Combined state and multi-innovation parameter estimation for an input non-linear state-space system using the key term separation

In this study, the authors study the state and parameter estimation problem for an input non-linear system consisting of a static non-linear block and a linear time-invariant state space subsystem. Using the filtering technique, a filtering based multi-innovation generalised stochastic gradient (SG)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET control theory & applications Ročník 10; číslo 13; s. 1503 - 1512
Hlavní autoři: Wang, Xuehai, Ding, Feng, Hayat, Tasawar, Alsaedi, Ahmed
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 29.08.2016
Témata:
ISSN:1751-8644, 1751-8652
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this study, the authors study the state and parameter estimation problem for an input non-linear system consisting of a static non-linear block and a linear time-invariant state space subsystem. Using the filtering technique, a filtering based multi-innovation generalised stochastic gradient (SG) algorithm is proposed for avoiding estimating the redundant parameters based on the key term separation technique. Compared with the multi-innovation generalised SG algorithm, the proposed algorithm has higher parameter estimation accuracy. Two simulation examples are provided to show that the proposed algorithm works well.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-8644
1751-8652
DOI:10.1049/iet-cta.2015.1056