Deterministic algorithms for matrix completion

ABSTRACT The goal of the matrix completion problem is to retrieve an unknown real matrix from a small subset of its entries. This problem comes up in many application areas, and has received a great deal of attention in the context of the Netflix challenge. This setup usually represents our partial...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Random structures & algorithms Ročník 45; číslo 2; s. 306 - 317
Hlavní autori: Heiman, Eyal, Schechtman, Gideon, Shraibman, Adi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Blackwell Publishing Ltd 01.09.2014
Wiley Subscription Services, Inc
Predmet:
ISSN:1042-9832, 1098-2418
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ABSTRACT The goal of the matrix completion problem is to retrieve an unknown real matrix from a small subset of its entries. This problem comes up in many application areas, and has received a great deal of attention in the context of the Netflix challenge. This setup usually represents our partial knowledge of some information domain. Unknown entries may be due to the unavailability of some relevant experimental data. One approach to this problem starts by selecting a complexity measure of matrices, such as rank or trace norm. The corresponding algorithm outputs a matrix of lowest possible complexity that agrees with the partially specified matrix. The performance of the above algorithm under the assumption that the revealed entries are sampled randomly has received considerable attention (e.g., Refs. Srebro et al., 2005; COLT, 2005; Foygel and Srebro, 2011; Candes and Tao, 2010; Recht, 2009; Keshavan et al., 2010; Koltchinskii et al., 2010). Here we ask what can be said if the observed entries are chosen deterministically. We prove generalization error bounds for such deterministic algorithms, that resemble the results of Refs. Srebro et al. (2005); COLT (2005); Foygel and Srebro (2011) for the randomized algorithms. We still do not understand which sets of entries in a given matrix can be used to properly reconstruct it. Our hope is that the present work sheds some light on this problem. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 45, 306–317, 2014
AbstractList The goal of the matrix completion problem is to retrieve an unknown real matrix from a small subset of its entries. This problem comes up in many application areas, and has received a great deal of attention in the context of the Netflix challenge . This setup usually represents our partial knowledge of some information domain. Unknown entries may be due to the unavailability of some relevant experimental data. One approach to this problem starts by selecting a complexity measure of matrices, such as rank or trace norm. The corresponding algorithm outputs a matrix of lowest possible complexity that agrees with the partially specified matrix. The performance of the above algorithm under the assumption that the revealed entries are sampled randomly has received considerable attention (e.g., Refs. Srebro et al., 2005; COLT, 2005; Foygel and Srebro, 2011; Candes and Tao, 2010; Recht, 2009; Keshavan et al., 2010; Koltchinskii et al., 2010). Here we ask what can be said if the observed entries are chosen deterministically. We prove generalization error bounds for such deterministic algorithms, that resemble the results of Refs. Srebro et al. (2005); COLT (2005); Foygel and Srebro (2011) for the randomized algorithms. We still do not understand which sets of entries in a given matrix can be used to properly reconstruct it. Our hope is that the present work sheds some light on this problem. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 45, 306–317, 2014
The goal of the matrix completion problem is to retrieve an unknown real matrix from a small subset of its entries. This problem comes up in many application areas, and has received a great deal of attention in the context of the Netflix challenge. This setup usually represents our partial knowledge of some information domain. Unknown entries may be due to the unavailability of some relevant experimental data. One approach to this problem starts by selecting a complexity measure of matrices, such as rank or trace norm. The corresponding algorithm outputs a matrix of lowest possible complexity that agrees with the partially specified matrix. The performance of the above algorithm under the assumption that the revealed entries are sampled randomly has received considerable attention (e.g., Refs. Srebro et al., 2005; COLT, 2005; Foygel and Srebro, 2011; Candes and Tao, 2010; Recht, 2009; Keshavan et al., 2010; Koltchinskii et al., 2010). Here we ask what can be said if the observed entries are chosen deterministically. We prove generalization error bounds for such deterministic algorithms, that resemble the results of Refs. Srebro et al. (2005); COLT (2005); Foygel and Srebro (2011) for the randomized algorithms. We still do not understand which sets of entries in a given matrix can be used to properly reconstruct it. Our hope is that the present work sheds some light on this problem. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 45, 306-317, 2014 [PUBLICATION ABSTRACT]
The goal of the matrix completion problem is to retrieve an unknown real matrix from a small subset of its entries. This problem comes up in many application areas, and has received a great deal of attention in the context of the Netflix challenge. This setup usually represents our partial knowledge of some information domain. Unknown entries may be due to the unavailability of some relevant experimental data. One approach to this problem starts by selecting a complexity measure of matrices, such as rank or trace norm. The corresponding algorithm outputs a matrix of lowest possible complexity that agrees with the partially specified matrix. The performance of the above algorithm under the assumption that the revealed entries are sampled randomly has received considerable attention (e.g., Refs. Srebro et al., 2005; COLT, 2005; Foygel and Srebro, 2011; Candes and Tao, 2010; Recht, 2009; Keshavan et al., 2010; Koltchinskii et al., 2010). Here we ask what can be said if the observed entries are chosen deterministically. We prove generalization error bounds for such deterministic algorithms, that resemble the results of Refs. Srebro et al. (2005); COLT (2005); Foygel and Srebro (2011) for the randomized algorithms. We still do not understand which sets of entries in a given matrix can be used to properly reconstruct it. Our hope is that the present work sheds some light on this problem. copyright 2013 Wiley Periodicals, Inc. Random Struct. Alg., 45, 306-317, 2014
ABSTRACT The goal of the matrix completion problem is to retrieve an unknown real matrix from a small subset of its entries. This problem comes up in many application areas, and has received a great deal of attention in the context of the Netflix challenge. This setup usually represents our partial knowledge of some information domain. Unknown entries may be due to the unavailability of some relevant experimental data. One approach to this problem starts by selecting a complexity measure of matrices, such as rank or trace norm. The corresponding algorithm outputs a matrix of lowest possible complexity that agrees with the partially specified matrix. The performance of the above algorithm under the assumption that the revealed entries are sampled randomly has received considerable attention (e.g., Refs. Srebro et al., 2005; COLT, 2005; Foygel and Srebro, 2011; Candes and Tao, 2010; Recht, 2009; Keshavan et al., 2010; Koltchinskii et al., 2010). Here we ask what can be said if the observed entries are chosen deterministically. We prove generalization error bounds for such deterministic algorithms, that resemble the results of Refs. Srebro et al. (2005); COLT (2005); Foygel and Srebro (2011) for the randomized algorithms. We still do not understand which sets of entries in a given matrix can be used to properly reconstruct it. Our hope is that the present work sheds some light on this problem. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 45, 306–317, 2014
Author Shraibman, Adi
Heiman, Eyal
Schechtman, Gideon
Author_xml – sequence: 1
  givenname: Eyal
  surname: Heiman
  fullname: Heiman, Eyal
  organization: Department of Computer Science, Hebrew University, Jerusalam, Israel
– sequence: 2
  givenname: Gideon
  surname: Schechtman
  fullname: Schechtman, Gideon
  organization: Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel
– sequence: 3
  givenname: Adi
  surname: Shraibman
  fullname: Shraibman, Adi
  organization: Department of Computer Science, Tel Aviv-Yaffo Academic College, Tel Aviv, Israel
BookMark eNp9kM1OwkAURicGEwFd-AZN3OiiMP-dWRJUlBhNBONyMm2nOth2cKZEeHuLqAsSXd27OOfLvV8PdGpXGwBOERwgCPHQBz3AkApyALoIShFjikRnu1McS0HwEeiFsIAQJgSTLhhcmsb4ytY2NDaLdPnivG1eqxAVzkeVbrxdR5mrlqVprKuPwWGhy2BOvmcfPF1fzcc38d3D5HY8uoszChGJc56mnOew4MjQVEqNhCEizfKE5kJKXhDGsIQ4l1BIIhhMjcmTgmiBKOOpIX1wvstdeve-MqFRlQ2ZKUtdG7cKCjEmOcMiES16tocu3MrX7XUtRQWmgknWUhc7KvMuBG8KtfS20n6jEFTb5lTbnPpqrmWHe2xmG719v_Halv8ZH7Y0m7-j1eNs9GPEO6Pt3ax_De3fFE9IwtTz_UTNpjOC59OxmpBPQ3qPJg
CitedBy_id crossref_primary_10_1109_TIT_2020_3039308
crossref_primary_10_1214_21_AAP1680
crossref_primary_10_1109_TSP_2020_2997180
crossref_primary_10_1109_TIT_2020_3019569
crossref_primary_10_3390_jimaging7070110
crossref_primary_10_1109_TSP_2016_2586753
crossref_primary_10_1017_S0963548321000249
crossref_primary_10_1109_TGRS_2023_3237464
Cites_doi 10.1145/1536414.1536451
10.1214/11-AOS894
10.1109/TIT.2010.2044061
10.1090/S0273-0979-06-01126-8
10.1017/CBO9780511569166
10.1007/s10208-009-9045-5
10.1007/BF02126799
ContentType Journal Article
Copyright 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: 2013 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/rsa.20483
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2418
EndPage 317
ExternalDocumentID 3383788601
10_1002_rsa_20483
RSA20483
ark_67375_WNG_SJS32TJC_G
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XSW
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
WRC
WWM
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4013-d6bb66d0f61e4b99a18e38bcd74d8996f3552902d90893850beed7f3a81456be3
IEDL.DBID DRFUL
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340278700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1042-9832
IngestDate Wed Oct 01 14:38:21 EDT 2025
Fri Jul 25 12:07:49 EDT 2025
Tue Nov 18 20:41:35 EST 2025
Sat Nov 29 02:48:11 EST 2025
Wed Jan 22 16:23:13 EST 2025
Tue Nov 11 03:33:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4013-d6bb66d0f61e4b99a18e38bcd74d8996f3552902d90893850beed7f3a81456be3
Notes ArticleID:RSA20483
ark:/67375/WNG-SJS32TJC-G
istex:C1C461AE166F294419A1A40348676488936C1A30
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1548248595
PQPubID 1016429
PageCount 12
ParticipantIDs proquest_miscellaneous_1559652878
proquest_journals_1548248595
crossref_primary_10_1002_rsa_20483
crossref_citationtrail_10_1002_rsa_20483
wiley_primary_10_1002_rsa_20483_RSA20483
istex_primary_ark_67375_WNG_SJS32TJC_G
PublicationCentury 2000
PublicationDate September 2014
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: September 2014
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Random structures & algorithms
PublicationTitleAlternate Random Struct. Alg
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References V. Koltchinskii, A. B. Tsybakov, and K. Lounici, Nuclear norm penalization and optimal rates for noisy low rank matrix completion, Ann Statist 39 (2011), 2302-2329.
E.J. Candes and B. Recht, Exact matrix completion via convex optimization, Found Comput Math 9 (2009), 717-772.
S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bull Am Math Soc 43 (2006), 439-562.
G. J. O. Jameson, Summing and nuclear norms in banach space theory, Cambridge University Press, 1987.
R. H. Keshavan, A. Montanari, and S. Oh, Matrix completion from noisy entries, J Mach Learn Res 11 (2010), 2057-2078.
A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), 261-277.
B. Recht, A simpler approach to matrix completion, J Machine Learn Res, 12 (2011), 3413-3430.
E. J. Candes and T. Tao, The power of convex relaxation: near-optimal matrix completion, IEEE Trans Infor Theo 56 (2010), 2053-2080.
2010; 56
2010; 11
2001; 6
2011
2006; 43
1988; 8
2009
1987
2008
1986
1996
2009; 9
2005
2011; 12
2011; 39
2005; 17
1989
Pisier G. (e_1_2_6_15_1) 1986
Foygel R. (e_1_2_6_7_1) 2011
Tomczak‐Jaegermann N. (e_1_2_6_19_1) 1989
Keshavan R. H. (e_1_2_6_10_1) 2010; 11
Recht B. (e_1_2_6_16_1) 2011; 12
Fazel M. (e_1_2_6_6_1) 2001
e_1_2_6_9_1
Lee T. (e_1_2_6_13_1) 2008
e_1_2_6_8_1
Srebro N. (e_1_2_6_18_1) 2005
Benczúr A.A. (e_1_2_6_3_1) 1996
Srebro N. (e_1_2_6_17_1) 2005
e_1_2_6_5_1
Lee T. (e_1_2_6_12_1) 2008
e_1_2_6_4_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_2_1
References_xml – reference: B. Recht, A simpler approach to matrix completion, J Machine Learn Res, 12 (2011), 3413-3430.
– reference: S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bull Am Math Soc 43 (2006), 439-562.
– reference: E. J. Candes and T. Tao, The power of convex relaxation: near-optimal matrix completion, IEEE Trans Infor Theo 56 (2010), 2053-2080.
– reference: E.J. Candes and B. Recht, Exact matrix completion via convex optimization, Found Comput Math 9 (2009), 717-772.
– reference: G. J. O. Jameson, Summing and nuclear norms in banach space theory, Cambridge University Press, 1987.
– reference: A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), 261-277.
– reference: R. H. Keshavan, A. Montanari, and S. Oh, Matrix completion from noisy entries, J Mach Learn Res 11 (2010), 2057-2078.
– reference: V. Koltchinskii, A. B. Tsybakov, and K. Lounici, Nuclear norm penalization and optimal rates for noisy low rank matrix completion, Ann Statist 39 (2011), 2302-2329.
– year: 2011
– year: 1986
– start-page: 255
  year: 2009
  end-page: 262
– volume: 11
  start-page: 2057
  year: 2010
  end-page: 2078
  article-title: Matrix completion from noisy entries
  publication-title: J Mach Learn Res
– volume: 56
  start-page: 2053
  year: 2010
  end-page: 2080
  article-title: The power of convex relaxation: near‐optimal matrix completion
  publication-title: IEEE Trans Infor Theo
– start-page: 71
  year: 2008
  end-page: 80
– year: 1987
– volume: 39
  start-page: 2302
  year: 2011
  end-page: 2329
  article-title: Nuclear norm penalization and optimal rates for noisy low rank matrix completion
  publication-title: Ann Statist
– volume: 17
  start-page: 1329
  year: 2005
  end-page: 1336
– year: 1989
– volume: 9
  start-page: 717
  year: 2009
  end-page: 772
  article-title: Exact matrix completion via convex optimization
  publication-title: Found Comput Math
– volume: 43
  start-page: 439
  year: 2006
  end-page: 562
  article-title: Expander graphs and their applications
  publication-title: Bull Am Math Soc
– volume: 8
  start-page: 261
  year: 1988
  end-page: 277
  article-title: Ramanujan graphs
  publication-title: Combinatorica
– start-page: 47
  year: 1996
  end-page: 55
– volume: 12
  start-page: 3413
  year: 2011
  end-page: 3430
  article-title: A simpler approach to matrix completion
  publication-title: J Machine Learn Res
– start-page: 545
  year: 2005
  end-page: 560
– start-page: 351
  year: 2008
  end-page: 357
– volume: 6
  start-page: 4734
  year: 2001
  end-page: 4739
– ident: e_1_2_6_2_1
  doi: 10.1145/1536414.1536451
– start-page: 71
  volume-title: Proceedings of the 23rd IEEE Conference on Computational Complexity
  year: 2008
  ident: e_1_2_6_13_1
– start-page: 1329
  volume-title: Advances in Neural Information Processing Systems 17
  year: 2005
  ident: e_1_2_6_17_1
– volume: 11
  start-page: 2057
  year: 2010
  ident: e_1_2_6_10_1
  article-title: Matrix completion from noisy entries
  publication-title: J Mach Learn Res
– ident: e_1_2_6_11_1
  doi: 10.1214/11-AOS894
– start-page: 351
  volume-title: Proceedings of the 24th IEEE Conference on Computational Complexity
  year: 2008
  ident: e_1_2_6_12_1
– ident: e_1_2_6_5_1
  doi: 10.1109/TIT.2010.2044061
– ident: e_1_2_6_8_1
  doi: 10.1090/S0273-0979-06-01126-8
– volume-title: Vol. 38 of Pitman Monographs and Surveys in Pure and Applied Mathematics
  year: 1989
  ident: e_1_2_6_19_1
– volume-title: 24th Annual Conference on Learning Theory (COLT)
  year: 2011
  ident: e_1_2_6_7_1
– ident: e_1_2_6_9_1
  doi: 10.1017/CBO9780511569166
– ident: e_1_2_6_4_1
  doi: 10.1007/s10208-009-9045-5
– volume: 12
  start-page: 3413
  year: 2011
  ident: e_1_2_6_16_1
  article-title: A simpler approach to matrix completion
  publication-title: J Machine Learn Res
– volume-title: Published for the Conference Board of the Mathematical Sciences
  year: 1986
  ident: e_1_2_6_15_1
– start-page: 4734
  volume-title: Proceedings American Control Conference
  year: 2001
  ident: e_1_2_6_6_1
– start-page: 545
  volume-title: 18th Annual Conference on Computational Learning Theory (COLT)
  year: 2005
  ident: e_1_2_6_18_1
– start-page: 47
  volume-title: STOC '1996: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (May 1996)
  year: 1996
  ident: e_1_2_6_3_1
– ident: e_1_2_6_14_1
  doi: 10.1007/BF02126799
SSID ssj0007323
Score 2.1654322
Snippet ABSTRACT The goal of the matrix completion problem is to retrieve an unknown real matrix from a small subset of its entries. This problem comes up in many...
The goal of the matrix completion problem is to retrieve an unknown real matrix from a small subset of its entries. This problem comes up in many application...
The goal of the matrix completion problem is to retrieve an unknown real matrix from a small subset of its entries. This problem comes up in many application...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 306
SubjectTerms Algorithms
Complexity
deterministic guarantees
Errors
expander graphs
factorization norms
graph sparsifiers
matrix completion
Norms
Sheds
Title Deterministic algorithms for matrix completion
URI https://api.istex.fr/ark:/67375/WNG-SJS32TJC-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.20483
https://www.proquest.com/docview/1548248595
https://www.proquest.com/docview/1559652878
Volume 45
WOSCitedRecordID wos000340278700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-2418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007323
  issn: 1042-9832
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9080Ef_BanU6qI-FLtkrRN8Gmomwwd4hR9C0mbqqibtJvszzdJu6qgIPhW6BXCfeR-11x-B7AnQ6SUzpQuFoS5RFvdFSEibhQL3zSvIewndthE2O3S-3t2NQXHk7swOT9E-cPNRIbdr02AC5kdfZKGppmhDSIUT0MVab8lFaieXrduL8qNOMQo768nyGXacyfEQh46Kj_-lo6qRrPjb1jzK2K1Kae18K_FLsJ8gTSdZu4aSzCl-sswd1nStGYrcHhaNMNYtmZHvDwM0qfh42vmaCjrvBr2_rFjm86Vsd8q3LbObk7O3WKAghuZssmNAymDIPaSoKGIZEw0qMJURnFIYl1nBYkGG4h5KDaHf5j6ntQZM0ywoA2Nq6TCa1DpD_pqHRyKEkLjBo2kBlCKCpboOkdSFXnSQAhUg4OJHnlUsIubIRcvPOdFRlyrgFsV1GC3FH3LKTV-Etq3xiglRPpsetBCn99127zX6WF00znh7RrUJ9biRfhl3NRhhquN-TXYKV_rwDGnIaKvBiMj47PA1wUj1Wu3tvt9Nfy617QPG38X3YRZrRmS96PVoTJMR2oLZqL34VOWbhe--gF2a-pa
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEB70TrB9aKu29FprUxHxJTW32SS70BfRntaeh3gn-rbsJhuV6l1JzuKf35lNLlZQEPoWyASW-bHzze7kG4ANkzBrMVP6oebS52h1XyeM-2mmI2peY2GUu2ETyWAgzs_l8Rx8m_0LU_FDNAduFBluv6YApwPp7XvW0KIk3iAuwnloc3SjqAXtvZPeab_ZiZOQVQ32nPkSXXfGLBSw7ebjB_moTaq9ewA2_4WsLuf0Xv_fat_AqxprejuVcyzBnB0vw8ujhqi1XIGve3U7jONr9vT1xaS4ml7elB6CWe-G-PvvPNd2bsmCb-G09320e-DXIxT8lAonP4uNieMsyOOu5UZK3RU2FCbNEp5hpRXnCDeYDFhG13-owsBgzkzyUIsuIitjw3fQGk_G9j14guVcZF2RGoRQVmiZY6VjhE0DQyCCdWBrpkiV1vziNObiWlXMyEyhCpRTQQfWG9HfFanGY0KbzhqNhC5-URdaEqmzwb4aHg5DNjrcVfsdWJ2ZS9UBWCqqxIitTUYd-NK8xtCh-xA9tpNbkolkHGHJKHDtznhPr0adDHfcw4fni36GxYPRUV_1fwx-foQXqCVedaetQmta3NpPsJD-mV6VxVrtuH8BhevuSg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB88Vw598Pw4cT3vrCLiS89ukrYJ3Iu4t34v4ir6FpI2VVF3pV0P_3wnabeeoCD4VugUwnxkftNMfgOwrmNiDGZKnyomfIZW91VMmJ-kKrTNa4SGmRs2EXe7_PJSnIzBn9FdmJIfov7hZiPD7dc2wM1Dmm29sIbmheUNYpx-gQYLRYRh2Wifds6P6p04pqRssGfEF-i6I2ahgGzVH7_KRw2r2qdXYPN_yOpyTufb51Y7A9MV1vS2S-eYhTHTn4Op45qotZiH3-2qHcbxNXvq7mqQ3wyv7wsPwax3b_n7nzzXdm6sBb_Deefv2c6eX41Q8BNbOPlppHUUpUEWtQzTQqgWN5TrJI1ZipVWlCHcICIgqT3-ozwMNObMOKOKtxBZaUMXYLw_6JtF8DjJGE9bPNEIoQxXIsNKR3OTBNqCCNKEzZEiZVLxi9sxF3eyZEYmElUgnQqasFaLPpSkGm8JbThr1BIqv7VdaHEoL7q7snfQo-TsYEfuNmF5ZC5ZBWAhbSVm2dpE2ITV-jWGjj0PUX0zeLQy6DUhlowc1-6M9_5q5Glv2z0sfVx0Bb6etDvyaL97-AMmUUmsbE5bhvFh_mh-wkTyb3hT5L8qv30GKm7txQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deterministic+algorithms+for+matrix+completion&rft.jtitle=Random+structures+%26+algorithms&rft.au=Heiman%2C+Eyal&rft.au=Schechtman%2C+Gideon&rft.au=Shraibman%2C+Adi&rft.date=2014-09-01&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=45&rft.issue=2&rft.spage=306&rft.epage=317&rft_id=info:doi/10.1002%2Frsa.20483&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon