Robust Detection and Segmentation for Diagnosis of Vertebral Diseases Using Routine MR Images

The diagnosis of certain spine pathologies, such as scoliosis, spondylolisthesis and vertebral fractures, is part of the daily clinical routine. Very frequently, magnetic resonance image data are used to diagnose these kinds of pathologies in order to avoid exposing patients to harmful radiation, li...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 33; no. 6; pp. 190 - 204
Main Authors: Zukić, Dženan, Vlasák, Aleš, Egger, Jan, Hořínek, Daniel, Nimsky, Christopher, Kolb, Andreas
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.09.2014
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The diagnosis of certain spine pathologies, such as scoliosis, spondylolisthesis and vertebral fractures, is part of the daily clinical routine. Very frequently, magnetic resonance image data are used to diagnose these kinds of pathologies in order to avoid exposing patients to harmful radiation, like X‐ray. We present a method which detects and segments all acquired vertebral bodies, with minimal user intervention. This allows an automatic diagnosis to detect scoliosis, spondylolisthesis and crushed vertebrae. Our approach consists of three major steps. First, vertebral centres are detected using a Viola–Jones like method, and then the vertebrae are segmented in a parallel manner, and finally, geometric diagnostic features are deduced in order to diagnose the three diseases. Our method was evaluated on 26 lumbar datasets containing 234 reference vertebrae. Vertebra detection has 7.1% false negatives and 1.3% false positives. The average Dice coefficient to manual reference is 79.3% and mean distance error is 1.76 mm. No severe case of the three illnesses was missed, and false alarms occurred rarely—0% for scoliosis, 3.9% for spondylolisthesis and 2.6% for vertebral fractures. The main advantages of our method are high speed, robust handling of a large variety of routine clinical images, and simple and minimal user interaction. The diagnosis of certain spine pathologies, such as scoliosis, spondylolisthesis and vertebral fractures, are part of the daily clinical routine. Very frequently, MRI data are used to diagnose these kinds of pathologies in order to avoid exposing patients to harmful radiation, like X‐ray. We present a method which detects and segments all acquired vertebral bodies, with minimal user intervention. This allows an automatic diagnosis to detect scoliosis, spondylolisthesis and crushed vertebrae.
AbstractList The diagnosis of certain spine pathologies, such as scoliosis, spondylolisthesis and vertebral fractures, is part of the daily clinical routine. Very frequently, magnetic resonance image data are used to diagnose these kinds of pathologies in order to avoid exposing patients to harmful radiation, like X‐ray. We present a method which detects and segments all acquired vertebral bodies, with minimal user intervention. This allows an automatic diagnosis to detect scoliosis, spondylolisthesis and crushed vertebrae. Our approach consists of three major steps. First, vertebral centres are detected using a Viola–Jones like method, and then the vertebrae are segmented in a parallel manner, and finally, geometric diagnostic features are deduced in order to diagnose the three diseases. Our method was evaluated on 26 lumbar datasets containing 234 reference vertebrae. Vertebra detection has 7.1% false negatives and 1.3% false positives. The average Dice coefficient to manual reference is 79.3% and mean distance error is 1.76 mm. No severe case of the three illnesses was missed, and false alarms occurred rarely—0% for scoliosis, 3.9% for spondylolisthesis and 2.6% for vertebral fractures. The main advantages of our method are high speed, robust handling of a large variety of routine clinical images, and simple and minimal user interaction.
The diagnosis of certain spine pathologies, such as scoliosis, spondylolisthesis and vertebral fractures, is part of the daily clinical routine. Very frequently, magnetic resonance image data are used to diagnose these kinds of pathologies in order to avoid exposing patients to harmful radiation, like X-ray. We present a method which detects and segments all acquired vertebral bodies, with minimal user intervention. This allows an automatic diagnosis to detect scoliosis, spondylolisthesis and crushed vertebrae. Our approach consists of three major steps. First, vertebral centres are detected using a Viola-Jones like method, and then the vertebrae are segmented in a parallel manner, and finally, geometric diagnostic features are deduced in order to diagnose the three diseases. Our method was evaluated on 26 lumbar datasets containing 234 reference vertebrae. Vertebra detection has 7.1% false negatives and 1.3% false positives. The average Dice coefficient to manual reference is 79.3% and mean distance error is 1.76 mm. No severe case of the three illnesses was missed, and false alarms occurred rarely--0% for scoliosis, 3.9% for spondylolisthesis and 2.6% for vertebral fractures. The main advantages of our method are high speed, robust handling of a large variety of routine clinical images, and simple and minimal user interaction. [PUBLICATION ABSTRACT]
The diagnosis of certain spine pathologies, such as scoliosis, spondylolisthesis and vertebral fractures, is part of the daily clinical routine. Very frequently, magnetic resonance image data are used to diagnose these kinds of pathologies in order to avoid exposing patients to harmful radiation, like X‐ray. We present a method which detects and segments all acquired vertebral bodies, with minimal user intervention. This allows an automatic diagnosis to detect scoliosis, spondylolisthesis and crushed vertebrae. Our approach consists of three major steps. First, vertebral centres are detected using a Viola–Jones like method, and then the vertebrae are segmented in a parallel manner, and finally, geometric diagnostic features are deduced in order to diagnose the three diseases. Our method was evaluated on 26 lumbar datasets containing 234 reference vertebrae. Vertebra detection has 7.1% false negatives and 1.3% false positives. The average Dice coefficient to manual reference is 79.3% and mean distance error is 1.76 mm. No severe case of the three illnesses was missed, and false alarms occurred rarely—0% for scoliosis, 3.9% for spondylolisthesis and 2.6% for vertebral fractures. The main advantages of our method are high speed, robust handling of a large variety of routine clinical images, and simple and minimal user interaction. The diagnosis of certain spine pathologies, such as scoliosis, spondylolisthesis and vertebral fractures, are part of the daily clinical routine. Very frequently, MRI data are used to diagnose these kinds of pathologies in order to avoid exposing patients to harmful radiation, like X‐ray. We present a method which detects and segments all acquired vertebral bodies, with minimal user intervention. This allows an automatic diagnosis to detect scoliosis, spondylolisthesis and crushed vertebrae.
Author Vlasák, Aleš
Zukić, Dženan
Kolb, Andreas
Nimsky, Christopher
Hořínek, Daniel
Egger, Jan
Author_xml – sequence: 1
  givenname: Dženan
  surname: Zukić
  fullname: Zukić, Dženan
  email: dzenanz@gmail.com
  organization: Computer Graphics and Multimedia Systems Group, University of Siegen, Germany
– sequence: 2
  givenname: Aleš
  surname: Vlasák
  fullname: Vlasák, Aleš
  email: ales.vlasak@fnmotol.cz
  organization: Department of Neurosurgery, University Hospital Motol, Prague, Czech Republic
– sequence: 3
  givenname: Jan
  surname: Egger
  fullname: Egger, Jan
  email: egger@med.uni-marburg.de, nimsky@med.uni-marburg.de
  organization: Department of Neurosurgery, University Hospital Gießen and Marburg, Marburg, Germany
– sequence: 4
  givenname: Daniel
  surname: Hořínek
  fullname: Hořínek, Daniel
  email: horinek@med.uni-marburg.de
  organization: International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
– sequence: 5
  givenname: Christopher
  surname: Nimsky
  fullname: Nimsky, Christopher
  organization: Department of Neurosurgery, University Hospital Gießen and Marburg, Marburg, Germany
– sequence: 6
  givenname: Andreas
  surname: Kolb
  fullname: Kolb, Andreas
  email: andreas.kolb@uni-siegen.de
  organization: Computer Graphics and Multimedia Systems Group, University of Siegen, Germany
BookMark eNp1kE1PGzEQhq0qSE2gh_4DSz31sOCPtZ09otAEJD6kQMupsrze8cohsantiPLvu5C0B1R8GWv0PDOad4JGIQZA6DMlx3R4J7Z3x5Txmn9AY1pLVU2laEZoTOjwV0SIj2iS84oQUispxujnMrbbXPAZFLDFx4BN6PAt9BsIxbw2XEz4zJs-xOwzjg7_gFSgTWY9tDOYDBl_zz70eBm3xQfAV0t8sTE95CN04Mw6w6d9PUR38293s_Pq8mZxMTu9rGxNKK9cx5SEmracOmZYK5kkU-E6SzrDGbOt6khbC6e6Zmqaga2dMB0zcipsYwk_RF92Yx9T_LWFXPQqblMYNmoqpBCMNbIeqJMdZVPMOYHT1u9OLMn4taZEv0Sohwj1a4SD8fWN8Zj8xqTn_7L76U9-Dc_vg3q2mP81qp3hc4Hf_wyTHrRUXAl9f73Qaim54vfn-or_Ac_KkPk
CitedBy_id crossref_primary_10_1016_j_chemolab_2025_105425
crossref_primary_10_1049_iet_smt_2015_0172
crossref_primary_10_1038_s41597_024_03090_w
crossref_primary_10_1007_s11548_018_1818_3
crossref_primary_10_1371_journal_pone_0248303
crossref_primary_10_1016_j_engappai_2022_105451
crossref_primary_10_1016_j_cmpb_2017_12_013
crossref_primary_10_1109_JTEHM_2017_2717982
crossref_primary_10_1016_j_compbiomed_2023_106839
crossref_primary_10_1371_journal_pone_0143327
crossref_primary_10_1007_s11548_016_1350_2
crossref_primary_10_1016_j_cmpb_2019_05_003
crossref_primary_10_1016_j_procs_2016_07_005
crossref_primary_10_1038_s41598_024_64580_w
crossref_primary_10_1109_ACCESS_2021_3131216
crossref_primary_10_3390_biomechanics3020015
crossref_primary_10_1038_srep05164
crossref_primary_10_1016_j_eswa_2025_126853
crossref_primary_10_1227_NEU_0000000000001853
crossref_primary_10_1177_2050312117740984
crossref_primary_10_1016_j_media_2019_02_005
crossref_primary_10_1109_ACCESS_2021_3084949
crossref_primary_10_1007_s10586_025_05122_5
crossref_primary_10_1016_j_cmpb_2023_107337
crossref_primary_10_1016_j_mri_2024_03_021
crossref_primary_10_1016_j_cmpb_2019_105102
crossref_primary_10_1155_2018_6213264
crossref_primary_10_1038_sdata_2019_3
crossref_primary_10_3389_fcomp_2022_858874
crossref_primary_10_1002_jmri_29101
crossref_primary_10_1109_JBHI_2018_2872810
crossref_primary_10_1007_s10278_019_00272_6
crossref_primary_10_1007_s11548_021_02502_1
crossref_primary_10_1155_2023_3018320
crossref_primary_10_1155_2023_8686471
crossref_primary_10_1371_journal_pone_0093389
crossref_primary_10_20965_jaciii_2019_p0502
Cites_doi 10.1016/j.cviu.2012.11.016
10.1088/0031-9155/57/24/8357
10.1016/j.media.2009.02.004
10.1007/978-94-015-8330-5_4
10.1088/0031-9155/56/23/011
10.1007/s00586-005-1053-9
10.1088/0031-9155/55/1/015
10.1007/BF01908877
10.1109/TMI.2003.819929
10.1088/0031-9155/50/19/007
10.1148/radiol.2243011266
10.1088/0031-9155/47/19/305
10.1097/01241398-198707060-00001
10.1111/1467-8659.00236
10.1109/42.921475
10.1097/BRS.0b013e3181cdde47
10.2214/ajr.183.4.1830949
10.1016/j.jsb.2003.09.010
10.1016/j.media.2012.09.007
10.1001/archinternmed.2008.543
10.1109/34.667881
10.2106/00004623-198365060-00007
10.1016/1049-9660(91)90028-N
10.1007/978-94-011-2546-8_20
10.1109/TMI.2009.2023362
10.1109/TVCG.2006.39
10.1007/BF01622258
10.1109/TBME.2009.2019765
10.1371/journal.pone.0031064
10.1016/j.imavis.2007.07.010
ContentType Journal Article
Copyright 2014 The Authors Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright © 2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Authors Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd.
– notice: Copyright © 2014 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.12343
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 204
ExternalDocumentID 3443494621
10_1111_cgf_12343
CGF12343
ark_67375_WNG_7R6373WH_M
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4013-fd276e41b31f2a2b626085fdc0da322cb7d0b45f7d98a92764f5ad2a685c9c03
IEDL.DBID DRFUL
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000342802200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Wed Aug 13 10:53:23 EDT 2025
Sat Nov 29 03:41:10 EST 2025
Tue Nov 18 21:18:12 EST 2025
Sun Sep 21 06:19:28 EDT 2025
Sun Sep 21 06:19:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4013-fd276e41b31f2a2b626085fdc0da322cb7d0b45f7d98a92764f5ad2a685c9c03
Notes ArticleID:CGF12343
ark:/67375/WNG-7R6373WH-M
istex:4943CB4FF9A82A48285A459028C67661F80D749E
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1565522964
PQPubID 30877
PageCount 15
ParticipantIDs proquest_journals_1565522964
crossref_citationtrail_10_1111_cgf_12343
crossref_primary_10_1111_cgf_12343
wiley_primary_10_1111_cgf_12343_CGF12343
istex_primary_ark_67375_WNG_7R6373WH_M
PublicationCentury 2000
PublicationDate September 2014
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: September 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References [HCLN09] Huang S.-H., Chu Y.-H., Lai S.-H., Novak C.: Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI. IEEE Transactions on Medical Imaging 28, 10 (2009), 1595-1605.
[ML13] Ma J., Lu L.: Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. Computer Vision and Image Understanding 117, 9 (2013), 1072-1083.
[KOE*09] Klinder T., Ostermann J., Ehm M., Franz A., Kneser R., Lorenz C.: Automated model-based vertebra detection, identification, and segmentation in {CT} images. Medical Image Analysis 13, 3 (2009), 471-482.
[Aeb05] Aebi M.: The adult scoliosis. European Spine Journal 14, 10 (2005), 925-948.
[CRS96] Cignoni P., Rocchini C., Scopigno R.: Metro: measuring error on simplified surfaces. Computer Graphics Forum 17, 2 (1998), 167-174.
[WLJG95] Wu C., Li J., Jergas M., Genant H.: Comparison of semiquantitative and quantitative techniques for the assessment of prevalent and incident vertebral fractures. Osteoporosis International 5, 5 (1995), 354-370.
[EBK*11] Egger J., Bauer M. H. A., Kuhnt D., Carl B., Kappus C., Freisleben B., Nimsky C.: Evaluation of a novel approach for automatic volume determination of glioblastomas based on several manual expert segmentations. CoRR abs/1103.1474 (2011).
[FHA*09] Freburger J., Holmes G., Agans R., Jackman A., Darter J., Wallace A., Castel L., Kalsbeek W., Carey T.: The rising prevalence of chronic low back pain. Archives of Internal Medicine 169, 3 (2009), 251-258.
[FL03] Fernández J.-J., Li S.: An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms. Journal of Structural Biology 144, 1-2 (2003), 152-161.
[NFE*12] Neubert A., Fripp J., Engstrom C., Schwarz R., Lauer L., Salvado O., Crozier S.: Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models. Physics in Medicine and Biology 9 (2012), 8357-8376.
[Cob48] Cobb J.: Outline for the study of scoliosis. Instructional Course Lectures 5 (1948), 261-275.
[EKD*12] Egger J., Kapur T., Dukatz T., Kolodziej M., Zukić Dž., Freisleben B., Nimsky C.: Square-cut: A segmentation algorithm on the basis of a rectangle shape. PLoS ONE 7, 2 (2012), e31064.
[ŠBSG06] Šereda P., Bartrolì A., Serlie I., Gerritsen F.: Visualization of boundaries in volumetric data sets using LH histograms. IEEE Transactions on Visualization and Computer Graphics 12, 2 (2006), 208-218.
[HPE*08] He L., Peng Z., Everding B., Wang X., Han C. Y., Weiss K. L., Wee W. G.: A comparative study of deformable contour methods on medical image segmentation. Image and Vision Computing 26, 2 (2008), 141-163.
[LRDG04] Lenchik L., Rogers L. F., Delmas P. D., Genant H. K.: Diagnosis of osteoporotic vertebral fractures: Importance of recognition and description by radiologists. American Journal of Roentgenology 183, 4 (2004), 949-958.
[TF88] Terzopoulos D., Fleischer K.: Deformable models. The Visual Computer 4, 6 (1988), 306-331.
[VLP05] Vrtovec T., Likar B., Pernuš F.: Automated curved planar reformation of 3D spine images. Physics in Medicine and Biology 50, 19 (2005), 4527.
[ŠLPV10] Štern D., Likar B., Pernuš F., Vrtovec T.: Automated detection of spinal centrelines, vertebral bodies and intervertebral discs in CT and MR images of lumbar spine. Physics in Medicine and Biology 55, 1 (2010), 247-264.
[KWZ*13] Kelm B. M., Wels M., Zhou S. K., Seifert S., Suehling M., Zheng Y., Comaniciu D.: Spine detection in CT and MR using iterated marginal space learning. Medical Image Analysis 17, 8 (2013), 1283-1292.
[WW83] Wiltse L. L., Winter R. B.: Terminology and measurement of spondylolisthesis. The Journal of Bone and Joint Surgery 65, 6 (July 1983), 768-772.
[HM02] Hoad C. L., Martel A. L.: Segmentation of MR images for computer-assisted surgery of the lumbar spine. Physics in Medicine and Biology 47, 19 (2002), 3503.
[Coh91] Cohen L. D.: On active contour models and balloons. CVGIP: Image Understanding 53, 2 (1991), 211-218.
[SMB11] Schulze F., Major D., Bühler K.: Fast and memory efficient feature detection using multiresolution probabilistic boosting trees. In Proceedings of the 19th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG) 19, 1 (2011), 33-40.
[DLSH02] Davatzikos C., Liu D., Shen D., Herskovits E. H.: Spatial normalization of spine MR images for statistical correlation of lesions with clinical symptoms. Radiology 224, 3 (2002), 919-926.
[CGNT09] Couprie C., Grady L. J., Najman L., Talbot H.: Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In Proceedings of ICCV (2009), pp. 731-738.
[RGMB10] Richards P. J., George J., Metelko M., Brown M.: Spine computed tomography doses and cancer induction. Spine 35, 4 (2010), 430-433.
[SHD01] Shen D., Herskovits E. H., Davatzikos C.: An adaptive-focus statistical shape model for segmentation and shape modeling of 3-D brain structures. IEEE Transactions on Medical Imaging 20, 4 (2001), 257-270.
[NFS*11] Neubert A., Fripp J., Shen K., Salvado O., Schwarz R., Lauer L., Engstrom C., Crozier S.: Automated 3D segmentation of vertebral bodies and intervertebral discs from MRI. In Proceedings of IEEE DICTA (2011), pp. 19-24.
[ŠLPV11] Štern D., Likar B., Pernuš F., Vrtovec T.: Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images. Physics in Medicine and Biology 56, 23 (2011), 7505-7522.
[KHDM98] Kittler J., Hatef M., Duin R., Matas J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 3 (1998), 226-239.
[CGBM04] Carballido-Gamio J., Belongie S., Majumdar S.: Normalized cuts in 3-D for spinal MRI segmentation. IEEE Transactions on Medical Imaging 23, 1 (2004), 36-44.
[Sar87] Saraste H.: Long-term clinical and radiological follow-up of spondylolysis and spondylolisthesis. Journal of Pediatric Orthopaedics 7, 6 (1987), 631-638.
[ZSS96] Zorin D., Schröder P., Sweldens W.: Interpolating subdivision for meshes with arbitrary topology. In Proceedings of ACM SIGGRAPH (1996), pp. 189-192.
[MCP*09] Michopoulou S., Costaridou L., Panagiotopoulos E., Speller R., Panayiotakis G., Todd-Pokropek A.: Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine. IEEE Transactions on Biomedical Engineering 56, 9 (2009), 2225-2231.
2010; 55
2010; 35
2012
2006; 12
2011
1991; 53
2004; 23
2004; 183
1987; 7
2009
1996
1994
2011; 56
1992
2011; 19
1998; 20
1995; 5
2001; 20
2009; 28
2009; 56
2002; 47
1988; 4
1998; 17
2009; 13
2013; 17
2001
2002; 224
2013; 117
2008; 26
1983; 65
2013
2005; 50
2012; 7
1948
2009; 169
2003; 144
2005; 14
e_1_2_10_23_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Viola P. (e_1_2_10_36_1) 2001
Ayed I. B. (e_1_2_10_3_1) 2012
Neubert A. (e_1_2_10_24_1) 2011
Egger J. (e_1_2_10_10_1) 2011
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_19_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Zorin D. (e_1_2_10_40_1) 1996
Zukić Dž. (e_1_2_10_41_1) 2012
Couprie C. (e_1_2_10_5_1) 2009
Schulze F. (e_1_2_10_33_1) 2011; 19
e_1_2_10_29_1
Rak M. (e_1_2_10_26_1) 2013
e_1_2_10_27_1
e_1_2_10_28_1
Cobb J. (e_1_2_10_6_1) 1948
e_1_2_10_25_1
References_xml – reference: [FL03] Fernández J.-J., Li S.: An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms. Journal of Structural Biology 144, 1-2 (2003), 152-161.
– reference: [ZSS96] Zorin D., Schröder P., Sweldens W.: Interpolating subdivision for meshes with arbitrary topology. In Proceedings of ACM SIGGRAPH (1996), pp. 189-192.
– reference: [FHA*09] Freburger J., Holmes G., Agans R., Jackman A., Darter J., Wallace A., Castel L., Kalsbeek W., Carey T.: The rising prevalence of chronic low back pain. Archives of Internal Medicine 169, 3 (2009), 251-258.
– reference: [CRS96] Cignoni P., Rocchini C., Scopigno R.: Metro: measuring error on simplified surfaces. Computer Graphics Forum 17, 2 (1998), 167-174.
– reference: [NFS*11] Neubert A., Fripp J., Shen K., Salvado O., Schwarz R., Lauer L., Engstrom C., Crozier S.: Automated 3D segmentation of vertebral bodies and intervertebral discs from MRI. In Proceedings of IEEE DICTA (2011), pp. 19-24.
– reference: [WLJG95] Wu C., Li J., Jergas M., Genant H.: Comparison of semiquantitative and quantitative techniques for the assessment of prevalent and incident vertebral fractures. Osteoporosis International 5, 5 (1995), 354-370.
– reference: [KWZ*13] Kelm B. M., Wels M., Zhou S. K., Seifert S., Suehling M., Zheng Y., Comaniciu D.: Spine detection in CT and MR using iterated marginal space learning. Medical Image Analysis 17, 8 (2013), 1283-1292.
– reference: [ŠBSG06] Šereda P., Bartrolì A., Serlie I., Gerritsen F.: Visualization of boundaries in volumetric data sets using LH histograms. IEEE Transactions on Visualization and Computer Graphics 12, 2 (2006), 208-218.
– reference: [RGMB10] Richards P. J., George J., Metelko M., Brown M.: Spine computed tomography doses and cancer induction. Spine 35, 4 (2010), 430-433.
– reference: [SMB11] Schulze F., Major D., Bühler K.: Fast and memory efficient feature detection using multiresolution probabilistic boosting trees. In Proceedings of the 19th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG) 19, 1 (2011), 33-40.
– reference: [TF88] Terzopoulos D., Fleischer K.: Deformable models. The Visual Computer 4, 6 (1988), 306-331.
– reference: [LRDG04] Lenchik L., Rogers L. F., Delmas P. D., Genant H. K.: Diagnosis of osteoporotic vertebral fractures: Importance of recognition and description by radiologists. American Journal of Roentgenology 183, 4 (2004), 949-958.
– reference: [Coh91] Cohen L. D.: On active contour models and balloons. CVGIP: Image Understanding 53, 2 (1991), 211-218.
– reference: [Cob48] Cobb J.: Outline for the study of scoliosis. Instructional Course Lectures 5 (1948), 261-275.
– reference: [Aeb05] Aebi M.: The adult scoliosis. European Spine Journal 14, 10 (2005), 925-948.
– reference: [HPE*08] He L., Peng Z., Everding B., Wang X., Han C. Y., Weiss K. L., Wee W. G.: A comparative study of deformable contour methods on medical image segmentation. Image and Vision Computing 26, 2 (2008), 141-163.
– reference: [EBK*11] Egger J., Bauer M. H. A., Kuhnt D., Carl B., Kappus C., Freisleben B., Nimsky C.: Evaluation of a novel approach for automatic volume determination of glioblastomas based on several manual expert segmentations. CoRR abs/1103.1474 (2011).
– reference: [KOE*09] Klinder T., Ostermann J., Ehm M., Franz A., Kneser R., Lorenz C.: Automated model-based vertebra detection, identification, and segmentation in {CT} images. Medical Image Analysis 13, 3 (2009), 471-482.
– reference: [ML13] Ma J., Lu L.: Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. Computer Vision and Image Understanding 117, 9 (2013), 1072-1083.
– reference: [WW83] Wiltse L. L., Winter R. B.: Terminology and measurement of spondylolisthesis. The Journal of Bone and Joint Surgery 65, 6 (July 1983), 768-772.
– reference: [CGBM04] Carballido-Gamio J., Belongie S., Majumdar S.: Normalized cuts in 3-D for spinal MRI segmentation. IEEE Transactions on Medical Imaging 23, 1 (2004), 36-44.
– reference: [SHD01] Shen D., Herskovits E. H., Davatzikos C.: An adaptive-focus statistical shape model for segmentation and shape modeling of 3-D brain structures. IEEE Transactions on Medical Imaging 20, 4 (2001), 257-270.
– reference: [HCLN09] Huang S.-H., Chu Y.-H., Lai S.-H., Novak C.: Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI. IEEE Transactions on Medical Imaging 28, 10 (2009), 1595-1605.
– reference: [VLP05] Vrtovec T., Likar B., Pernuš F.: Automated curved planar reformation of 3D spine images. Physics in Medicine and Biology 50, 19 (2005), 4527.
– reference: [DLSH02] Davatzikos C., Liu D., Shen D., Herskovits E. H.: Spatial normalization of spine MR images for statistical correlation of lesions with clinical symptoms. Radiology 224, 3 (2002), 919-926.
– reference: [ŠLPV11] Štern D., Likar B., Pernuš F., Vrtovec T.: Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images. Physics in Medicine and Biology 56, 23 (2011), 7505-7522.
– reference: [CGNT09] Couprie C., Grady L. J., Najman L., Talbot H.: Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In Proceedings of ICCV (2009), pp. 731-738.
– reference: [NFE*12] Neubert A., Fripp J., Engstrom C., Schwarz R., Lauer L., Salvado O., Crozier S.: Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models. Physics in Medicine and Biology 9 (2012), 8357-8376.
– reference: [MCP*09] Michopoulou S., Costaridou L., Panagiotopoulos E., Speller R., Panayiotakis G., Todd-Pokropek A.: Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine. IEEE Transactions on Biomedical Engineering 56, 9 (2009), 2225-2231.
– reference: [EKD*12] Egger J., Kapur T., Dukatz T., Kolodziej M., Zukić Dž., Freisleben B., Nimsky C.: Square-cut: A segmentation algorithm on the basis of a rectangle shape. PLoS ONE 7, 2 (2012), e31064.
– reference: [ŠLPV10] Štern D., Likar B., Pernuš F., Vrtovec T.: Automated detection of spinal centrelines, vertebral bodies and intervertebral discs in CT and MR images of lumbar spine. Physics in Medicine and Biology 55, 1 (2010), 247-264.
– reference: [KHDM98] Kittler J., Hatef M., Duin R., Matas J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 3 (1998), 226-239.
– reference: [HM02] Hoad C. L., Martel A. L.: Segmentation of MR images for computer-assisted surgery of the lumbar spine. Physics in Medicine and Biology 47, 19 (2002), 3503.
– reference: [Sar87] Saraste H.: Long-term clinical and radiological follow-up of spondylolysis and spondylolisthesis. Journal of Pediatric Orthopaedics 7, 6 (1987), 631-638.
– volume: 65
  start-page: 768
  issue: 6
  year: 1983
  end-page: 772
  article-title: Terminology and measurement of spondylolisthesis
  publication-title: The Journal of Bone and Joint Surgery
– start-page: 189
  year: 1996
  end-page: 192
  article-title: Interpolating subdivision for meshes with arbitrary topology
  publication-title: Proceedings of ACM SIGGRAPH
– start-page: 731
  year: 2009
  end-page: 738
  article-title: Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest
  publication-title: Proceedings of ICCV
– volume: 5
  start-page: 354
  issue: 5
  year: 1995
  end-page: 370
  article-title: Comparison of semiquantitative and quantitative techniques for the assessment of prevalent and incident vertebral fractures
  publication-title: Osteoporosis International
– start-page: 8357
  year: 2012
  end-page: 8376
  article-title: Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models
  publication-title: Physics in Medicine and Biology 9
– volume: 56
  start-page: 7505
  issue: 23
  year: 2011
  end-page: 7522
  article-title: Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images
  publication-title: Physics in Medicine and Biology
– volume: 117
  start-page: 1072
  issue: 9
  year: 2013
  end-page: 1083
  article-title: Hierarchical segmentation and identification of thoracic vertebra using learning‐based edge detection and coarse‐to‐fine deformable model
  publication-title: Computer Vision and Image Understanding
– start-page: 345
  year: 1992
  end-page: 381
– start-page: 135
  year: 2012
  end-page: 142
– volume: 19
  start-page: 33
  issue: 1
  year: 2011
  end-page: 40
  article-title: Fast and memory efficient feature detection using multiresolution probabilistic boosting trees
  publication-title: Proceedings of the 19th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG)
– volume: 55
  start-page: 247
  issue: 1
  year: 2010
  end-page: 264
  article-title: Automated detection of spinal centrelines, vertebral bodies and intervertebral discs in CT and MR images of lumbar spine
  publication-title: Physics in Medicine and Biology
– start-page: 520
  year: 2012
  end-page: 527
– volume: 224
  start-page: 919
  issue: 3
  year: 2002
  end-page: 926
  article-title: Spatial normalization of spine MR images for statistical correlation of lesions with clinical symptoms
  publication-title: Radiology
– volume: 47
  start-page: 3503
  issue: 19
  year: 2002
  article-title: Segmentation of MR images for computer‐assisted surgery of the lumbar spine
  publication-title: Physics in Medicine and Biology
– volume: 13
  start-page: 471
  issue: 3
  year: 2009
  end-page: 482
  article-title: Automated model‐based vertebra detection, identification, and segmentation in {CT} images
  publication-title: Medical Image Analysis
– volume: 56
  start-page: 2225
  issue: 9
  year: 2009
  end-page: 2231
  article-title: Atlas‐based segmentation of degenerated lumbar intervertebral discs from MR images of the spine
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 7
  start-page: e31064
  issue: 2
  year: 2012
  article-title: Square‐cut: A segmentation algorithm on the basis of a rectangle shape
  publication-title: PLoS ONE
– volume: 144
  start-page: 152
  issue: 1–2
  year: 2003
  end-page: 161
  article-title: An improved algorithm for anisotropic nonlinear diffusion for denoising cryo‐tomograms
  publication-title: Journal of Structural Biology
– volume: 17
  start-page: 167
  issue: 2
  year: 1998
  end-page: 174
  article-title: Metro: measuring error on simplified surfaces
  publication-title: Computer Graphics Forum
– start-page: 511
  year: 2001
  end-page: 518
– volume: 50
  start-page: 4527
  issue: 19
  year: 2005
  article-title: Automated curved planar reformation of 3D spine images
  publication-title: Physics in Medicine and Biology
– volume: 23
  start-page: 36
  issue: 1
  year: 2004
  end-page: 44
  article-title: Normalized cuts in 3‐D for spinal MRI segmentation
  publication-title: IEEE Transactions on Medical Imaging
– volume: 183
  start-page: 949
  issue: 4
  year: 2004
  end-page: 958
  article-title: Diagnosis of osteoporotic vertebral fractures: Importance of recognition and description by radiologists
  publication-title: American Journal of Roentgenology
– volume: 20
  start-page: 226
  issue: 3
  year: 1998
  end-page: 239
  article-title: On combining classifiers
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 4
  start-page: 306
  issue: 6
  year: 1988
  end-page: 331
  article-title: Deformable models
  publication-title: The Visual Computer
– volume: 20
  start-page: 257
  issue: 4
  year: 2001
  end-page: 270
  article-title: An adaptive‐focus statistical shape model for segmentation and shape modeling of 3‐D brain structures
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 261
  year: 1948
  end-page: 275
  article-title: Outline for the study of scoliosis
  publication-title: Instructional Course Lectures 5
– volume: 12
  start-page: 208
  issue: 2
  year: 2006
  end-page: 218
  article-title: Visualization of boundaries in volumetric data sets using LH histograms
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 26
  start-page: 141
  issue: 2
  year: 2008
  end-page: 163
  article-title: A comparative study of deformable contour methods on medical image segmentation
  publication-title: Image and Vision Computing
– volume: 14
  start-page: 925
  issue: 10
  year: 2005
  end-page: 948
  article-title: The adult scoliosis
  publication-title: European Spine Journal
– start-page: 51
  year: 1994
  end-page: 67
– volume: 7
  start-page: 631
  issue: 6
  year: 1987
  end-page: 638
  article-title: Long‐term clinical and radiological follow‐up of spondylolysis and spondylolisthesis
  publication-title: Journal of Pediatric Orthopaedics
– volume: 53
  start-page: 211
  issue: 2
  year: 1991
  end-page: 218
  article-title: On active contour models and balloons
  publication-title: CVGIP: Image Understanding
– year: 2011
  article-title: Evaluation of a novel approach for automatic volume determination of glioblastomas based on several manual expert segmentations
  publication-title: CoRR abs/1103.1474
– volume: 35
  start-page: 430
  issue: 4
  year: 2010
  end-page: 433
  article-title: Spine computed tomography doses and cancer induction
  publication-title: Spine
– start-page: 137
  year: 2013
  end-page: 144
– volume: 28
  start-page: 1595
  issue: 10
  year: 2009
  end-page: 1605
  article-title: Learning‐based vertebra detection and iterative normalized‐cut segmentation for spinal MRI
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 19
  year: 2011
  end-page: 24
  article-title: Automated 3D segmentation of vertebral bodies and intervertebral discs from MRI
  publication-title: Proceedings of IEEE DICTA
– volume: 17
  start-page: 1283
  issue: 8
  year: 2013
  end-page: 1292
  article-title: Spine detection in CT and MR using iterated marginal space learning
  publication-title: Medical Image Analysis
– volume: 169
  start-page: 251
  issue: 3
  year: 2009
  end-page: 258
  article-title: The rising prevalence of chronic low back pain
  publication-title: Archives of Internal Medicine
– ident: e_1_2_10_22_1
  doi: 10.1016/j.cviu.2012.11.016
– start-page: 520
  volume-title: Proceedings of MICCAI
  year: 2012
  ident: e_1_2_10_3_1
– start-page: 19
  year: 2011
  ident: e_1_2_10_24_1
  article-title: Automated 3D segmentation of vertebral bodies and intervertebral discs from MRI
  publication-title: Proceedings of IEEE DICTA
– ident: e_1_2_10_23_1
  doi: 10.1088/0031-9155/57/24/8357
– year: 2011
  ident: e_1_2_10_10_1
  article-title: Evaluation of a novel approach for automatic volume determination of glioblastomas based on several manual expert segmentations
  publication-title: CoRR abs/1103.1474
– ident: e_1_2_10_18_1
  doi: 10.1016/j.media.2009.02.004
– start-page: 189
  year: 1996
  ident: e_1_2_10_40_1
  article-title: Interpolating subdivision for meshes with arbitrary topology
  publication-title: Proceedings of ACM SIGGRAPH
– ident: e_1_2_10_25_1
  doi: 10.1007/978-94-015-8330-5_4
– ident: e_1_2_10_32_1
  doi: 10.1088/0031-9155/56/23/011
– ident: e_1_2_10_2_1
  doi: 10.1007/s00586-005-1053-9
– start-page: 261
  year: 1948
  ident: e_1_2_10_6_1
  article-title: Outline for the study of scoliosis
  publication-title: Instructional Course Lectures 5
– ident: e_1_2_10_31_1
  doi: 10.1088/0031-9155/55/1/015
– ident: e_1_2_10_34_1
  doi: 10.1007/BF01908877
– ident: e_1_2_10_4_1
  doi: 10.1109/TMI.2003.819929
– start-page: 137
  volume-title: Proceedings of Vision, Modeling and Visualization
  year: 2013
  ident: e_1_2_10_26_1
– ident: e_1_2_10_37_1
  doi: 10.1088/0031-9155/50/19/007
– ident: e_1_2_10_9_1
  doi: 10.1148/radiol.2243011266
– ident: e_1_2_10_15_1
  doi: 10.1088/0031-9155/47/19/305
– ident: e_1_2_10_28_1
  doi: 10.1097/01241398-198707060-00001
– ident: e_1_2_10_8_1
  doi: 10.1111/1467-8659.00236
– start-page: 731
  year: 2009
  ident: e_1_2_10_5_1
  article-title: Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest
  publication-title: Proceedings of ICCV
– volume: 19
  start-page: 33
  issue: 1
  year: 2011
  ident: e_1_2_10_33_1
  article-title: Fast and memory efficient feature detection using multiresolution probabilistic boosting trees
  publication-title: Proceedings of the 19th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG)
– ident: e_1_2_10_30_1
  doi: 10.1109/42.921475
– ident: e_1_2_10_27_1
  doi: 10.1097/BRS.0b013e3181cdde47
– start-page: 511
  volume-title: Proceedings of IEEE Computer Vision & Pattern Recognition
  year: 2001
  ident: e_1_2_10_36_1
– ident: e_1_2_10_20_1
  doi: 10.2214/ajr.183.4.1830949
– ident: e_1_2_10_13_1
  doi: 10.1016/j.jsb.2003.09.010
– ident: e_1_2_10_19_1
  doi: 10.1016/j.media.2012.09.007
– ident: e_1_2_10_12_1
  doi: 10.1001/archinternmed.2008.543
– ident: e_1_2_10_17_1
  doi: 10.1109/34.667881
– ident: e_1_2_10_39_1
  doi: 10.2106/00004623-198365060-00007
– ident: e_1_2_10_7_1
  doi: 10.1016/1049-9660(91)90028-N
– ident: e_1_2_10_35_1
  doi: 10.1007/978-94-011-2546-8_20
– start-page: 135
  volume-title: Proceedings of Vision, Modeling and Visualization
  year: 2012
  ident: e_1_2_10_41_1
– ident: e_1_2_10_14_1
  doi: 10.1109/TMI.2009.2023362
– ident: e_1_2_10_29_1
  doi: 10.1109/TVCG.2006.39
– ident: e_1_2_10_38_1
  doi: 10.1007/BF01622258
– ident: e_1_2_10_21_1
  doi: 10.1109/TBME.2009.2019765
– ident: e_1_2_10_11_1
  doi: 10.1371/journal.pone.0031064
– ident: e_1_2_10_16_1
  doi: 10.1016/j.imavis.2007.07.010
SSID ssj0004765
Score 2.3619187
Snippet The diagnosis of certain spine pathologies, such as scoliosis, spondylolisthesis and vertebral fractures, is part of the daily clinical routine. Very...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 190
SubjectTerms Analysis
Computer graphics
detection
diagnosis
efficient
I.4.6 [Image processing and computer vision]: Segmentation Pixel classification
Image processing systems
inflation
Medical diagnosis
Medical imaging
MRI
Pathology
Scoliosis
segmentation
Spine
Studies
vertebra
Vertebrae
Title Robust Detection and Segmentation for Diagnosis of Vertebral Diseases Using Routine MR Images
URI https://api.istex.fr/ark:/67375/WNG-7R6373WH-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12343
https://www.proquest.com/docview/1565522964
Volume 33
WOSCitedRecordID wos000342802200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS9xAFH_obg_20FardK0tgxTpJbKbzGQSeipuVwu6lNWqFxnmcxE1K5tY-uf3zSRZV2hB6G0IL8nwvt_Mm98AfKJU0oHO0og5piKMEFmEUc5GRg84t4obFYDnz4_5eJxdXuY_VuBLexamxodYLLh5ywj-2hu4VOWSkeup20e3S5NV6Maot7QD3eFk9PP48VgkT1kL7e1BYxpgId_Is3j5STjqes7-fpJrLmesIeSMXv_XZN_AqybTJF9r1ViHFVtswMsl_MG3cDWZqYeyIkNbhY6sgsjCkFM7vWtOJBUEc1oyrNvxrksyc-Tcziu_2XyLj8PeTklC2wHxvUX4aXIyId_v0EuVm3A2-nZ2cBQ19y1E2ldZkTMxTy0dqGTgYhkrX-tkzBndNxLtXqPk-ooyx02eyRxpqWPSxDLNmM51P9mCTjEr7DsgseFaK4t6wBlVKVdUSo1DTnPH0G304HPLdaEbLHJ_JcataGsSZJgIDOvB7oL0vgbg-BvRXhDdgkLOb3zHGmfiYnwo-CRNeHJxJE56sNPKVjTGWgosYRmmoXlKcV5Biv_-kzg4HIXB9vNJ38Maplm07kzbgU41f7Af4IX-VV2X84-N1v4BfBDuDg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6ZLD1Yd-j6bpNjDH24pHYkmXDXkazNGVJGFnW9mUIfZay1imxW_rn7yTbWQobDPYmzNkW933S6SeAt5RKOtBZGjHHVIQRIoswytnI6AHnVnGjAvD80YTPZtnJSf51Cz62Z2FqfIj1gpu3jOCvvYH7BekNK9en7gP6XZrcgS5FNWId6A7no--T3-ciecpabG-PGtMgC_lOnvXLt-JR17P25layuZmyhpgzevh_s30ED5pck3yqleMxbNniCWxvIBA-hR_zpboqKzK0VejJKogsDPlmTy-aM0kFwayWDOuGvLOSLB05sqvKbzef4-Owu1OS0HhAfHcRfppM5-TwAv1U-QwWo8-L_XHU3LgQaV9nRc7EPLV0oJKBi2WsfLWTMWd030i0fI2y6yvKHDd5JnOkpY5JE8s0YzrX_eQ5dIplYXeAxIZrrSxqAmdUpVxRKTUOOc0dQ8fRg_ct24Vu0Mj9pRjnoq1KkGEiMKwHb9aklzUEx5-I3gXZrSnk6qfvWeNMHM8OBJ-nCU-Ox2Lag71WuKIx11JgEcswEc1TivMKYvz7n8T-wSgMdv-d9DXcGy-mEzE5nH15Afcx6aJ1n9oedKrVlX0Jd_V1dVauXjUq_AvC4fH-
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD5Yt5T2ofZKt9V2KKX0JWU3mckk0JfiGpWui2yt-lKGuYpUs7KJxZ_vmUmyrmBB6FsIJ8lwzpxb5ptvAD5RKulQZ2nEHFMRZogswixnI6OHnFvFjQrE84djPplkx8f5_gp86_bCNPwQix9u3jNCvPYObi-MW_JyfeK-YtylyQPoUZan6Ja90bT4Nb7ZF8lT1nF7e9aYllnII3kWD9_KRz2v2qtbxeZyyRpyTrH2f6N9Bk_bWpN8bybHc1ix5Qt4ssRA-BJ-T2fqsqrJyNYBk1USWRry056ct3uSSoJVLRk1gLzTiswcObTz2i83n-HtsLpTkQA8IB5dhK8me1Oye45xqnoFB8XWweZO1J64EGnfZ0XOxDy1dKiSoYtlrHy3kzFn9MBI9HyNthsoyhw3eSZzlKWOSRPLNGM614PkNayWs9K-ARIbrrWyOBM4oyrlikqp8ZLT3DEMHH340qld6JaN3B-KcSa6rgQVJoLC-vBxIXrRUHDcJfQ52G4hIed_PGaNM3E02RZ8miY8OdoRe31Y74wrWnetBDaxDAvRPKU4rmDGf39JbG4X4eLt_UU_wKP9USHGu5Mf7-Ax1ly0gamtw2o9v7Qb8FD_rU-r-ft2Bl8DYhbxeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Detection+and+Segmentation+for+Diagnosis+of+Vertebral+Diseases+Using+Routine+MR+Images&rft.jtitle=Computer+graphics+forum&rft.au=Zuki%C4%87%2C+D%C5%BEenan&rft.au=Vlas%C3%A1k%2C+Ale%C5%A1&rft.au=Egger%2C+Jan&rft.au=Ho%C5%99%C3%ADnek%2C+Daniel&rft.date=2014-09-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=6&rft.spage=190&rft.epage=204&rft_id=info:doi/10.1111%2Fcgf.12343&rft.externalDBID=10.1111%252Fcgf.12343&rft.externalDocID=CGF12343
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon