Hierarchical identification for multivariate Hammerstein systems by using the modified Kalman filter

The parameter estimation problem for multi-input multi-output Hammerstein systems is considered. For the Hammerstein model to be identified, its dynamic time-invariant subsystem is described by a controlled autoregressive model with a communication delay. The modified Kalman filter (MKF) algorithm i...

Full description

Saved in:
Bibliographic Details
Published in:IET control theory & applications Vol. 11; no. 6; pp. 857 - 869
Main Authors: Ma, Junxia, Xiong, Weili, Chen, Jing, Feng, Ding
Format: Journal Article
Language:English
Published: The Institution of Engineering and Technology 14.04.2017
Subjects:
ISSN:1751-8644, 1751-8652
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The parameter estimation problem for multi-input multi-output Hammerstein systems is considered. For the Hammerstein model to be identified, its dynamic time-invariant subsystem is described by a controlled autoregressive model with a communication delay. The modified Kalman filter (MKF) algorithm is derived to estimate the unknown intermediate variables in the system and the MKF-based recursive least squares (LS) algorithm is presented to estimate all the unknown parameters. Furthermore, the hierarchical identification is adopted to decompose the system into two fictitious subsystems: one containing the unknown parameters in the non-linear block and the other containing the unknown parameters in the linear subsystem. Then an MKF-based hierarchical LS algorithm is derived. The convergence analysis shows the performance of the presented algorithms. The numerical simulation results indicate that the proposed algorithms are effective.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-8644
1751-8652
DOI:10.1049/iet-cta.2016.1033