Design and field programmable gate array implementation of cascade neural network based flux estimator for speed estimation in induction motor drives

This study presents design and hardware implementation of cascade neural network (NN) based flux estimator using field programmable gate array (FPGA) for speed estimation in induction motor drives. The main focus of this study is the FPGA implementation of cascade NN based flux estimator. The major...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET electric power applications Jg. 11; H. 1; S. 121 - 131
Hauptverfasser: Venkadesan, Arunachalam, Himavathi, Srinivasan, Sedhuraman, Karthikeyan, Muthuramalingam, A
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 01.01.2017
Schlagworte:
ISSN:1751-8660, 1751-8679, 1751-8679
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents design and hardware implementation of cascade neural network (NN) based flux estimator using field programmable gate array (FPGA) for speed estimation in induction motor drives. The main focus of this study is the FPGA implementation of cascade NN based flux estimator. The major issues in FPGA implementation are optimisation of cost (resource) and execution time. A simple non-linear activation function called as Elliott function is used to reduce the execution time. To reduce the cost, and effectively utilise resource, the concept of layer multiplexing is adopted. The lowest bit precision needed for good performance of the estimator is identified and implemented. The proposed NN based flux estimator using simple excitation function and minimum bit precision is implemented using layer multiplexing technique. The designed estimator is tested on Spartan FPGA kit (3sd1800afg676-4) and the results obtained are presented.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-8660
1751-8679
1751-8679
DOI:10.1049/iet-epa.2016.0550