Hierarchical identification for multivariate Hammerstein systems by using the modified Kalman filter
The parameter estimation problem for multi-input multi-output Hammerstein systems is considered. For the Hammerstein model to be identified, its dynamic time-invariant subsystem is described by a controlled autoregressive model with a communication delay. The modified Kalman filter (MKF) algorithm i...
Saved in:
| Published in: | IET control theory & applications Vol. 11; no. 6; pp. 857 - 869 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
The Institution of Engineering and Technology
14.04.2017
|
| Subjects: | |
| ISSN: | 1751-8644, 1751-8652 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The parameter estimation problem for multi-input multi-output Hammerstein systems is considered. For the Hammerstein model to be identified, its dynamic time-invariant subsystem is described by a controlled autoregressive model with a communication delay. The modified Kalman filter (MKF) algorithm is derived to estimate the unknown intermediate variables in the system and the MKF-based recursive least squares (LS) algorithm is presented to estimate all the unknown parameters. Furthermore, the hierarchical identification is adopted to decompose the system into two fictitious subsystems: one containing the unknown parameters in the non-linear block and the other containing the unknown parameters in the linear subsystem. Then an MKF-based hierarchical LS algorithm is derived. The convergence analysis shows the performance of the presented algorithms. The numerical simulation results indicate that the proposed algorithms are effective. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1751-8644 1751-8652 |
| DOI: | 10.1049/iet-cta.2016.1033 |