche processes in macroinvertebrate metacommunities. Ecography, 35, 183-192.
– reference: Heegaard E., Gjerde I. & Sætersdal M. (2013) Contribution of rare and common species to richness patterns at local scales. Ecography, 36, 937-946.
– reference: Pennington R.T., Prado D.A. & Pendry C. (2000) Neotropical seasonally dry forests and Pleistocene vegetation changes. Journal of Biogeography, 27, 261-273.
– reference: Borcard D., Gillet F. & Legendre P. (2011) Numerical Ecology With R. Springer, New York.
– reference: Pearman P.B. & Weber D. (2007) Common species determine richness patterns in biodiversity indicator taxa. Biological Conservation, 138, 109-119.
– reference: Alahuhta J., Johnson L.B., Olker J. & Heino J. (2014) Species sorting determines variation in the community composition of common and rare macrophytes at various spatial extents. Ecological Complexity, 20, 61-68.
– reference: Legendre P. (1993) Spatial autocorrelation: trouble or new paradigm? Ecology, 74, 1659-1673.
– reference: Reddin C.J., Bothwell J.H. & Lennon J.J. (2015) Between-taxon matching of common and rare species richness patterns. Global Ecology and Biogeography, 24, 1476-1486.
– reference: Terribile L.C. & Diniz-Filho J.A.F. (2009) Spatial patterns of species richness in New World coral snakes and the metabolic theory of ecology. Acta Oecologica, 35, 163-173.
– reference: Borcard D. & Legendre P. (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51-68.
– reference: Hamada N. & Grillet M.E. (2001) Black flies (Diptera: Simuliidae) of the Gran Sabana (Venezuela) and Pacaraima Region (Brazil): distributional data and identification keys for larvae and pupae. Entomotropica, 16, 29-49.
– reference: Vellend M., Srivastava D.S., Anderson K.M., Brown C.D., Jankowski J.E., Kleynhans E.J. et al. (2014) Assessing the relative importance of neutral stochasticity in ecological communities. Oikos, 123, 1420-1430.
– reference: Diniz-Filho J.A.F., Rangel T.F. & Santos M.R. (2012) Extreme deconstruction supports niche conservatism driving New World Bird diversity. Acta Oecologica, 43, 16-21.
– reference: Pyne M.I., Rader R.B. & Christensen W.F. (2007) Predicting local biological characteristics in streams: a comparison of landscape classifications. Freshwater Biology, 52, 1302-1321.
– reference: Legendre P. & Legendre L. (1998) Numerical Ecology. Elsevier Science BV, Amsterdam.
– reference: Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G. & Jarvis A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
– reference: Diniz-Filho J.A.F., De Marco P. Jr & Hawkins B.A. (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conservation and Diversity, 3, 172-179.
– reference: Dray S., Legendre P. & Peres-Neto P.R. (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196, 483-493.
– reference: Lennon J.L., Koleff P., Greenwood J.J.D. & Gaston K.J. (2004) Contribution of rarity and commonness to patterns of species richness. Ecology Letters, 7, 81-87.
– reference: McCreadie J.W. & Adler P.H. (2008) Spatial distribution of rare species in lotic habitats. Insect Conservation and Diversity, 1, 127-134.
– reference: Gaston K.J. (1994) Rarity. Chapman and Hall, London.
– reference: Heino J., Muotka T., Paavola R., Hämäläinen H. & Koskenniemi E. (2002) Correspondence between regional delineations and spatial patterns in macroinvertebrate assemblages of boreal headwater streams. Journal of the North American Benthological Society, 21, 397-413.
– reference: Rondinini C., Wilson K.A., Boitani L., Grantham H. & Possingham H.P. (2006) Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecology Letters, 9, 1136-1145.
– reference: Couceiro S.R., Hamada N., Sagot L.B. & Pepinelli M. (2014) Black-fly assemblage distribution patterns in streams in disturbed areas in southern Brazil. Acta Tropica, 140, 26-33.
– reference: Heino J., Mykrä H., Kotanen J. & Muotka T. (2007) Ecological filters and variability in stream macroinvertebrate communities: do taxonomic and functional structure follow the same path? Ecography, 30, 217-230.
– reference: McCreadie J.W., Adler P.H. & Hamada N. (2005) Patterns of species richness for blackflies (Diptera: Simuliidae) in the Neartic an Neotropical regions. Ecological Entomology, 30, 201-209.
– reference: Sutherland W.J., Freckleton R.P., Godfray H.C.J., Beissinger S.R., Benton T., Cameron D.D. et al. (2013) Identification of 100 fundamental ecological questions. Journal of Ecology, 101, 58-67.
– reference: Burgman M.A. & Fox J.C. (2003) Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Animal Conservation, 6, 19-28.
– reference: Roque F.O., Guimarães E.A., Ribeiro M.C., Escarpinati S.C., Suriano M.T. & Siqueira T. (2014) The taxonomic distinctness of macroinvertebrate communities of Atlantic Forest streams cannot be predicted by landscape and climate variables, but traditional biodiversity indices can. Brazilian Journal of Biology, 74, 991-999.
– reference: Heino J., Melo A.S., Bini L.M., Altermatt F., Al-Shami S.A., Angeler D.G. et al. (2015) A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecology and Evolution, 5, 1235-1248.
– reference: Hubbell S.P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.
– reference: Hamada N., McCreadie J.W. & Adler P.H. (2002) Species richness and spatial distributions of black flies (Diptera: Simuliidae) among streams of Central Amazonia, Brazil. Freshwater Biology, 47, 31-40.
– reference: Pepinelli M., Hamada N. & Trivinho-Strixino S. (2005) Simulium (Thyrsopelma) duodenicornium n. sp., a new black fly species (Diptera: Simuliidae) from the Southeast region of Brazil. Zootaxa, 1040, 17-29.
– reference: Heino J. & Soininen J. (2010) Are common species sufficient in describing turnover in aquatic metacommunities along environmental and spatial gradients? Limnology and Oceanography, 55, 2397-2402.
– reference: Mykrä H., Heino J. & Muotka T. (2007) Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Global Ecology and Biogeography, 16, 149-159.
– reference: Adler P.H., Currie D.C. & Wood D.M. (2004) The Black Flies (Simuliidae) of North America. Cornell University Press, Ithaca.
– reference: Hamada N. & Adler P.H. (1999) Cytotaxonomy of four species in the Simulium perflavum species group (Diptera: Simuliidae) from Brazilian Amazonia. Systematic Entomology, 24, 273-288.
– reference: Roque F.O., Siqueira T., Bini L.M., Ribeiro M.C., Tambosi L.R., Ciocheti G. et al. (2010) Untangling associations between chironomid taxa in Neotropical streams using local and landscape filters. Freshwater Biology, 55, 847-865.
– year: 2011
– year: 1985
– volume: 47
  start-page: 31
  year: 2002
  end-page: 40
  article-title: Species richness and spatial distributions of black flies (Diptera: Simuliidae) among streams of Central Amazonia, Brazil
  publication-title: Freshwater Biology
– volume: 20
  start-page: 289
  year: 2004
  end-page: 290
  article-title: APE: analyses of phylogenetics and evolution in R language
  publication-title: Bioinformatics
– volume: 90
  start-page: 2253
  year: 2009
  end-page: 2262
  article-title: Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework
  publication-title: Ecology
– volume: 35
  start-page: 183
  year: 2012
  end-page: 192
  article-title: Common and rare species respond to similar niche processes in macroinvertebrate metacommunities
  publication-title: Ecography
– volume: 87
  start-page: 2603
  year: 2006
  end-page: 2613
  article-title: Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses
  publication-title: Ecology
– year: 2001
– volume: 38
  start-page: 332
  year: 2009
  end-page: 339
  article-title: Species richness and distribution of blackflies (Diptera: Simuliidae) in the Chapada Diamantina Region, Bahia, Brazil
  publication-title: Neotropical Entomology
– volume: 55
  start-page: 847
  year: 2010
  end-page: 865
  article-title: Untangling associations between chironomid taxa in Neotropical streams using local and landscape filters
  publication-title: Freshwater Biology
– volume: 35
  start-page: 163
  year: 2009
  end-page: 173
  article-title: Spatial patterns of species richness in New World coral snakes and the metabolic theory of ecology
  publication-title: Acta Oecologica
– year: 1994
– year: 2014
– volume: 23
  start-page: 635
  year: 2008
  end-page: 639
  article-title: Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions?
  publication-title: Ecological Research
– year: 1998
– volume: 55
  start-page: 2397
  year: 2010
  end-page: 2402
  article-title: Are common species sufficient in describing turnover in aquatic metacommunities along environmental and spatial gradients?
  publication-title: Limnology and Oceanography
– volume: 5
  start-page: 1235
  year: 2015
  end-page: 1248
  article-title: A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels
  publication-title: Ecology and Evolution
– volume: 20
  start-page: 61
  year: 2014
  end-page: 68
  article-title: Species sorting determines variation in the community composition of common and rare macrophytes at various spatial extents
  publication-title: Ecological Complexity
– volume: 30
  start-page: 217
  year: 2007
  end-page: 230
  article-title: Ecological filters and variability in stream macroinvertebrate communities: do taxonomic and functional structure follow the same path?
  publication-title: Ecography
– volume: 1040
  start-page: 17
  year: 2005
  end-page: 29
  article-title: ( ) n. sp., a new black fly species (Diptera: Simuliidae) from the Southeast region of Brazil
  publication-title: Zootaxa
– year: 2004
– volume: 8
  start-page: 1175
  year: 2005
  end-page: 1182
  article-title: Integrating environmental and spatial processes in ecological comunity dynamics
  publication-title: Ecology Letters
– volume: 327
  start-page: 154
  year: 2010
  end-page: 155
  article-title: Valuing common species
  publication-title: Science
– volume: 123
  start-page: 1420
  year: 2014
  end-page: 1430
  article-title: Assessing the relative importance of neutral stochasticity in ecological communities
  publication-title: Oikos
– volume: 30
  start-page: 201
  year: 2005
  end-page: 209
  article-title: Patterns of species richness for blackflies (Diptera: Simuliidae) in the Neartic an Neotropical regions
  publication-title: Ecological Entomology
– volume: 138
  start-page: 109
  year: 2007
  end-page: 119
  article-title: Common species determine richness patterns in biodiversity indicator taxa
  publication-title: Biological Conservation
– volume: 37
  start-page: 993
  year: 2014
  end-page: 1001
  article-title: Using rarity to infer how dendritic network structure shapes biodiversity in riverine communities
  publication-title: Ecography
– volume: 16
  start-page: 29
  year: 2001
  end-page: 49
  article-title: Black flies (Diptera: Simuliidae) of the Gran Sabana (Venezuela) and Pacaraima Region (Brazil): distributional data and identification keys for larvae and pupae
  publication-title: Entomotropica
– volume: 40
  start-page: 1
  year: 2011
  end-page: 29
  article-title: The split‐apply‐combine strategy for data analysis
  publication-title: Journal of Statistical Software
– volume: 153
  start-page: 51
  year: 2002
  end-page: 68
  article-title: All‐scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices
  publication-title: Ecological Modelling
– year: 2015
– volume: 74
  start-page: 1659
  year: 1993
  end-page: 1673
  article-title: Spatial autocorrelation: trouble or new paradigm?
  publication-title: Ecology
– volume: 74
  start-page: 991
  year: 2014
  end-page: 999
  article-title: The taxonomic distinctness of macroinvertebrate communities of Atlantic Forest streams cannot be predicted by landscape and climate variables, but traditional biodiversity indices can
  publication-title: Brazilian Journal of Biology
– volume: 7
  start-page: 81
  year: 2004
  end-page: 87
  article-title: Contribution of rarity and commonness to patterns of species richness
  publication-title: Ecology Letters
– volume: 21
  start-page: 397
  year: 2002
  end-page: 413
  article-title: Correspondence between regional delineations and spatial patterns in macroinvertebrate assemblages of boreal headwater streams
  publication-title: Journal of the North American Benthological Society
– volume: 9
  start-page: 1136
  year: 2006
  end-page: 1145
  article-title: Tradeoffs of different types of species occurrence data for use in systematic conservation planning
  publication-title: Ecology Letters
– start-page: 191
  year: 2004
  end-page: 209
– year: 2007
– volume: 16
  start-page: 149
  year: 2007
  end-page: 159
  article-title: Scale‐related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation
  publication-title: Global Ecology and Biogeography
– volume: 43
  start-page: 16
  year: 2012
  end-page: 21
  article-title: Extreme deconstruction supports niche conservatism driving New World Bird diversity
  publication-title: Acta Oecologica
– volume: 24
  start-page: 1476
  year: 2015
  end-page: 1486
  article-title: Between‐taxon matching of common and rare species richness patterns
  publication-title: Global Ecology and Biogeography
– volume: 140
  start-page: 26
  year: 2014
  end-page: 33
  article-title: Black‐fly assemblage distribution patterns in streams in disturbed areas in southern Brazil
  publication-title: Acta Tropica
– volume: 27
  start-page: 261
  year: 2000
  end-page: 273
  article-title: Neotropical seasonally dry forests and Pleistocene vegetation changes
  publication-title: Journal of Biogeography
– volume: 6
  start-page: 19
  year: 2003
  end-page: 28
  article-title: Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning
  publication-title: Animal Conservation
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 101
  start-page: 58
  year: 2013
  end-page: 67
  article-title: Identification of 100 fundamental ecological questions
  publication-title: Journal of Ecology
– volume: 73
  start-page: 1045
  year: 1992
  end-page: 1055
  article-title: Partialling out the spatial component of ecological variation
  publication-title: Ecology
– volume: 3
  start-page: 172
  year: 2010
  end-page: 179
  article-title: Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography
  publication-title: Insect Conservation and Diversity
– volume: 35
  start-page: 120
  year: 1998
  end-page: 131
  article-title: Comparison of black fly species (Diptera: Simuliidae) on an Amerindian reservation with a high prevalence of Fogo Selvagem to neighboring disease‐free sites in the state of Mato Grosso do Sul, Brazil
  publication-title: Journal of Medical Entomology
– volume: 196
  start-page: 483
  year: 2006
  end-page: 493
  article-title: Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM)
  publication-title: Ecological Modelling
– volume: 36
  start-page: 937
  year: 2013
  end-page: 946
  article-title: Contribution of rare and common species to richness patterns at local scales
  publication-title: Ecography
– volume: 19
  start-page: 174
  year: 2010
  end-page: 184
  article-title: Estimating and controlling for spatial autocorrelation in the study of ecological communities
  publication-title: Global Ecology and Biogeography
– volume: 52
  start-page: 1302
  year: 2007
  end-page: 1321
  article-title: Predicting local biological characteristics in streams: a comparison of landscape classifications
  publication-title: Freshwater Biology
– start-page: 683
  year: 2014
  end-page: 710
– volume: 34
  start-page: 529
  year: 2011
  end-page: 539
  article-title: Are richness patterns of common and rare species equally well explained by environmental variables?
  publication-title: Ecography
– volume: 1
  start-page: 127
  year: 2008
  end-page: 134
  article-title: Spatial distribution of rare species in lotic habitats
  publication-title: Insect Conservation and Diversity
– volume: 24
  start-page: 273
  year: 1999
  end-page: 288
  article-title: Cytotaxonomy of four species in the species group (Diptera: Simuliidae) from Brazilian Amazonia
  publication-title: Systematic Entomology
– volume: 8
  start-page: 14
  year: 2012
  end-page: 25
  article-title: The roles of abiotic factors, dispersal, and species interactions in structuring stream assemblages of black flies (Diptera: Simuliidae)
  publication-title: Aquatic Biosystems
– ident: e_1_2_6_24_1
  doi: 10.1002/ece3.1439
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1461-0248.2006.00970.x
– start-page: 683
  volume-title: Insetos Aquáticos na Amazônia Brasileira: Taxonomia, Biologia e Ecologia
  year: 2014
  ident: e_1_2_6_22_1
– ident: e_1_2_6_29_1
  doi: 10.1002/joc.1276
– ident: e_1_2_6_27_1
  doi: 10.4319/lo.2010.55.6.2397
– ident: e_1_2_6_47_1
  doi: 10.1046/j.1365-2699.2000.00397.x
– ident: e_1_2_6_8_1
  doi: 10.1017/S1367943003003044
– ident: e_1_2_6_5_1
  doi: 10.1007/978-1-4419-7976-6
– volume-title: The Unified Neutral Theory of Biodiversity and Biogeography
  year: 2001
  ident: e_1_2_6_30_1
– ident: e_1_2_6_15_1
  doi: 10.1093/jmedent/35.2.120
– ident: e_1_2_6_53_1
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1461-0248.2005.00820.x
– ident: e_1_2_6_28_1
– ident: e_1_2_6_35_1
  doi: 10.1046/j.1461-0248.2004.00548.x
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1600-0587.2011.06875.x
– ident: e_1_2_6_55_1
  doi: 10.1590/1519-6984.04413
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1752-4598.2010.00091.x
– volume: 16
  start-page: 29
  year: 2001
  ident: e_1_2_6_20_1
  article-title: Black flies (Diptera: Simuliidae) of the Gran Sabana (Venezuela) and Pacaraima Region (Brazil): distributional data and identification keys for larvae and pupae
  publication-title: Entomotropica
– ident: e_1_2_6_45_1
  doi: 10.1093/bioinformatics/btg412
– ident: e_1_2_6_42_1
  doi: 10.1007/s11284-007-0421-9
– ident: e_1_2_6_52_1
  doi: 10.1111/geb.12372
– ident: e_1_2_6_4_1
  doi: 10.1016/j.ecocom.2014.08.003
– ident: e_1_2_6_6_1
  doi: 10.1016/S0304-3800(01)00501-4
– volume-title: Aquatic Biodiversity in Latin America (ABLA)
  year: 2007
  ident: e_1_2_6_9_1
– ident: e_1_2_6_56_1
  doi: 10.1111/j.1365-2427.2009.02314.x
– ident: e_1_2_6_60_1
  doi: 10.1111/ecog.00496
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1600-0587.2010.06669.x
– ident: e_1_2_6_40_1
  doi: 10.1111/j.1466-8238.2006.00272.x
– ident: e_1_2_6_13_1
  doi: 10.1016/j.actao.2012.05.005
– ident: e_1_2_6_59_1
  doi: 10.1111/1365-2745.12025
– ident: e_1_2_6_39_1
  doi: 10.1111/j.0307-6946.2005.00681.x
– ident: e_1_2_6_63_1
  doi: 10.18637/jss.v040.i01
– ident: e_1_2_6_7_1
  doi: 10.2307/1940179
– ident: e_1_2_6_44_1
  doi: 10.1890/08-0851.1
– start-page: 191
  volume-title: Frontiers of Biogeography: New Directions in the Geography of Nature
  year: 2004
  ident: e_1_2_6_36_1
– ident: e_1_2_6_31_1
  doi: 10.1590/S1519-566X2009000300006
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1365-2427.2007.01767.x
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1600-0587.2013.00060.x
– ident: e_1_2_6_21_1
  doi: 10.1046/j.1365-2427.2002.00778.x
– ident: e_1_2_6_58_1
  doi: 10.4324/9780203211595
– ident: e_1_2_6_11_1
  doi: 10.1016/j.actatropica.2014.07.018
– ident: e_1_2_6_18_1
  doi: 10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2
– ident: e_1_2_6_19_1
  doi: 10.1046/j.1365-3113.1999.00080.x
– ident: e_1_2_6_38_1
  doi: 10.1186/2046-9063-8-14
– ident: e_1_2_6_32_1
  doi: 10.2307/1939924
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1752-4598.2008.00017.x
– ident: e_1_2_6_41_1
– ident: e_1_2_6_17_1
  doi: 10.1126/science.1182818
– volume-title: The Black Flies (Simuliidae) of North America
  year: 2004
  ident: e_1_2_6_3_1
– ident: e_1_2_6_26_1
  doi: 10.1111/j.0906-7590.2007.04894.x
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1466-8238.2009.00506.x
– ident: e_1_2_6_2_1
– ident: e_1_2_6_16_1
  doi: 10.1111/j.0014-3820.2004.tb01713.x
– ident: e_1_2_6_61_1
  doi: 10.1016/j.actao.2008.09.006
– volume: 1040
  start-page: 17
  year: 2005
  ident: e_1_2_6_48_1
  article-title: Simulium (Thyrsopelma) duodenicornium n. sp., a new black fly species (Diptera: Simuliidae) from the Southeast region of Brazil
  publication-title: Zootaxa
  doi: 10.11646/zootaxa.1040.1.2
– ident: e_1_2_6_62_1
  doi: 10.1111/oik.01493
– volume-title: Numerical Ecology
  year: 1998
  ident: e_1_2_6_33_1
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2014
  ident: e_1_2_6_51_1
– ident: e_1_2_6_14_1
  doi: 10.1016/j.ecolmodel.2006.02.015
– ident: e_1_2_6_43_1
– ident: e_1_2_6_46_1
  doi: 10.1016/j.biocon.2007.04.005
– ident: e_1_2_6_25_1
  doi: 10.2307/1468478
SSID ssj0008572
Score 2.245156
Snippet Summary Deconstructing biological communities by grouping species according to their commonness or rarity might improve our understanding about the processes...
Deconstructing biological communities by grouping species according to their commonness or rarity might improve our understanding about the processes driving...
Summary Deconstructing biological communities by grouping species according to their commonness or rarity might improve our understanding about the processes...
1. Deconstructing biological communities by grouping species according to their commonness or rarity might improve our understanding about the processes...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 923
SubjectTerms bioclimatic indexes
Bioclimatology
Brazil
Diptera
Freshwater
Neotropical streams
niche processes
Rare species
rarity
Regression analysis
Simuliidae
species diversity
Species richness
stochasticity
Title Deconstructing richness patterns by commonness and rarity reveals bioclimatic and spatial effects in black fly metacommunities
URI https://api.istex.fr/ark:/67375/WNG-FPFZD17X-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffwb.12757
https://www.proquest.com/docview/1787026667
https://www.proquest.com/docview/1790966193
https://www.proquest.com/docview/2000449797
Volume 61
WOSCitedRecordID wos000376600100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2427
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008572
  issn: 0046-5070
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bixMxFA5rqyCCd7G6ShSRfZklc80En9Tu6MNSF3Fp8WVIziRa7E6Xbb30xd_uOZl02AUXBN_CzJlMLueanHxh7IUqXGEKKCNJuLOZTkWkTGIjdJ5zUKlQ4Dxk_qGcTMrZTB3tsFfbszAdPkS_4EaS4fU1Cbg2q3NC7n6afUInl1fYMEG-zQdsOP5YHR_2irjMZQcWnhURuj0iAAtRIk__8QVzNKSR_XXB1zzvsXqTU936r8beZjeDp8lfd6xxh-3Y9i671t09ucHSAYTSjQ9gdRugq--x32OKkQOubPuFo6L8SvqQn3ooznbFzYbj_08oRQYf67bhFHGvN5zgoJCduZkvYTH3YLD-9YrStrEtIXmEz1tuaOGQu8WGn9i1hu6YCoG73mfH1cGnt--jcEtDBBmZOJfGaORVE0NsMuwjgMtioyw0Sd40SlnZpGCkKwUIZJckcVoYm2lkBVOIMksfsEG7bO1DxoWLE0AHE4M2mUEOWiS2wSAxz7Rw0pkR29tOVg0Bwpxu0ljU21AGx7n24zxiz3vS0w63429EL_2M9xT67Bslusm8nk7e1dVR9Xkcy1k9HbHdLUvUQcZXdUy6DrteYD3P-tconbTlolu7_E40CmNEDFLTy2kSv6uupMJ69jwTXd7iupq-8YVH_076mF1HL6_o8tt22QD5xz5hV-HHer46exqE5g-a6Bwr
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbGChpC4o4oDDAIob0EOYkTxxIvQBeGKGVCm1rxYtmOPSq6dFrLpS_8ds5x0miTmITEm5WcRLbznZt98pmQ5zL3ucltEQnkneU6ZZE0iYsgeM6sTJm0PlDmD8VoVEwmcn-DvFr_C9PwQ3QLbqgZwV6jguOC9Bkt9z_NS6QnF5dIjwOMAN-9wefycNhZ4iITDVs4zyOIe1jLLISVPN3D5_xRD6f217lg82zIGnxOeeP_enuTXG9jTfq6AcctsuHq2-RKc_rkClq7tm1d-2Sdrlvy6jvk9wCz5JZZtj6iYCq_okWkJ4GMs15Qs6LQgWMskoHLuq4o5tzLFUVCKAA0NdO5nU0DHWy4vcDCbehLWz5CpzU1uHRI_WxFj91S2-ZHFaR3vUsOy92Dt3tRe05DZDk6OZ_G4OZlFdvYcBijtZ7HRjpbJVlVSelElVojfMEsA8AkidfMOK4BDCZnBU_vkc16Xrv7hDIfJxZCTEjbBLeZ1SxxFaSJGdfMC2_6ZGf9tZRtSczxLI2ZWiczMM8qzHOfPOtETxrmjr8JvQifvJPQp9-w1E1kajx6p8r98ssgFhM17pPtNSZUq-ULFaO1g6Hn8J6n3W3QT9x00bWbf0cZCVkipKnpxTJJ2FeXQsJ7dgKKLu6xKsdvQuPBv4s-IVt7Bx-Havh-9OEhuQoxX95Uu22TTcCSe0Qu2x_L6eL0catBfwCMICAb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dixMxEA9nqyKC32L11Cgi97KS3c1uGvBF7a2KpRbxaLmXsMkmd8XetlzrR1_8253JpssdeCD4FjazIR8zk5lk8htCXsjc5To3_Ugg7iwvUxZJndgIjOfMyJRJ4zxk_lCMRv3pVI53yOvtW5gGH6I9cEPJ8PoaBdwuK3dGyt1P_QrhycUl0uWYRKZDuoMvxcGw1cT9TDRo4TyPwO5hAVkII3nan8_tR12c2l_njM2zJqvfc4qb_9fbW-RGsDXpm4Y5bpMdW98hV5rskxso7ZtQuv7Z2LIO4NV3ye8BeskBWbY-oqAqj1Ej0qUH46xXVG8odOAEg2Tgc1lXFH3u9YYiIBQwNNWzhZnPPBysr15h4Db0JYSP0FlNNR4dUjff0BO7Lk3zUAXhXe-Rg2L_67sPUcjTEBmOm5xLY9jmZRWbWHMYozGOx1paUyVZVUlpRZUaLVyfGQYMkySuZNryEphB56zP0_ukUy9q-4BQ5uLEgIkJbpvgJjMlS2wFbmLGS-aE0z2yt10tZQKIOebSmKutMwPzrPw898jzlnTZIHf8jeilX_KWojz9hqFuIlOT0XtVjIvDQSymatIju1ueUEHKVypGbQdDz6GdZ201yCdeupS1XXxHGgleIrip6cU0ib9Xl0JCO3ueiy7usSomb33h4b-TPiVXx4NCDT-OPj0i18Dky5tgt13SAVayj8ll82M9W50-CQL0B-jgH5Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deconstructing+richness+patterns+by+commonness+and+rarity+reveals+bioclimatic+and+spatial+effects+in+black+fly+metacommunities&rft.jtitle=Freshwater+biology&rft.au=Roque%2C+Fabio+de+O&rft.au=Zampiva%2C+Nayara+K&rft.au=Valente-Neto%2C+Francisco&rft.au=Menezes%2C+Jorge+F+S&rft.date=2016-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0046-5070&rft.eissn=1365-2427&rft.volume=61&rft.issue=6&rft.spage=923&rft_id=info:doi/10.1111%2Ffwb.12757&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4046237691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0046-5070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0046-5070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0046-5070&client=summon