Pressure-induced deactivation of core-shell nanomaterials for catalyst-assisted chemical looping

[Display omitted] •Catalyst-assisted chemical looping dry reforming is a promising technology for syngas production.•Pressure-induced collapse of the core-shell structure is reaction-related.•Increase pressure promotes carbon filaments on Ni particles and extends the presence of the low-melting-poin...

Full description

Saved in:
Bibliographic Details
Published in:Applied catalysis. B, Environmental Vol. 247; pp. 86 - 99
Main Authors: Hu, Jiawei, Galvita, Vladimir V., Poelman, Hilde, Detavernier, Christophe, Marin, Guy B.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 15.06.2019
Elsevier BV
Subjects:
ISSN:0926-3373, 1873-3883
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Catalyst-assisted chemical looping dry reforming is a promising technology for syngas production.•Pressure-induced collapse of the core-shell structure is reaction-related.•Increase pressure promotes carbon filaments on Ni particles and extends the presence of the low-melting-point FeO phase.•Adding a small amount of O2 makes the process auto-thermal, which is advantageous in eliminating carbon. Catalyst-assisted chemical looping dry reforming is a promising technology for CO-rich syngas production with maximized CO2 utilization, especially when performed auto-thermally, over core-shell nanomaterials in a double-zone reactor bed with first a Fe/Zr@Zr-Ni@Zr bifunctional catalyst and next a Fe/Zr@Zr oxygen storage material. Understanding the origin of the material deactivation under high-pressure conditions is essential to advance this technology towards industrial application. Therefore, pressure-induced material deactivation was studied through a series of on-site assessments (steady-state CH4 reforming and prolonged redox cycling at 750 °C and 1–10 bar) and ex-situ characterization (STEM-EDX, XRD and N2 adsorption-desorption). At high pressure, both Fe/Zr@Zr-Ni@Zr and Fe/Zr@Zr show reaction-related deactivation, the origin of which can be ascribed to carbon deposition and particle sintering, respectively. During regular catalyst-assisted dry reforming over Fe/Zr@Zr-Ni@Zr, the rise of pressure decreases CH4 conversion and increases carbon deposition on the Ni surface. Rapidly growing carbon filaments destroy the core-shell structure, resulting in segregation of the Ni-based particles from the catalyst bulk with concomitant severe sintering. During H2/CO2 redox cycling of Fe/Zr@Zr, an increased pressure decreases the time-averaged space-time yield of CO. In the reduction half-cycle, high pressure prolongs the existence of the FeO intermediate phase in the transformation of Fe/Zr@Zr, which decreases the material’s melting point, leading to fast sintering. Adding a small amount of O2 makes the chemical looping dry reforming process auto-thermal, which is advantageous in eliminating carbon. Nevertheless, deactivation of the double-zone reactor bed still occurs and is mainly ascribed to particle sintering, following similar principles as mentioned above. For both regular and auto-thermal catalyst-assisted chemical looping dry reforming, the decreasing ability for CO2 utilization is naturally due to the deactivation of the oxygen storage material, but also controlled by the stability of the bifunctional catalyst. The latter determines the reduction capacity of the gas product mixture in the reduction half-cycle, thereby affecting the achievable reduction degree of the oxygen storage material.
AbstractList Catalyst-assisted chemical looping dry reforming is a promising technology for CO-rich syngas production with maximized CO2 utilization, especially when performed auto-thermally, over core-shell nanomaterials in a double-zone reactor bed with first a Fe/Zr@Zr-Ni@Zr bifunctional catalyst and next a Fe/Zr@Zr oxygen storage material. Understanding the origin of the material deactivation under high-pressure conditions is essential to advance this technology towards industrial application. Therefore, pressure-induced material deactivation was studied through a series of on-site assessments (steady-state CH4 reforming and prolonged redox cycling at 750 °C and 1–10 bar) and ex-situ characterization (STEM-EDX, XRD and N2 adsorption-desorption). At high pressure, both Fe/Zr@Zr-Ni@Zr and Fe/Zr@Zr show reaction-related deactivation, the origin of which can be ascribed to carbon deposition and particle sintering, respectively. During regular catalyst-assisted dry reforming over Fe/Zr@Zr-Ni@Zr, the rise of pressure decreases CH4 conversion and increases carbon deposition on the Ni surface. Rapidly growing carbon filaments destroy the core-shell structure, resulting in segregation of the Ni-based particles from the catalyst bulk with concomitant severe sintering. During H2/CO2 redox cycling of Fe/Zr@Zr, an increased pressure decreases the time-averaged space-time yield of CO. In the reduction half-cycle, high pressure prolongs the existence of the FeO intermediate phase in the transformation of Fe/Zr@Zr, which decreases the material’s melting point, leading to fast sintering. Adding a small amount of O2 makes the chemical looping dry reforming process auto-thermal, which is advantageous in eliminating carbon. Nevertheless, deactivation of the double-zone reactor bed still occurs and is mainly ascribed to particle sintering, following similar principles as mentioned above. For both regular and auto-thermal catalyst-assisted chemical looping dry reforming, the decreasing ability for CO2 utilization is naturally due to the deactivation of the oxygen storage material, but also controlled by the stability of the bifunctional catalyst. The latter determines the reduction capacity of the gas product mixture in the reduction half-cycle, thereby affecting the achievable reduction degree of the oxygen storage material.
[Display omitted] •Catalyst-assisted chemical looping dry reforming is a promising technology for syngas production.•Pressure-induced collapse of the core-shell structure is reaction-related.•Increase pressure promotes carbon filaments on Ni particles and extends the presence of the low-melting-point FeO phase.•Adding a small amount of O2 makes the process auto-thermal, which is advantageous in eliminating carbon. Catalyst-assisted chemical looping dry reforming is a promising technology for CO-rich syngas production with maximized CO2 utilization, especially when performed auto-thermally, over core-shell nanomaterials in a double-zone reactor bed with first a Fe/Zr@Zr-Ni@Zr bifunctional catalyst and next a Fe/Zr@Zr oxygen storage material. Understanding the origin of the material deactivation under high-pressure conditions is essential to advance this technology towards industrial application. Therefore, pressure-induced material deactivation was studied through a series of on-site assessments (steady-state CH4 reforming and prolonged redox cycling at 750 °C and 1–10 bar) and ex-situ characterization (STEM-EDX, XRD and N2 adsorption-desorption). At high pressure, both Fe/Zr@Zr-Ni@Zr and Fe/Zr@Zr show reaction-related deactivation, the origin of which can be ascribed to carbon deposition and particle sintering, respectively. During regular catalyst-assisted dry reforming over Fe/Zr@Zr-Ni@Zr, the rise of pressure decreases CH4 conversion and increases carbon deposition on the Ni surface. Rapidly growing carbon filaments destroy the core-shell structure, resulting in segregation of the Ni-based particles from the catalyst bulk with concomitant severe sintering. During H2/CO2 redox cycling of Fe/Zr@Zr, an increased pressure decreases the time-averaged space-time yield of CO. In the reduction half-cycle, high pressure prolongs the existence of the FeO intermediate phase in the transformation of Fe/Zr@Zr, which decreases the material’s melting point, leading to fast sintering. Adding a small amount of O2 makes the chemical looping dry reforming process auto-thermal, which is advantageous in eliminating carbon. Nevertheless, deactivation of the double-zone reactor bed still occurs and is mainly ascribed to particle sintering, following similar principles as mentioned above. For both regular and auto-thermal catalyst-assisted chemical looping dry reforming, the decreasing ability for CO2 utilization is naturally due to the deactivation of the oxygen storage material, but also controlled by the stability of the bifunctional catalyst. The latter determines the reduction capacity of the gas product mixture in the reduction half-cycle, thereby affecting the achievable reduction degree of the oxygen storage material.
Author Marin, Guy B.
Detavernier, Christophe
Galvita, Vladimir V.
Poelman, Hilde
Hu, Jiawei
Author_xml – sequence: 1
  givenname: Jiawei
  orcidid: 0000-0003-0792-054X
  surname: Hu
  fullname: Hu, Jiawei
  organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
– sequence: 2
  givenname: Vladimir V.
  orcidid: 0000-0001-9205-7917
  surname: Galvita
  fullname: Galvita, Vladimir V.
  email: Vladimir.Galvita@UGent.be
  organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
– sequence: 3
  givenname: Hilde
  surname: Poelman
  fullname: Poelman, Hilde
  organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
– sequence: 4
  givenname: Christophe
  surname: Detavernier
  fullname: Detavernier, Christophe
  organization: Department of Solid State Sciences, Ghent University, Krijgslaan 281, S1, B-9000 Ghent, Belgium
– sequence: 5
  givenname: Guy B.
  surname: Marin
  fullname: Marin, Guy B.
  organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
BookMark eNqFkD1PwzAQhi1UJMrHP2CIxJxwtpM0YUBCFV9SJRhgNlfnQl2ldrFdpP57XMrEANMN9z7v6Z5jNrLOEmPnHAoOvL5cFrjWGOeFAN4WwAtoygM25s1E5rJp5IiNoRV1LuVEHrHjEJYAIKRoxuzt2VMIG0-5sd1GU5d1hDqaT4zG2cz1mXZpGRY0DJlF61YYyRscQtY7n6WrOGxDzDEEE2LC9YJWRuOQDc6tjX0_ZYd9StPZzzxhr3e3L9OHfPZ0_zi9meW6BIh5r4GattaTqqQaJx2V1HLe9cAJoeRlS6LFCkgCYjMXRL3WVU81CV3KpkN5wi72vWvvPjYUolq6jbfppBK8rUQl2lqk1NU-pb0LwVOvtInfr0aPZlAc1M6oWqq9UbUzqoCrZDTB5S947c0K_fY_7HqPUXr_05BXQRuyybXxpKPqnPm74AvmCZcI
CitedBy_id crossref_primary_10_1039_D1RE00209K
crossref_primary_10_1002_smll_202503222
crossref_primary_10_1016_j_cattod_2019_09_003
crossref_primary_10_1016_j_ijhydene_2020_01_112
crossref_primary_10_3390_catal10080926
crossref_primary_10_1016_j_apenergy_2022_120447
crossref_primary_10_1016_j_cej_2021_130864
crossref_primary_10_1039_C9EE03793D
crossref_primary_10_1002_asia_202301096
crossref_primary_10_1016_j_pecs_2022_101045
crossref_primary_10_3390_catal11070833
crossref_primary_10_1016_j_ijhydene_2019_05_026
crossref_primary_10_1016_j_pmatsci_2025_101540
crossref_primary_10_1016_j_apcatb_2021_120194
crossref_primary_10_1021_acs_iecr_5c00140
crossref_primary_10_1002_ente_201900925
crossref_primary_10_1007_s43938_022_00012_3
crossref_primary_10_1016_j_jcou_2020_101216
crossref_primary_10_1016_j_apcatb_2023_123531
crossref_primary_10_1016_j_cogsc_2022_100721
Cites_doi 10.1039/C7TA00822H
10.1038/nchem.1621
10.1016/j.apcatb.2018.03.004
10.1016/j.apenergy.2015.04.017
10.1002/aic.14695
10.1016/j.jcou.2016.11.003
10.1021/ie0496333
10.1016/j.jechem.2015.10.008
10.1021/ef7005707
10.1039/c3ra43965h
10.1016/j.fuel.2012.11.035
10.1039/C5TA02289D
10.1007/978-3-319-06656-1_3
10.1016/j.energy.2012.08.006
10.1016/j.apcatb.2018.08.042
10.1016/j.apcatb.2009.10.029
10.1021/ie990884z
10.1016/j.nanoen.2012.07.011
10.1016/j.apenergy.2012.09.009
10.1021/ef5027899
10.1016/j.cherd.2010.12.017
10.1016/S0008-6223(02)00308-1
10.3390/ma11071187
10.1016/j.apenergy.2016.10.114
10.1016/j.rser.2015.02.026
10.1039/C6EE03701A
10.1006/jcat.2002.3523
10.1016/j.apcatb.2014.09.007
10.1016/j.apenergy.2015.01.056
10.1016/j.fuproc.2016.10.014
10.1016/j.apcatb.2017.09.067
10.1021/acs.iecr.6b00963
10.1021/acscatal.8b01039
10.1016/j.apcata.2008.05.018
10.1002/ceat.201100649
10.1021/ef050238e
10.1021/acscatal.5b00357
10.1002/cssc.201601051
10.1007/s11244-011-9709-7
10.1016/j.jcou.2016.05.006
10.1016/j.pecs.2011.09.001
10.1016/j.cep.2017.05.003
10.1039/C7RA07320H
10.1038/nmat3700
10.1126/science.aah7161
10.1016/S0920-5861(01)00453-9
10.1016/j.jngse.2015.07.001
10.1039/C8EE01059E
10.1039/C4TA01795A
10.1039/C8TA02477D
10.1002/cctc.201301104
10.1021/acs.energyfuels.5b01986
10.1016/j.apcatb.2015.04.039
10.1021/ie5023942
10.1016/j.nanoen.2016.04.038
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Jun 15, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Jun 15, 2019
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2019.01.084
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
EndPage 99
ExternalDocumentID 10_1016_j_apcatb_2019_01_084
S0926337319300943
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
VH1
WUQ
XPP
~HD
7SR
7ST
7U5
8BQ
8FD
AGCQF
C1K
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c400t-fc0e896c754e6a7de4e911df01ea04149e29a50e30aa8b2eefcc5fe6e2c438da3
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460715100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-3373
IngestDate Wed Aug 13 06:12:05 EDT 2025
Sat Nov 29 07:10:12 EST 2025
Tue Nov 18 22:34:34 EST 2025
Sat Mar 02 16:00:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Methane
CO2 utilization
Bifunctional catalyst
Auto-thermal reforming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-fc0e896c754e6a7de4e911df01ea04149e29a50e30aa8b2eefcc5fe6e2c438da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0792-054X
0000-0001-9205-7917
PQID 2195252962
PQPubID 2045281
PageCount 14
ParticipantIDs proquest_journals_2195252962
crossref_citationtrail_10_1016_j_apcatb_2019_01_084
crossref_primary_10_1016_j_apcatb_2019_01_084
elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_01_084
PublicationCentury 2000
PublicationDate 2019-06-15
PublicationDateYYYYMMDD 2019-06-15
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Hu, Galvita, Poelman, Marin (bib0145) 2018; 11
Bhavsar, Najera, Veser (bib0060) 2012; 35
Han, Lu, Jin, Wang, Guo (bib0175) 2014; 2
Löfberg, Kane, Guerrero-Caballero, Jalowiecki-Duhamel (bib0075) 2017; 122
Dharanipragada, Galvita, Poelman, Buelens, Detavernier, Marin (bib0295) 2018; 222
Galvita, Poelman, Detavernier, Marin (bib0085) 2015; 164
Tang, Xu, Fan (bib0005) 2015; 151
Hu, Galvita, Poelman, Detavernier, Marin (bib0185) 2017; 17
Tomishige, Himeno, Matsuo, Yoshinaga, Fujimoto (bib0235) 2000; 39
Chein, Chen, Yu, Chung (bib0215) 2015; 26
Hamers, Gallucci, Williams, Cobden, van Sint Annaland (bib0255) 2015; 29
Galvita, Poelman, Marin (bib0120) 2011; 54
Kathe, Empfield, Sandvik, Fryer, Zhang, Blair, Fan (bib0080) 2017; 10
Nolang (bib0265) 2013
Nordness, Han, Zhou, Bollas (bib0205) 2015; 30
Theofanidis, Galvita, Poelman, Dharanipragada, Longo, Meledina, Van Tendeloo, Detavernier, Marin (bib0220) 2018; 8
García-Labiano, Adánez, Diego, Gayán, Abad (bib0250) 2006; 20
Theofanidis, Galvita, Poelman, Batchu, Buelens, Detavernier, Marin (bib0285) 2018; 239
Najera, Solunke, Gardner, Veser (bib0055) 2011; 89
Kohn, Castaldi, Farrauto (bib0135) 2010; 94
Fan, Zeng, Luo (bib0065) 2015; 61
Luyben (bib0270) 2014; 53
Bulfin, Vieten, Starr, Azarpira, Zachäus, Hävecker, Skorupska, Schmücker, Roeb, Sattler (bib0170) 2017; 5
Zedillo (bib0040) 2008
Dry (bib0200) 2002; 71
Takenaka, Ogihara, Otsuka (bib0240) 2002; 208
Chen, Lin (bib0130) 2016; 162
Usman, Wan Daud, Abbas (bib0225) 2015; 45
Dharanipragada, Buelens, Poelman, De Grave, Galvita, Marin (bib0155) 2015; 3
Guo, Yang, Hu, Hu, DaCosta, Fan (bib0025) 2016; 25
Ginsburg, Pina, Solh, Lasa (bib0275) 2005; 44
He, Li, Zhao, Huang, Wei, Li (bib0165) 2013; 108
Zhang, Li (bib0190) 2015; 176–177
Das, D’Alessandro, Peterson (bib0020) 2015
Voiry, Yamaguchi, Li, Silva, Alves, Fujita, Chen, Asefa, Shenoy, Eda, Chhowalla (bib0095) 2013; 12
Dharanipragada, Meledina, Galvita, Poelman, Turner, Van Tendeloo, Detavernier, Marin (bib0290) 2016; 55
Martens, Bogaerts, Kimpe, Jacobs, Marin, Rabaey, Saeys, Verhelst (bib0050) 2017; 10
Liu, Yuan, Ji, Li, Zhang, Wang, Wu (bib0105) 2017; 7
Cao, Gao, Jin, Zhou, Cohron, Zhao, Liu, Pan (bib0100) 2008; 22
Buelens, Galvita, Poelman, Detavernier, Marin (bib0115) 2016; 354
Spallina, Marinello, Gallucci, Romano, Van Sint Annaland (bib0210) 2017; 156
Symes, Cronin (bib0090) 2013; 5
Christian Enger, Lødeng, Holmen (bib0125) 2008; 346
Hu, Galvita, Poelman, Detavernier, Marin (bib0195) 2018; 231
Huang, Jiang, He, Chen, Wei, Zhao, Zheng, Feng, Zhao, Li (bib0070) 2016; 25
Chen, Jiang, Li, Tian, Yan (bib0045) 2017; 185
Theofanidis, Galvita, Poelman, Marin (bib0280) 2015; 5
Zeng, Cheng, Fan, Fan, Gong (bib0150) 2018; 2
Kenarsari, Yang, Jiang, Zhang, Wang, Russell, Wei, Fan (bib0035) 2013; 3
Otsuka, Ogihara, Takenaka (bib0245) 2003; 41
Zeng, Qiu, Peng, Chen, Zeng, Zhang, Xiao (bib0160) 2018; 6
Shafiefarhood, Galinsky, Huang, Chen, Li (bib0180) 2014; 6
Chorkendorff, Niemantsverdriet (bib0260) 2006
Ni, Chen, Lin, Kawi (bib0230) 2012; 1
Adanez, Abad, Garcia-Labiano, Gayan, Diego (bib0010) 2012; 38
Mondal, Balsora, Varshney (bib0030) 2012; 46
Verbeeck, Buelens, Galvita, Marin, Van Geem, Rabaey (bib0110) 2018; 11
Hu, Buelens, Theofanidis, Galvita, Poelman, Marin (bib0140) 2016; 16
Li, Duan, Luebke, Morreale (bib0015) 2013; 102
Hu (10.1016/j.apcatb.2019.01.084_bib0140) 2016; 16
Adanez (10.1016/j.apcatb.2019.01.084_bib0010) 2012; 38
Mondal (10.1016/j.apcatb.2019.01.084_bib0030) 2012; 46
Hu (10.1016/j.apcatb.2019.01.084_bib0185) 2017; 17
Chorkendorff (10.1016/j.apcatb.2019.01.084_bib0260) 2006
Chen (10.1016/j.apcatb.2019.01.084_bib0130) 2016; 162
Theofanidis (10.1016/j.apcatb.2019.01.084_bib0280) 2015; 5
Kohn (10.1016/j.apcatb.2019.01.084_bib0135) 2010; 94
Otsuka (10.1016/j.apcatb.2019.01.084_bib0245) 2003; 41
Luyben (10.1016/j.apcatb.2019.01.084_bib0270) 2014; 53
Kenarsari (10.1016/j.apcatb.2019.01.084_bib0035) 2013; 3
Dharanipragada (10.1016/j.apcatb.2019.01.084_bib0295) 2018; 222
Voiry (10.1016/j.apcatb.2019.01.084_bib0095) 2013; 12
Galvita (10.1016/j.apcatb.2019.01.084_bib0120) 2011; 54
Theofanidis (10.1016/j.apcatb.2019.01.084_bib0220) 2018; 8
Zedillo (10.1016/j.apcatb.2019.01.084_bib0040) 2008
Löfberg (10.1016/j.apcatb.2019.01.084_bib0075) 2017; 122
Verbeeck (10.1016/j.apcatb.2019.01.084_bib0110) 2018; 11
Bhavsar (10.1016/j.apcatb.2019.01.084_bib0060) 2012; 35
Shafiefarhood (10.1016/j.apcatb.2019.01.084_bib0180) 2014; 6
Das (10.1016/j.apcatb.2019.01.084_bib0020) 2015
Martens (10.1016/j.apcatb.2019.01.084_bib0050) 2017; 10
Galvita (10.1016/j.apcatb.2019.01.084_bib0085) 2015; 164
Ni (10.1016/j.apcatb.2019.01.084_bib0230) 2012; 1
Kathe (10.1016/j.apcatb.2019.01.084_bib0080) 2017; 10
Tomishige (10.1016/j.apcatb.2019.01.084_bib0235) 2000; 39
Dry (10.1016/j.apcatb.2019.01.084_bib0200) 2002; 71
Liu (10.1016/j.apcatb.2019.01.084_bib0105) 2017; 7
Zeng (10.1016/j.apcatb.2019.01.084_bib0160) 2018; 6
Bulfin (10.1016/j.apcatb.2019.01.084_bib0170) 2017; 5
Takenaka (10.1016/j.apcatb.2019.01.084_bib0240) 2002; 208
Fan (10.1016/j.apcatb.2019.01.084_bib0065) 2015; 61
He (10.1016/j.apcatb.2019.01.084_bib0165) 2013; 108
Usman (10.1016/j.apcatb.2019.01.084_bib0225) 2015; 45
Buelens (10.1016/j.apcatb.2019.01.084_bib0115) 2016; 354
Huang (10.1016/j.apcatb.2019.01.084_bib0070) 2016; 25
Nordness (10.1016/j.apcatb.2019.01.084_bib0205) 2015; 30
Symes (10.1016/j.apcatb.2019.01.084_bib0090) 2013; 5
Hu (10.1016/j.apcatb.2019.01.084_bib0195) 2018; 231
Dharanipragada (10.1016/j.apcatb.2019.01.084_bib0290) 2016; 55
Theofanidis (10.1016/j.apcatb.2019.01.084_bib0285) 2018; 239
Hu (10.1016/j.apcatb.2019.01.084_bib0145) 2018; 11
Guo (10.1016/j.apcatb.2019.01.084_bib0025) 2016; 25
García-Labiano (10.1016/j.apcatb.2019.01.084_bib0250) 2006; 20
Spallina (10.1016/j.apcatb.2019.01.084_bib0210) 2017; 156
Zeng (10.1016/j.apcatb.2019.01.084_bib0150) 2018; 2
Christian Enger (10.1016/j.apcatb.2019.01.084_bib0125) 2008; 346
Zhang (10.1016/j.apcatb.2019.01.084_bib0190) 2015; 176–177
Hamers (10.1016/j.apcatb.2019.01.084_bib0255) 2015; 29
Li (10.1016/j.apcatb.2019.01.084_bib0015) 2013; 102
Cao (10.1016/j.apcatb.2019.01.084_bib0100) 2008; 22
Chen (10.1016/j.apcatb.2019.01.084_bib0045) 2017; 185
Ginsburg (10.1016/j.apcatb.2019.01.084_bib0275) 2005; 44
Han (10.1016/j.apcatb.2019.01.084_bib0175) 2014; 2
Najera (10.1016/j.apcatb.2019.01.084_bib0055) 2011; 89
Chein (10.1016/j.apcatb.2019.01.084_bib0215) 2015; 26
Dharanipragada (10.1016/j.apcatb.2019.01.084_bib0155) 2015; 3
Tang (10.1016/j.apcatb.2019.01.084_bib0005) 2015; 151
Nolang (10.1016/j.apcatb.2019.01.084_bib0265) 2013
References_xml – volume: 16
  start-page: 8
  year: 2016
  end-page: 16
  ident: bib0140
  article-title: CO
  publication-title: J. CO
– volume: 44
  start-page: 4846
  year: 2005
  end-page: 4854
  ident: bib0275
  article-title: Coke Formation over a nickel catalyst under methane dry reforming conditions: thermodynamic and kinetic models
  publication-title: Ind. Eng. Chem. Res.
– start-page: 33
  year: 2015
  end-page: 60
  ident: bib0020
  article-title: Carbon dioxide separation, capture, and storage in porous materials
  publication-title: Neutron Applications in Materials for Energy. Neutron Scattering Applications and Techniques
– volume: 10
  start-page: 1345
  year: 2017
  end-page: 1349
  ident: bib0080
  article-title: Utilization of CO
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 674
  year: 2012
  end-page: 686
  ident: bib0230
  article-title: Carbon deposition on borated alumina supported nano-sized Ni catalysts for dry reforming of CH
  publication-title: Nano Energy
– volume: 53
  start-page: 14423
  year: 2014
  end-page: 14439
  ident: bib0270
  article-title: Design and control of the dry methane reforming process
  publication-title: Ind. Eng. Chem. Res.
– volume: 25
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib0025
  article-title: CO
  publication-title: Nano Energy
– volume: 54
  start-page: 907
  year: 2011
  end-page: 913
  ident: bib0120
  article-title: Hydrogen production from methane and carbon dioxide by catalyst-assisted chemical looping
  publication-title: Top. Catal.
– volume: 231
  start-page: 123
  year: 2018
  end-page: 136
  ident: bib0195
  article-title: Catalyst-assisted chemical looping auto-thermal dry reforming: spatial structuring effects on process efficiency
  publication-title: Appl. Catal.
– volume: 2
  start-page: 13016
  year: 2014
  end-page: 13023
  ident: bib0175
  article-title: Fe
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 1039
  year: 2017
  end-page: 1055
  ident: bib0050
  article-title: The chemical route to a carbon dioxide neutral world
  publication-title: ChemSusChem
– volume: 45
  start-page: 710
  year: 2015
  end-page: 744
  ident: bib0225
  article-title: Dry reforming of methane: influence of process parameters—a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 222
  start-page: 59
  year: 2018
  end-page: 72
  ident: bib0295
  article-title: Bifunctional Co- and Ni- ferrites for catalyst-assisted chemical looping with alcohols
  publication-title: Appl. Catal. B
– volume: 8
  start-page: 5983
  year: 2018
  end-page: 5995
  ident: bib0220
  article-title: Fe-containing magnesium aluminate support for stability and carbon control during methane reforming
  publication-title: ACS Catal.
– volume: 94
  start-page: 125
  year: 2010
  end-page: 133
  ident: bib0135
  article-title: Auto-thermal and dry reforming of landfill gas over a Rh/γ-Al
  publication-title: Appl. Catal. B
– volume: 71
  start-page: 227
  year: 2002
  end-page: 241
  ident: bib0200
  article-title: The Fischer–tropsch process: 1950–2000
  publication-title: Catal. Today
– volume: 3
  start-page: 22739
  year: 2013
  end-page: 22773
  ident: bib0035
  article-title: Review of recent advances in carbon dioxide separation and capture
  publication-title: RSC Adv.
– volume: 5
  start-page: 403
  year: 2013
  ident: bib0090
  article-title: Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer
  publication-title: Nat. Chem.
– volume: 39
  start-page: 1891
  year: 2000
  end-page: 1897
  ident: bib0235
  article-title: Catalytic performance and carbon deposition behavior of a NiO−MgO solid solution in methane reforming with carbon dioxide under pressurized conditions
  publication-title: Ind. Eng. Chem. Res.
– volume: 29
  start-page: 2656
  year: 2015
  end-page: 2663
  ident: bib0255
  article-title: Reactivity of oxygen carriers for chemical-looping combustion in packed bed reactors under pressurized conditions
  publication-title: Energy Fuels
– volume: 102
  start-page: 1439
  year: 2013
  end-page: 1447
  ident: bib0015
  article-title: Advances in CO
  publication-title: Appl. Energy
– volume: 354
  start-page: 449
  year: 2016
  end-page: 452
  ident: bib0115
  article-title: Super-dry reforming of methane intensifies CO
  publication-title: Science
– volume: 6
  start-page: 11306
  year: 2018
  end-page: 11316
  ident: bib0160
  article-title: Enhanced hydrogen production performance through controllable redox exsolution within CoFeAlO
  publication-title: J. Mater. Chem. A
– volume: 151
  start-page: 143
  year: 2015
  end-page: 156
  ident: bib0005
  article-title: Progress in oxygen carrier development of methane-based chemical-looping reforming: a review
  publication-title: Appl. Energy
– volume: 89
  start-page: 1533
  year: 2011
  end-page: 1543
  ident: bib0055
  article-title: Carbon capture and utilization via chemical looping dry reforming
  publication-title: Chem. Eng. Res. Des.
– volume: 108
  start-page: 465
  year: 2013
  end-page: 473
  ident: bib0165
  article-title: The use of La
  publication-title: Fuel
– volume: 156
  start-page: 156
  year: 2017
  end-page: 170
  ident: bib0210
  article-title: Chemical looping reforming in packed-bed reactors: Modelling, experimental validation and large-scale reactor design
  publication-title: Fuel Process. Technol.
– volume: 5
  start-page: 7912
  year: 2017
  end-page: 7919
  ident: bib0170
  article-title: Redox chemistry of CaMnO
  publication-title: J. Mater. Chem. A
– volume: 20
  start-page: 26
  year: 2006
  end-page: 33
  ident: bib0250
  article-title: Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carriers for chemical-looping combustion
  publication-title: Energy Fuels
– volume: 26
  start-page: 617
  year: 2015
  end-page: 629
  ident: bib0215
  article-title: Thermodynamic analysis of dry reforming of CH
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 185
  start-page: 687
  year: 2017
  end-page: 697
  ident: bib0045
  article-title: Energy-efficient biogas reforming process to produce syngas: the enhanced methane conversion by O
  publication-title: Appl. Energy
– year: 2006
  ident: bib0260
  article-title: Concepts of Modern Catalysis and Kinetics
– volume: 164
  start-page: 184
  year: 2015
  end-page: 191
  ident: bib0085
  article-title: Catalyst-assisted chemical looping for CO
  publication-title: Appl. Catal. B
– volume: 17
  start-page: 20
  year: 2017
  end-page: 31
  ident: bib0185
  article-title: A core-shell structured Fe
  publication-title: J. CO
– volume: 239
  start-page: 502
  year: 2018
  end-page: 512
  ident: bib0285
  article-title: Mechanism of carbon deposits removal from supported Ni catalysts
  publication-title: Appl. Catal. B
– volume: 22
  start-page: 1720
  year: 2008
  end-page: 1730
  ident: bib0100
  article-title: Synthesis gas production with an adjustable H
  publication-title: Energy Fuels
– volume: 55
  start-page: 5911
  year: 2016
  end-page: 5922
  ident: bib0290
  article-title: Deactivation study of Fe
  publication-title: Ind. Eng. Chem. Res.
– volume: 30
  start-page: 504
  year: 2015
  end-page: 514
  ident: bib0205
  article-title: High-pressure chemical-looping of methane and synthesis gas with Ni and Cu oxygen carriers
  publication-title: Energy Fuels
– volume: 208
  start-page: 54
  year: 2002
  end-page: 63
  ident: bib0240
  article-title: Structural change of Ni species in Ni/SiO
  publication-title: J. Catal.
– volume: 162
  start-page: 1141
  year: 2016
  end-page: 1152
  ident: bib0130
  article-title: Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery
  publication-title: Appl. Energy
– volume: 41
  start-page: 223
  year: 2003
  end-page: 233
  ident: bib0245
  article-title: Decomposition of methane over Ni catalysts supported on carbon fibers formed from different hydrocarbons
  publication-title: Carbon
– volume: 7
  start-page: 52414
  year: 2017
  end-page: 52422
  ident: bib0105
  article-title: Syngas production: diverse H
  publication-title: RSC Adv.
– year: 2008
  ident: bib0040
  article-title: Global Warming: Looking Beyond Kyoto
– volume: 6
  start-page: 790
  year: 2014
  end-page: 799
  ident: bib0180
  article-title: Fe
  publication-title: ChemCatChem
– volume: 35
  start-page: 1281
  year: 2012
  end-page: 1290
  ident: bib0060
  article-title: Chemical looping dry reforming as novel, intensified process for CO
  publication-title: Chem. Eng. Technol.
– volume: 11
  start-page: 1788
  year: 2018
  end-page: 1802
  ident: bib0110
  article-title: Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 850
  year: 2013
  ident: bib0095
  article-title: Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution
  publication-title: Nat. Mater.
– volume: 122
  start-page: 523
  year: 2017
  end-page: 529
  ident: bib0075
  article-title: Chemical looping dry reforming of methane: toward shale-gas and biogas valorization
  publication-title: Chem. Eng. Process.: Process Intensif.
– volume: 38
  start-page: 215
  year: 2012
  end-page: 282
  ident: bib0010
  article-title: Progress in chemical-looping combustion and reforming technologies
  publication-title: Prog. Energy Combust. Sci.
– volume: 11
  start-page: 1187
  year: 2018
  ident: bib0145
  article-title: Advanced chemical looping materials for CO
  publication-title: Materials
– volume: 25
  start-page: 62
  year: 2016
  end-page: 70
  ident: bib0070
  article-title: Evaluation of multi-cycle performance of chemical looping dry reforming using CO
  publication-title: J. Energy Chem.
– volume: 46
  start-page: 431
  year: 2012
  end-page: 441
  ident: bib0030
  article-title: Progress and trends in CO
  publication-title: Energy
– volume: 2
  start-page: 349
  year: 2018
  ident: bib0150
  article-title: Metal oxide redox chemistry for chemical looping processes
  publication-title: Int. Rev. Chem. Eng.
– volume: 176–177
  start-page: 513
  year: 2015
  end-page: 521
  ident: bib0190
  article-title: Coke-resistant Ni@SiO
  publication-title: Appl. Catal. B
– volume: 61
  start-page: 2
  year: 2015
  end-page: 22
  ident: bib0065
  article-title: Chemical-looping technology platform
  publication-title: AlChE J.
– volume: 5
  start-page: 3028
  year: 2015
  end-page: 3039
  ident: bib0280
  article-title: Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe
  publication-title: ACS Catal.
– year: 2013
  ident: bib0265
  article-title: Ekvicalc and Ekvibase: Version 4.30; Svensk Energi Data
– volume: 3
  start-page: 16251
  year: 2015
  end-page: 16262
  ident: bib0155
  article-title: Mg–Fe–Al–O for advanced CO
  publication-title: J. Mater. Chem. A
– volume: 346
  start-page: 1
  year: 2008
  end-page: 27
  ident: bib0125
  article-title: A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts
  publication-title: Appl. Catal. A Gen.
– volume: 5
  start-page: 7912
  year: 2017
  ident: 10.1016/j.apcatb.2019.01.084_bib0170
  article-title: Redox chemistry of CaMnO3 and Ca0.8Sr0.2MnO3 oxygen storage perovskites
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00822H
– volume: 5
  start-page: 403
  year: 2013
  ident: 10.1016/j.apcatb.2019.01.084_bib0090
  article-title: Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1621
– volume: 231
  start-page: 123
  year: 2018
  ident: 10.1016/j.apcatb.2019.01.084_bib0195
  article-title: Catalyst-assisted chemical looping auto-thermal dry reforming: spatial structuring effects on process efficiency
  publication-title: Appl. Catal.
  doi: 10.1016/j.apcatb.2018.03.004
– volume: 151
  start-page: 143
  year: 2015
  ident: 10.1016/j.apcatb.2019.01.084_bib0005
  article-title: Progress in oxygen carrier development of methane-based chemical-looping reforming: a review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.04.017
– volume: 61
  start-page: 2
  year: 2015
  ident: 10.1016/j.apcatb.2019.01.084_bib0065
  article-title: Chemical-looping technology platform
  publication-title: AlChE J.
  doi: 10.1002/aic.14695
– volume: 17
  start-page: 20
  year: 2017
  ident: 10.1016/j.apcatb.2019.01.084_bib0185
  article-title: A core-shell structured Fe2O3/ZrO2@ZrO2 nanomaterial with enhanced redox activity and stability for CO2 conversion
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2016.11.003
– volume: 44
  start-page: 4846
  year: 2005
  ident: 10.1016/j.apcatb.2019.01.084_bib0275
  article-title: Coke Formation over a nickel catalyst under methane dry reforming conditions: thermodynamic and kinetic models
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0496333
– volume: 25
  start-page: 62
  year: 2016
  ident: 10.1016/j.apcatb.2019.01.084_bib0070
  article-title: Evaluation of multi-cycle performance of chemical looping dry reforming using CO2 as an oxidant with Fe–Ni bimetallic oxides
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2015.10.008
– volume: 22
  start-page: 1720
  year: 2008
  ident: 10.1016/j.apcatb.2019.01.084_bib0100
  article-title: Synthesis gas production with an adjustable H2/CO ratio through the coal gasification process: effects of coal ranks and methane addition
  publication-title: Energy Fuels
  doi: 10.1021/ef7005707
– volume: 3
  start-page: 22739
  year: 2013
  ident: 10.1016/j.apcatb.2019.01.084_bib0035
  article-title: Review of recent advances in carbon dioxide separation and capture
  publication-title: RSC Adv.
  doi: 10.1039/c3ra43965h
– volume: 108
  start-page: 465
  year: 2013
  ident: 10.1016/j.apcatb.2019.01.084_bib0165
  article-title: The use of La1−xSrxFeO3 perovskite-type oxides as oxygen carriers in chemical-looping reforming of methane
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.11.035
– volume: 3
  start-page: 16251
  year: 2015
  ident: 10.1016/j.apcatb.2019.01.084_bib0155
  article-title: Mg–Fe–Al–O for advanced CO2 to CO conversion: carbon monoxide yield vs. Oxygen storage capacity
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02289D
– start-page: 33
  year: 2015
  ident: 10.1016/j.apcatb.2019.01.084_bib0020
  article-title: Carbon dioxide separation, capture, and storage in porous materials
  doi: 10.1007/978-3-319-06656-1_3
– volume: 46
  start-page: 431
  year: 2012
  ident: 10.1016/j.apcatb.2019.01.084_bib0030
  article-title: Progress and trends in CO2 capture/separation technologies: a review
  publication-title: Energy
  doi: 10.1016/j.energy.2012.08.006
– volume: 239
  start-page: 502
  year: 2018
  ident: 10.1016/j.apcatb.2019.01.084_bib0285
  article-title: Mechanism of carbon deposits removal from supported Ni catalysts
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.08.042
– volume: 94
  start-page: 125
  year: 2010
  ident: 10.1016/j.apcatb.2019.01.084_bib0135
  article-title: Auto-thermal and dry reforming of landfill gas over a Rh/γ-Al2O3 monolith catalyst
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2009.10.029
– volume: 39
  start-page: 1891
  year: 2000
  ident: 10.1016/j.apcatb.2019.01.084_bib0235
  article-title: Catalytic performance and carbon deposition behavior of a NiO−MgO solid solution in methane reforming with carbon dioxide under pressurized conditions
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie990884z
– volume: 1
  start-page: 674
  year: 2012
  ident: 10.1016/j.apcatb.2019.01.084_bib0230
  article-title: Carbon deposition on borated alumina supported nano-sized Ni catalysts for dry reforming of CH4
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.07.011
– volume: 102
  start-page: 1439
  year: 2013
  ident: 10.1016/j.apcatb.2019.01.084_bib0015
  article-title: Advances in CO2 capture technology: a patent review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.09.009
– volume: 29
  start-page: 2656
  year: 2015
  ident: 10.1016/j.apcatb.2019.01.084_bib0255
  article-title: Reactivity of oxygen carriers for chemical-looping combustion in packed bed reactors under pressurized conditions
  publication-title: Energy Fuels
  doi: 10.1021/ef5027899
– volume: 89
  start-page: 1533
  year: 2011
  ident: 10.1016/j.apcatb.2019.01.084_bib0055
  article-title: Carbon capture and utilization via chemical looping dry reforming
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2010.12.017
– volume: 41
  start-page: 223
  year: 2003
  ident: 10.1016/j.apcatb.2019.01.084_bib0245
  article-title: Decomposition of methane over Ni catalysts supported on carbon fibers formed from different hydrocarbons
  publication-title: Carbon
  doi: 10.1016/S0008-6223(02)00308-1
– volume: 11
  start-page: 1187
  year: 2018
  ident: 10.1016/j.apcatb.2019.01.084_bib0145
  article-title: Advanced chemical looping materials for CO2 utilization: a Review
  publication-title: Materials
  doi: 10.3390/ma11071187
– volume: 2
  start-page: 349
  year: 2018
  ident: 10.1016/j.apcatb.2019.01.084_bib0150
  article-title: Metal oxide redox chemistry for chemical looping processes
  publication-title: Int. Rev. Chem. Eng.
– volume: 185
  start-page: 687
  year: 2017
  ident: 10.1016/j.apcatb.2019.01.084_bib0045
  article-title: Energy-efficient biogas reforming process to produce syngas: the enhanced methane conversion by O2
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.10.114
– year: 2013
  ident: 10.1016/j.apcatb.2019.01.084_bib0265
– volume: 45
  start-page: 710
  year: 2015
  ident: 10.1016/j.apcatb.2019.01.084_bib0225
  article-title: Dry reforming of methane: influence of process parameters—a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.02.026
– volume: 10
  start-page: 1345
  year: 2017
  ident: 10.1016/j.apcatb.2019.01.084_bib0080
  article-title: Utilization of CO2 as a partial substitute for methane feedstock in chemical looping methane-steam redox processes for syngas production
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03701A
– volume: 208
  start-page: 54
  year: 2002
  ident: 10.1016/j.apcatb.2019.01.084_bib0240
  article-title: Structural change of Ni species in Ni/SiO2 catalyst during decomposition of methane
  publication-title: J. Catal.
  doi: 10.1006/jcat.2002.3523
– volume: 164
  start-page: 184
  year: 2015
  ident: 10.1016/j.apcatb.2019.01.084_bib0085
  article-title: Catalyst-assisted chemical looping for CO2 conversion to CO
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2014.09.007
– volume: 162
  start-page: 1141
  year: 2016
  ident: 10.1016/j.apcatb.2019.01.084_bib0130
  article-title: Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.01.056
– volume: 156
  start-page: 156
  year: 2017
  ident: 10.1016/j.apcatb.2019.01.084_bib0210
  article-title: Chemical looping reforming in packed-bed reactors: Modelling, experimental validation and large-scale reactor design
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.10.014
– volume: 222
  start-page: 59
  year: 2018
  ident: 10.1016/j.apcatb.2019.01.084_bib0295
  article-title: Bifunctional Co- and Ni- ferrites for catalyst-assisted chemical looping with alcohols
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.09.067
– volume: 55
  start-page: 5911
  year: 2016
  ident: 10.1016/j.apcatb.2019.01.084_bib0290
  article-title: Deactivation study of Fe2O3–CeO2 during redox cycles for CO production from CO2
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b00963
– volume: 8
  start-page: 5983
  year: 2018
  ident: 10.1016/j.apcatb.2019.01.084_bib0220
  article-title: Fe-containing magnesium aluminate support for stability and carbon control during methane reforming
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01039
– volume: 346
  start-page: 1
  year: 2008
  ident: 10.1016/j.apcatb.2019.01.084_bib0125
  article-title: A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2008.05.018
– volume: 35
  start-page: 1281
  year: 2012
  ident: 10.1016/j.apcatb.2019.01.084_bib0060
  article-title: Chemical looping dry reforming as novel, intensified process for CO2 activation
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201100649
– volume: 20
  start-page: 26
  year: 2006
  ident: 10.1016/j.apcatb.2019.01.084_bib0250
  article-title: Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carriers for chemical-looping combustion
  publication-title: Energy Fuels
  doi: 10.1021/ef050238e
– volume: 5
  start-page: 3028
  year: 2015
  ident: 10.1016/j.apcatb.2019.01.084_bib0280
  article-title: Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00357
– volume: 10
  start-page: 1039
  year: 2017
  ident: 10.1016/j.apcatb.2019.01.084_bib0050
  article-title: The chemical route to a carbon dioxide neutral world
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601051
– volume: 54
  start-page: 907
  year: 2011
  ident: 10.1016/j.apcatb.2019.01.084_bib0120
  article-title: Hydrogen production from methane and carbon dioxide by catalyst-assisted chemical looping
  publication-title: Top. Catal.
  doi: 10.1007/s11244-011-9709-7
– volume: 16
  start-page: 8
  year: 2016
  ident: 10.1016/j.apcatb.2019.01.084_bib0140
  article-title: CO2 conversion to CO by auto-thermal catalyst-assisted chemical looping
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2016.05.006
– volume: 38
  start-page: 215
  year: 2012
  ident: 10.1016/j.apcatb.2019.01.084_bib0010
  article-title: Progress in chemical-looping combustion and reforming technologies
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2011.09.001
– volume: 122
  start-page: 523
  year: 2017
  ident: 10.1016/j.apcatb.2019.01.084_bib0075
  article-title: Chemical looping dry reforming of methane: toward shale-gas and biogas valorization
  publication-title: Chem. Eng. Process.: Process Intensif.
  doi: 10.1016/j.cep.2017.05.003
– volume: 7
  start-page: 52414
  year: 2017
  ident: 10.1016/j.apcatb.2019.01.084_bib0105
  article-title: Syngas production: diverse H2/CO range by regulating carbonates electrolyte composition from CO2/H2O via co-electrolysis in eutectic molten salts
  publication-title: RSC Adv.
  doi: 10.1039/C7RA07320H
– year: 2008
  ident: 10.1016/j.apcatb.2019.01.084_bib0040
– volume: 12
  start-page: 850
  year: 2013
  ident: 10.1016/j.apcatb.2019.01.084_bib0095
  article-title: Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3700
– volume: 354
  start-page: 449
  year: 2016
  ident: 10.1016/j.apcatb.2019.01.084_bib0115
  article-title: Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle
  publication-title: Science
  doi: 10.1126/science.aah7161
– volume: 71
  start-page: 227
  year: 2002
  ident: 10.1016/j.apcatb.2019.01.084_bib0200
  article-title: The Fischer–tropsch process: 1950–2000
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(01)00453-9
– volume: 26
  start-page: 617
  year: 2015
  ident: 10.1016/j.apcatb.2019.01.084_bib0215
  article-title: Thermodynamic analysis of dry reforming of CH4 with CO2 at high pressures
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.07.001
– volume: 11
  start-page: 1788
  year: 2018
  ident: 10.1016/j.apcatb.2019.01.084_bib0110
  article-title: Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01059E
– volume: 2
  start-page: 13016
  year: 2014
  ident: 10.1016/j.apcatb.2019.01.084_bib0175
  article-title: Fe3O4/PANI/m-SiO2 as robust reactive catalyst supports for noble metal nanoparticles with improved stability and recyclability
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01795A
– volume: 6
  start-page: 11306
  year: 2018
  ident: 10.1016/j.apcatb.2019.01.084_bib0160
  article-title: Enhanced hydrogen production performance through controllable redox exsolution within CoFeAlOx spinel oxygen carrier materials
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02477D
– volume: 6
  start-page: 790
  year: 2014
  ident: 10.1016/j.apcatb.2019.01.084_bib0180
  article-title: Fe2O3@LaxSr1−xFeO3 core-shell redox catalyst for methane partial oxidation
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201301104
– volume: 30
  start-page: 504
  year: 2015
  ident: 10.1016/j.apcatb.2019.01.084_bib0205
  article-title: High-pressure chemical-looping of methane and synthesis gas with Ni and Cu oxygen carriers
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.5b01986
– volume: 176–177
  start-page: 513
  year: 2015
  ident: 10.1016/j.apcatb.2019.01.084_bib0190
  article-title: Coke-resistant Ni@SiO2 catalyst for dry reforming of methane
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2015.04.039
– volume: 53
  start-page: 14423
  year: 2014
  ident: 10.1016/j.apcatb.2019.01.084_bib0270
  article-title: Design and control of the dry methane reforming process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie5023942
– volume: 25
  start-page: 1
  year: 2016
  ident: 10.1016/j.apcatb.2019.01.084_bib0025
  article-title: CO2 removal from flue gas with amine-impregnated titanate nanotubes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.038
– year: 2006
  ident: 10.1016/j.apcatb.2019.01.084_bib0260
SSID ssj0002328
Score 2.4105437
Snippet [Display omitted] •Catalyst-assisted chemical looping dry reforming is a promising technology for syngas production.•Pressure-induced collapse of the...
Catalyst-assisted chemical looping dry reforming is a promising technology for CO-rich syngas production with maximized CO2 utilization, especially when...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 86
SubjectTerms Auto-thermal reforming
Bifunctional catalyst
Carbon
Carbon dioxide
Catalysis
Catalysts
CO2 utilization
Control stability
Core-shell structure
Cycles
Deactivation
Deposition
Filaments
High pressure
Industrial applications
Iron
Melting point
Melting points
Methane
Nanomaterials
Nanotechnology
Nickel
Organic chemistry
Oxygen
Phase transitions
Pressure
Reactors
Redox properties
Reduction
Reforming
Sintering
Synthesis gas
Zirconium
Title Pressure-induced deactivation of core-shell nanomaterials for catalyst-assisted chemical looping
URI https://dx.doi.org/10.1016/j.apcatb.2019.01.084
https://www.proquest.com/docview/2195252962
Volume 247
WOSCitedRecordID wos000460715100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002328
  issn: 0926-3373
  databaseCode: AIEXJ
  dateStart: 19950211
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FFAk4IAhUFAraA7doI8defx1LKSoIVRxKlZtZr8eSK2NHsRvaH9T_yax31_kSlB64WImVXa0zLzNvN_NmCHk_DdDxSleyCAAYTzkwMXUDJoCDdFwBvhYKfw3PzqLZLP42GNxaLcyyDKsqur6O5__V1HgPja2ks_cwdz8p3sDXaHS8otnx-k-G14K_BTDcbV-pf_czUOKFZc8NVeFK1qgE0HElqhopq15Wl3HYHefcNC1DUq0QkI2lLSlQ1p24ap3OWg5rRhXNZPyh864r-ZwoV8jpIFOIX1D0aT-iXBaawF6UIit-FovxxaT31zWU5oT2tCizHoMfoRWqRXBhVIx9gYT1MwwlmwqYVnHaw0iEh-fppibWL7u6FKfxrLZgdvdG91Ta8f76IOJyIub42KnK24u7mqy6Cd1mse2tINinJtqst8tEz5KoWRJnmuAsD8ieG_pxNCR7R59PZl_6kI-0tAv59jGsRrNLJNxdzZ840BYb6CjO-TPy1OxN6JHG1HMygGpEHh3bloAj8mSteuWI7G9YmZoo0bwgP7YhSNchSOucriBINyBIEYJ0B4LUQpAaCL4k3z-dnB-fMtPJg0mMES3LpQNRHMjQ5xCIMENHgEE2y50pCIfjJh3cWPgOeI4QUeoC5FJlQQbgSu5FmfD2ybCqK3hFqC9xtM_T3EljjsEjkhHnueQ5l1EoQnFAPPvdJtKUuVfdVsrkb5Y9IKwfNddlXu74fGjNlhiqqilogli8Y-ShtXJivEaTIG3wXZUB4b6-50LekMerH9QhGbaLK3hLHsplWzSLdwanvwEnCske
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pressure-induced+deactivation+of+core-shell+nanomaterials+for+catalyst-assisted+chemical+looping&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Hu%2C+Jiawei&rft.au=Galvita%2C+Vladimir+V.&rft.au=Poelman%2C+Hilde&rft.au=Detavernier%2C+Christophe&rft.date=2019-06-15&rft.issn=0926-3373&rft.volume=247&rft.spage=86&rft.epage=99&rft_id=info:doi/10.1016%2Fj.apcatb.2019.01.084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2019_01_084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon