Electrical Machine Winding Performance Optimization by Multi-Objective Particle Swarm Algorithm

The present work aims to optimize the magnetomotive force and the end-winding leakage inductance from a discrete distribution of conductors in electrical machines through multi-objective particle swarm heuristics. From the development of an application capable of generating the conductor distributio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energies (Basel) Ročník 17; číslo 10; s. 2286
Hlavní autoři: Martins, François S., Alvarenga, Bernardo P., Paula, Geyverson T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2024
Témata:
ISSN:1996-1073, 1996-1073
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The present work aims to optimize the magnetomotive force and the end-winding leakage inductance from a discrete distribution of conductors in electrical machines through multi-objective particle swarm heuristics. From the development of an application capable of generating the conductor distribution for different machine configurations (single or poly-phase, single or double layer, integral or fractional slots, full or shortened pitch, with the presence of empty slots, etc.) the curves of magnetomotive force and the end-winding leakage inductance associated with the winding are computed. Taking as an optimal winding the one that presents, simultaneously, less harmonic distortion of the magnetomotive force and less leakage inductance, optimization by multi-objective particle swarm was used to obtain the optimal electrical machine configuration and the results are presented.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1996-1073
1996-1073
DOI:10.3390/en17102286