Pressure-induced deactivation of core-shell nanomaterials for catalyst-assisted chemical looping
[Display omitted] •Catalyst-assisted chemical looping dry reforming is a promising technology for syngas production.•Pressure-induced collapse of the core-shell structure is reaction-related.•Increase pressure promotes carbon filaments on Ni particles and extends the presence of the low-melting-poin...
Saved in:
| Published in: | Applied catalysis. B, Environmental Vol. 247; pp. 86 - 99 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
15.06.2019
Elsevier BV |
| Subjects: | |
| ISSN: | 0926-3373, 1873-3883 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•Catalyst-assisted chemical looping dry reforming is a promising technology for syngas production.•Pressure-induced collapse of the core-shell structure is reaction-related.•Increase pressure promotes carbon filaments on Ni particles and extends the presence of the low-melting-point FeO phase.•Adding a small amount of O2 makes the process auto-thermal, which is advantageous in eliminating carbon.
Catalyst-assisted chemical looping dry reforming is a promising technology for CO-rich syngas production with maximized CO2 utilization, especially when performed auto-thermally, over core-shell nanomaterials in a double-zone reactor bed with first a Fe/Zr@Zr-Ni@Zr bifunctional catalyst and next a Fe/Zr@Zr oxygen storage material. Understanding the origin of the material deactivation under high-pressure conditions is essential to advance this technology towards industrial application. Therefore, pressure-induced material deactivation was studied through a series of on-site assessments (steady-state CH4 reforming and prolonged redox cycling at 750 °C and 1–10 bar) and ex-situ characterization (STEM-EDX, XRD and N2 adsorption-desorption).
At high pressure, both Fe/Zr@Zr-Ni@Zr and Fe/Zr@Zr show reaction-related deactivation, the origin of which can be ascribed to carbon deposition and particle sintering, respectively. During regular catalyst-assisted dry reforming over Fe/Zr@Zr-Ni@Zr, the rise of pressure decreases CH4 conversion and increases carbon deposition on the Ni surface. Rapidly growing carbon filaments destroy the core-shell structure, resulting in segregation of the Ni-based particles from the catalyst bulk with concomitant severe sintering. During H2/CO2 redox cycling of Fe/Zr@Zr, an increased pressure decreases the time-averaged space-time yield of CO. In the reduction half-cycle, high pressure prolongs the existence of the FeO intermediate phase in the transformation of Fe/Zr@Zr, which decreases the material’s melting point, leading to fast sintering. Adding a small amount of O2 makes the chemical looping dry reforming process auto-thermal, which is advantageous in eliminating carbon. Nevertheless, deactivation of the double-zone reactor bed still occurs and is mainly ascribed to particle sintering, following similar principles as mentioned above.
For both regular and auto-thermal catalyst-assisted chemical looping dry reforming, the decreasing ability for CO2 utilization is naturally due to the deactivation of the oxygen storage material, but also controlled by the stability of the bifunctional catalyst. The latter determines the reduction capacity of the gas product mixture in the reduction half-cycle, thereby affecting the achievable reduction degree of the oxygen storage material. |
|---|---|
| AbstractList | Catalyst-assisted chemical looping dry reforming is a promising technology for CO-rich syngas production with maximized CO2 utilization, especially when performed auto-thermally, over core-shell nanomaterials in a double-zone reactor bed with first a Fe/Zr@Zr-Ni@Zr bifunctional catalyst and next a Fe/Zr@Zr oxygen storage material. Understanding the origin of the material deactivation under high-pressure conditions is essential to advance this technology towards industrial application. Therefore, pressure-induced material deactivation was studied through a series of on-site assessments (steady-state CH4 reforming and prolonged redox cycling at 750 °C and 1–10 bar) and ex-situ characterization (STEM-EDX, XRD and N2 adsorption-desorption). At high pressure, both Fe/Zr@Zr-Ni@Zr and Fe/Zr@Zr show reaction-related deactivation, the origin of which can be ascribed to carbon deposition and particle sintering, respectively. During regular catalyst-assisted dry reforming over Fe/Zr@Zr-Ni@Zr, the rise of pressure decreases CH4 conversion and increases carbon deposition on the Ni surface. Rapidly growing carbon filaments destroy the core-shell structure, resulting in segregation of the Ni-based particles from the catalyst bulk with concomitant severe sintering. During H2/CO2 redox cycling of Fe/Zr@Zr, an increased pressure decreases the time-averaged space-time yield of CO. In the reduction half-cycle, high pressure prolongs the existence of the FeO intermediate phase in the transformation of Fe/Zr@Zr, which decreases the material’s melting point, leading to fast sintering. Adding a small amount of O2 makes the chemical looping dry reforming process auto-thermal, which is advantageous in eliminating carbon. Nevertheless, deactivation of the double-zone reactor bed still occurs and is mainly ascribed to particle sintering, following similar principles as mentioned above. For both regular and auto-thermal catalyst-assisted chemical looping dry reforming, the decreasing ability for CO2 utilization is naturally due to the deactivation of the oxygen storage material, but also controlled by the stability of the bifunctional catalyst. The latter determines the reduction capacity of the gas product mixture in the reduction half-cycle, thereby affecting the achievable reduction degree of the oxygen storage material. [Display omitted] •Catalyst-assisted chemical looping dry reforming is a promising technology for syngas production.•Pressure-induced collapse of the core-shell structure is reaction-related.•Increase pressure promotes carbon filaments on Ni particles and extends the presence of the low-melting-point FeO phase.•Adding a small amount of O2 makes the process auto-thermal, which is advantageous in eliminating carbon. Catalyst-assisted chemical looping dry reforming is a promising technology for CO-rich syngas production with maximized CO2 utilization, especially when performed auto-thermally, over core-shell nanomaterials in a double-zone reactor bed with first a Fe/Zr@Zr-Ni@Zr bifunctional catalyst and next a Fe/Zr@Zr oxygen storage material. Understanding the origin of the material deactivation under high-pressure conditions is essential to advance this technology towards industrial application. Therefore, pressure-induced material deactivation was studied through a series of on-site assessments (steady-state CH4 reforming and prolonged redox cycling at 750 °C and 1–10 bar) and ex-situ characterization (STEM-EDX, XRD and N2 adsorption-desorption). At high pressure, both Fe/Zr@Zr-Ni@Zr and Fe/Zr@Zr show reaction-related deactivation, the origin of which can be ascribed to carbon deposition and particle sintering, respectively. During regular catalyst-assisted dry reforming over Fe/Zr@Zr-Ni@Zr, the rise of pressure decreases CH4 conversion and increases carbon deposition on the Ni surface. Rapidly growing carbon filaments destroy the core-shell structure, resulting in segregation of the Ni-based particles from the catalyst bulk with concomitant severe sintering. During H2/CO2 redox cycling of Fe/Zr@Zr, an increased pressure decreases the time-averaged space-time yield of CO. In the reduction half-cycle, high pressure prolongs the existence of the FeO intermediate phase in the transformation of Fe/Zr@Zr, which decreases the material’s melting point, leading to fast sintering. Adding a small amount of O2 makes the chemical looping dry reforming process auto-thermal, which is advantageous in eliminating carbon. Nevertheless, deactivation of the double-zone reactor bed still occurs and is mainly ascribed to particle sintering, following similar principles as mentioned above. For both regular and auto-thermal catalyst-assisted chemical looping dry reforming, the decreasing ability for CO2 utilization is naturally due to the deactivation of the oxygen storage material, but also controlled by the stability of the bifunctional catalyst. The latter determines the reduction capacity of the gas product mixture in the reduction half-cycle, thereby affecting the achievable reduction degree of the oxygen storage material. |
| Author | Marin, Guy B. Detavernier, Christophe Galvita, Vladimir V. Poelman, Hilde Hu, Jiawei |
| Author_xml | – sequence: 1 givenname: Jiawei orcidid: 0000-0003-0792-054X surname: Hu fullname: Hu, Jiawei organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium – sequence: 2 givenname: Vladimir V. orcidid: 0000-0001-9205-7917 surname: Galvita fullname: Galvita, Vladimir V. email: Vladimir.Galvita@UGent.be organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium – sequence: 3 givenname: Hilde surname: Poelman fullname: Poelman, Hilde organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium – sequence: 4 givenname: Christophe surname: Detavernier fullname: Detavernier, Christophe organization: Department of Solid State Sciences, Ghent University, Krijgslaan 281, S1, B-9000 Ghent, Belgium – sequence: 5 givenname: Guy B. surname: Marin fullname: Marin, Guy B. organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium |
| BookMark | eNqFkD1PwzAQhi1UJMrHP2CIxJxwtpM0YUBCFV9SJRhgNlfnQl2ldrFdpP57XMrEANMN9z7v6Z5jNrLOEmPnHAoOvL5cFrjWGOeFAN4WwAtoygM25s1E5rJp5IiNoRV1LuVEHrHjEJYAIKRoxuzt2VMIG0-5sd1GU5d1hDqaT4zG2cz1mXZpGRY0DJlF61YYyRscQtY7n6WrOGxDzDEEE2LC9YJWRuOQDc6tjX0_ZYd9StPZzzxhr3e3L9OHfPZ0_zi9meW6BIh5r4GattaTqqQaJx2V1HLe9cAJoeRlS6LFCkgCYjMXRL3WVU81CV3KpkN5wi72vWvvPjYUolq6jbfppBK8rUQl2lqk1NU-pb0LwVOvtInfr0aPZlAc1M6oWqq9UbUzqoCrZDTB5S947c0K_fY_7HqPUXr_05BXQRuyybXxpKPqnPm74AvmCZcI |
| CitedBy_id | crossref_primary_10_1039_D1RE00209K crossref_primary_10_1002_smll_202503222 crossref_primary_10_1016_j_cattod_2019_09_003 crossref_primary_10_1016_j_ijhydene_2020_01_112 crossref_primary_10_3390_catal10080926 crossref_primary_10_1016_j_apenergy_2022_120447 crossref_primary_10_1016_j_cej_2021_130864 crossref_primary_10_1039_C9EE03793D crossref_primary_10_1002_asia_202301096 crossref_primary_10_1016_j_pecs_2022_101045 crossref_primary_10_3390_catal11070833 crossref_primary_10_1016_j_ijhydene_2019_05_026 crossref_primary_10_1016_j_pmatsci_2025_101540 crossref_primary_10_1016_j_apcatb_2021_120194 crossref_primary_10_1021_acs_iecr_5c00140 crossref_primary_10_1002_ente_201900925 crossref_primary_10_1007_s43938_022_00012_3 crossref_primary_10_1016_j_jcou_2020_101216 crossref_primary_10_1016_j_apcatb_2023_123531 crossref_primary_10_1016_j_cogsc_2022_100721 |
| Cites_doi | 10.1039/C7TA00822H 10.1038/nchem.1621 10.1016/j.apcatb.2018.03.004 10.1016/j.apenergy.2015.04.017 10.1002/aic.14695 10.1016/j.jcou.2016.11.003 10.1021/ie0496333 10.1016/j.jechem.2015.10.008 10.1021/ef7005707 10.1039/c3ra43965h 10.1016/j.fuel.2012.11.035 10.1039/C5TA02289D 10.1007/978-3-319-06656-1_3 10.1016/j.energy.2012.08.006 10.1016/j.apcatb.2018.08.042 10.1016/j.apcatb.2009.10.029 10.1021/ie990884z 10.1016/j.nanoen.2012.07.011 10.1016/j.apenergy.2012.09.009 10.1021/ef5027899 10.1016/j.cherd.2010.12.017 10.1016/S0008-6223(02)00308-1 10.3390/ma11071187 10.1016/j.apenergy.2016.10.114 10.1016/j.rser.2015.02.026 10.1039/C6EE03701A 10.1006/jcat.2002.3523 10.1016/j.apcatb.2014.09.007 10.1016/j.apenergy.2015.01.056 10.1016/j.fuproc.2016.10.014 10.1016/j.apcatb.2017.09.067 10.1021/acs.iecr.6b00963 10.1021/acscatal.8b01039 10.1016/j.apcata.2008.05.018 10.1002/ceat.201100649 10.1021/ef050238e 10.1021/acscatal.5b00357 10.1002/cssc.201601051 10.1007/s11244-011-9709-7 10.1016/j.jcou.2016.05.006 10.1016/j.pecs.2011.09.001 10.1016/j.cep.2017.05.003 10.1039/C7RA07320H 10.1038/nmat3700 10.1126/science.aah7161 10.1016/S0920-5861(01)00453-9 10.1016/j.jngse.2015.07.001 10.1039/C8EE01059E 10.1039/C4TA01795A 10.1039/C8TA02477D 10.1002/cctc.201301104 10.1021/acs.energyfuels.5b01986 10.1016/j.apcatb.2015.04.039 10.1021/ie5023942 10.1016/j.nanoen.2016.04.038 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Jun 15, 2019 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Jun 15, 2019 |
| DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
| DOI | 10.1016/j.apcatb.2019.01.084 |
| DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Environmental Sciences |
| EISSN | 1873-3883 |
| EndPage | 99 |
| ExternalDocumentID | 10_1016_j_apcatb_2019_01_084 S0926337319300943 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ XPP ~HD 7SR 7ST 7U5 8BQ 8FD AGCQF C1K FR3 JG9 KR7 L7M SOI |
| ID | FETCH-LOGICAL-c400t-fc0e896c754e6a7de4e911df01ea04149e29a50e30aa8b2eefcc5fe6e2c438da3 |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460715100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-3373 |
| IngestDate | Wed Aug 13 06:12:05 EDT 2025 Sat Nov 29 07:10:12 EST 2025 Tue Nov 18 22:34:34 EST 2025 Sat Mar 02 16:00:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Methane CO2 utilization Bifunctional catalyst Auto-thermal reforming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c400t-fc0e896c754e6a7de4e911df01ea04149e29a50e30aa8b2eefcc5fe6e2c438da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0792-054X 0000-0001-9205-7917 |
| PQID | 2195252962 |
| PQPubID | 2045281 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2195252962 crossref_citationtrail_10_1016_j_apcatb_2019_01_084 crossref_primary_10_1016_j_apcatb_2019_01_084 elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_01_084 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-15 |
| PublicationDateYYYYMMDD | 2019-06-15 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Applied catalysis. B, Environmental |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Hu, Galvita, Poelman, Marin (bib0145) 2018; 11 Bhavsar, Najera, Veser (bib0060) 2012; 35 Han, Lu, Jin, Wang, Guo (bib0175) 2014; 2 Löfberg, Kane, Guerrero-Caballero, Jalowiecki-Duhamel (bib0075) 2017; 122 Dharanipragada, Galvita, Poelman, Buelens, Detavernier, Marin (bib0295) 2018; 222 Galvita, Poelman, Detavernier, Marin (bib0085) 2015; 164 Tang, Xu, Fan (bib0005) 2015; 151 Hu, Galvita, Poelman, Detavernier, Marin (bib0185) 2017; 17 Tomishige, Himeno, Matsuo, Yoshinaga, Fujimoto (bib0235) 2000; 39 Chein, Chen, Yu, Chung (bib0215) 2015; 26 Hamers, Gallucci, Williams, Cobden, van Sint Annaland (bib0255) 2015; 29 Galvita, Poelman, Marin (bib0120) 2011; 54 Kathe, Empfield, Sandvik, Fryer, Zhang, Blair, Fan (bib0080) 2017; 10 Nolang (bib0265) 2013 Nordness, Han, Zhou, Bollas (bib0205) 2015; 30 Theofanidis, Galvita, Poelman, Dharanipragada, Longo, Meledina, Van Tendeloo, Detavernier, Marin (bib0220) 2018; 8 García-Labiano, Adánez, Diego, Gayán, Abad (bib0250) 2006; 20 Theofanidis, Galvita, Poelman, Batchu, Buelens, Detavernier, Marin (bib0285) 2018; 239 Najera, Solunke, Gardner, Veser (bib0055) 2011; 89 Kohn, Castaldi, Farrauto (bib0135) 2010; 94 Fan, Zeng, Luo (bib0065) 2015; 61 Luyben (bib0270) 2014; 53 Bulfin, Vieten, Starr, Azarpira, Zachäus, Hävecker, Skorupska, Schmücker, Roeb, Sattler (bib0170) 2017; 5 Zedillo (bib0040) 2008 Dry (bib0200) 2002; 71 Takenaka, Ogihara, Otsuka (bib0240) 2002; 208 Chen, Lin (bib0130) 2016; 162 Usman, Wan Daud, Abbas (bib0225) 2015; 45 Dharanipragada, Buelens, Poelman, De Grave, Galvita, Marin (bib0155) 2015; 3 Guo, Yang, Hu, Hu, DaCosta, Fan (bib0025) 2016; 25 Ginsburg, Pina, Solh, Lasa (bib0275) 2005; 44 He, Li, Zhao, Huang, Wei, Li (bib0165) 2013; 108 Zhang, Li (bib0190) 2015; 176–177 Das, D’Alessandro, Peterson (bib0020) 2015 Voiry, Yamaguchi, Li, Silva, Alves, Fujita, Chen, Asefa, Shenoy, Eda, Chhowalla (bib0095) 2013; 12 Dharanipragada, Meledina, Galvita, Poelman, Turner, Van Tendeloo, Detavernier, Marin (bib0290) 2016; 55 Martens, Bogaerts, Kimpe, Jacobs, Marin, Rabaey, Saeys, Verhelst (bib0050) 2017; 10 Liu, Yuan, Ji, Li, Zhang, Wang, Wu (bib0105) 2017; 7 Cao, Gao, Jin, Zhou, Cohron, Zhao, Liu, Pan (bib0100) 2008; 22 Buelens, Galvita, Poelman, Detavernier, Marin (bib0115) 2016; 354 Spallina, Marinello, Gallucci, Romano, Van Sint Annaland (bib0210) 2017; 156 Symes, Cronin (bib0090) 2013; 5 Christian Enger, Lødeng, Holmen (bib0125) 2008; 346 Hu, Galvita, Poelman, Detavernier, Marin (bib0195) 2018; 231 Huang, Jiang, He, Chen, Wei, Zhao, Zheng, Feng, Zhao, Li (bib0070) 2016; 25 Chen, Jiang, Li, Tian, Yan (bib0045) 2017; 185 Theofanidis, Galvita, Poelman, Marin (bib0280) 2015; 5 Zeng, Cheng, Fan, Fan, Gong (bib0150) 2018; 2 Kenarsari, Yang, Jiang, Zhang, Wang, Russell, Wei, Fan (bib0035) 2013; 3 Otsuka, Ogihara, Takenaka (bib0245) 2003; 41 Zeng, Qiu, Peng, Chen, Zeng, Zhang, Xiao (bib0160) 2018; 6 Shafiefarhood, Galinsky, Huang, Chen, Li (bib0180) 2014; 6 Chorkendorff, Niemantsverdriet (bib0260) 2006 Ni, Chen, Lin, Kawi (bib0230) 2012; 1 Adanez, Abad, Garcia-Labiano, Gayan, Diego (bib0010) 2012; 38 Mondal, Balsora, Varshney (bib0030) 2012; 46 Verbeeck, Buelens, Galvita, Marin, Van Geem, Rabaey (bib0110) 2018; 11 Hu, Buelens, Theofanidis, Galvita, Poelman, Marin (bib0140) 2016; 16 Li, Duan, Luebke, Morreale (bib0015) 2013; 102 Hu (10.1016/j.apcatb.2019.01.084_bib0140) 2016; 16 Adanez (10.1016/j.apcatb.2019.01.084_bib0010) 2012; 38 Mondal (10.1016/j.apcatb.2019.01.084_bib0030) 2012; 46 Hu (10.1016/j.apcatb.2019.01.084_bib0185) 2017; 17 Chorkendorff (10.1016/j.apcatb.2019.01.084_bib0260) 2006 Chen (10.1016/j.apcatb.2019.01.084_bib0130) 2016; 162 Theofanidis (10.1016/j.apcatb.2019.01.084_bib0280) 2015; 5 Kohn (10.1016/j.apcatb.2019.01.084_bib0135) 2010; 94 Otsuka (10.1016/j.apcatb.2019.01.084_bib0245) 2003; 41 Luyben (10.1016/j.apcatb.2019.01.084_bib0270) 2014; 53 Kenarsari (10.1016/j.apcatb.2019.01.084_bib0035) 2013; 3 Dharanipragada (10.1016/j.apcatb.2019.01.084_bib0295) 2018; 222 Voiry (10.1016/j.apcatb.2019.01.084_bib0095) 2013; 12 Galvita (10.1016/j.apcatb.2019.01.084_bib0120) 2011; 54 Theofanidis (10.1016/j.apcatb.2019.01.084_bib0220) 2018; 8 Zedillo (10.1016/j.apcatb.2019.01.084_bib0040) 2008 Löfberg (10.1016/j.apcatb.2019.01.084_bib0075) 2017; 122 Verbeeck (10.1016/j.apcatb.2019.01.084_bib0110) 2018; 11 Bhavsar (10.1016/j.apcatb.2019.01.084_bib0060) 2012; 35 Shafiefarhood (10.1016/j.apcatb.2019.01.084_bib0180) 2014; 6 Das (10.1016/j.apcatb.2019.01.084_bib0020) 2015 Martens (10.1016/j.apcatb.2019.01.084_bib0050) 2017; 10 Galvita (10.1016/j.apcatb.2019.01.084_bib0085) 2015; 164 Ni (10.1016/j.apcatb.2019.01.084_bib0230) 2012; 1 Kathe (10.1016/j.apcatb.2019.01.084_bib0080) 2017; 10 Tomishige (10.1016/j.apcatb.2019.01.084_bib0235) 2000; 39 Dry (10.1016/j.apcatb.2019.01.084_bib0200) 2002; 71 Liu (10.1016/j.apcatb.2019.01.084_bib0105) 2017; 7 Zeng (10.1016/j.apcatb.2019.01.084_bib0160) 2018; 6 Bulfin (10.1016/j.apcatb.2019.01.084_bib0170) 2017; 5 Takenaka (10.1016/j.apcatb.2019.01.084_bib0240) 2002; 208 Fan (10.1016/j.apcatb.2019.01.084_bib0065) 2015; 61 He (10.1016/j.apcatb.2019.01.084_bib0165) 2013; 108 Usman (10.1016/j.apcatb.2019.01.084_bib0225) 2015; 45 Buelens (10.1016/j.apcatb.2019.01.084_bib0115) 2016; 354 Huang (10.1016/j.apcatb.2019.01.084_bib0070) 2016; 25 Nordness (10.1016/j.apcatb.2019.01.084_bib0205) 2015; 30 Symes (10.1016/j.apcatb.2019.01.084_bib0090) 2013; 5 Hu (10.1016/j.apcatb.2019.01.084_bib0195) 2018; 231 Dharanipragada (10.1016/j.apcatb.2019.01.084_bib0290) 2016; 55 Theofanidis (10.1016/j.apcatb.2019.01.084_bib0285) 2018; 239 Hu (10.1016/j.apcatb.2019.01.084_bib0145) 2018; 11 Guo (10.1016/j.apcatb.2019.01.084_bib0025) 2016; 25 García-Labiano (10.1016/j.apcatb.2019.01.084_bib0250) 2006; 20 Spallina (10.1016/j.apcatb.2019.01.084_bib0210) 2017; 156 Zeng (10.1016/j.apcatb.2019.01.084_bib0150) 2018; 2 Christian Enger (10.1016/j.apcatb.2019.01.084_bib0125) 2008; 346 Zhang (10.1016/j.apcatb.2019.01.084_bib0190) 2015; 176–177 Hamers (10.1016/j.apcatb.2019.01.084_bib0255) 2015; 29 Li (10.1016/j.apcatb.2019.01.084_bib0015) 2013; 102 Cao (10.1016/j.apcatb.2019.01.084_bib0100) 2008; 22 Chen (10.1016/j.apcatb.2019.01.084_bib0045) 2017; 185 Ginsburg (10.1016/j.apcatb.2019.01.084_bib0275) 2005; 44 Han (10.1016/j.apcatb.2019.01.084_bib0175) 2014; 2 Najera (10.1016/j.apcatb.2019.01.084_bib0055) 2011; 89 Chein (10.1016/j.apcatb.2019.01.084_bib0215) 2015; 26 Dharanipragada (10.1016/j.apcatb.2019.01.084_bib0155) 2015; 3 Tang (10.1016/j.apcatb.2019.01.084_bib0005) 2015; 151 Nolang (10.1016/j.apcatb.2019.01.084_bib0265) 2013 |
| References_xml | – volume: 16 start-page: 8 year: 2016 end-page: 16 ident: bib0140 article-title: CO publication-title: J. CO – volume: 44 start-page: 4846 year: 2005 end-page: 4854 ident: bib0275 article-title: Coke Formation over a nickel catalyst under methane dry reforming conditions: thermodynamic and kinetic models publication-title: Ind. Eng. Chem. Res. – start-page: 33 year: 2015 end-page: 60 ident: bib0020 article-title: Carbon dioxide separation, capture, and storage in porous materials publication-title: Neutron Applications in Materials for Energy. Neutron Scattering Applications and Techniques – volume: 10 start-page: 1345 year: 2017 end-page: 1349 ident: bib0080 article-title: Utilization of CO publication-title: Energy Environ. Sci. – volume: 1 start-page: 674 year: 2012 end-page: 686 ident: bib0230 article-title: Carbon deposition on borated alumina supported nano-sized Ni catalysts for dry reforming of CH publication-title: Nano Energy – volume: 53 start-page: 14423 year: 2014 end-page: 14439 ident: bib0270 article-title: Design and control of the dry methane reforming process publication-title: Ind. Eng. Chem. Res. – volume: 25 start-page: 1 year: 2016 end-page: 8 ident: bib0025 article-title: CO publication-title: Nano Energy – volume: 54 start-page: 907 year: 2011 end-page: 913 ident: bib0120 article-title: Hydrogen production from methane and carbon dioxide by catalyst-assisted chemical looping publication-title: Top. Catal. – volume: 231 start-page: 123 year: 2018 end-page: 136 ident: bib0195 article-title: Catalyst-assisted chemical looping auto-thermal dry reforming: spatial structuring effects on process efficiency publication-title: Appl. Catal. – volume: 2 start-page: 13016 year: 2014 end-page: 13023 ident: bib0175 article-title: Fe publication-title: J. Mater. Chem. A – volume: 10 start-page: 1039 year: 2017 end-page: 1055 ident: bib0050 article-title: The chemical route to a carbon dioxide neutral world publication-title: ChemSusChem – volume: 45 start-page: 710 year: 2015 end-page: 744 ident: bib0225 article-title: Dry reforming of methane: influence of process parameters—a review publication-title: Renew. Sustain. Energy Rev. – volume: 222 start-page: 59 year: 2018 end-page: 72 ident: bib0295 article-title: Bifunctional Co- and Ni- ferrites for catalyst-assisted chemical looping with alcohols publication-title: Appl. Catal. B – volume: 8 start-page: 5983 year: 2018 end-page: 5995 ident: bib0220 article-title: Fe-containing magnesium aluminate support for stability and carbon control during methane reforming publication-title: ACS Catal. – volume: 94 start-page: 125 year: 2010 end-page: 133 ident: bib0135 article-title: Auto-thermal and dry reforming of landfill gas over a Rh/γ-Al publication-title: Appl. Catal. B – volume: 71 start-page: 227 year: 2002 end-page: 241 ident: bib0200 article-title: The Fischer–tropsch process: 1950–2000 publication-title: Catal. Today – volume: 3 start-page: 22739 year: 2013 end-page: 22773 ident: bib0035 article-title: Review of recent advances in carbon dioxide separation and capture publication-title: RSC Adv. – volume: 5 start-page: 403 year: 2013 ident: bib0090 article-title: Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer publication-title: Nat. Chem. – volume: 39 start-page: 1891 year: 2000 end-page: 1897 ident: bib0235 article-title: Catalytic performance and carbon deposition behavior of a NiO−MgO solid solution in methane reforming with carbon dioxide under pressurized conditions publication-title: Ind. Eng. Chem. Res. – volume: 29 start-page: 2656 year: 2015 end-page: 2663 ident: bib0255 article-title: Reactivity of oxygen carriers for chemical-looping combustion in packed bed reactors under pressurized conditions publication-title: Energy Fuels – volume: 102 start-page: 1439 year: 2013 end-page: 1447 ident: bib0015 article-title: Advances in CO publication-title: Appl. Energy – volume: 354 start-page: 449 year: 2016 end-page: 452 ident: bib0115 article-title: Super-dry reforming of methane intensifies CO publication-title: Science – volume: 6 start-page: 11306 year: 2018 end-page: 11316 ident: bib0160 article-title: Enhanced hydrogen production performance through controllable redox exsolution within CoFeAlO publication-title: J. Mater. Chem. A – volume: 151 start-page: 143 year: 2015 end-page: 156 ident: bib0005 article-title: Progress in oxygen carrier development of methane-based chemical-looping reforming: a review publication-title: Appl. Energy – volume: 89 start-page: 1533 year: 2011 end-page: 1543 ident: bib0055 article-title: Carbon capture and utilization via chemical looping dry reforming publication-title: Chem. Eng. Res. Des. – volume: 108 start-page: 465 year: 2013 end-page: 473 ident: bib0165 article-title: The use of La publication-title: Fuel – volume: 156 start-page: 156 year: 2017 end-page: 170 ident: bib0210 article-title: Chemical looping reforming in packed-bed reactors: Modelling, experimental validation and large-scale reactor design publication-title: Fuel Process. Technol. – volume: 5 start-page: 7912 year: 2017 end-page: 7919 ident: bib0170 article-title: Redox chemistry of CaMnO publication-title: J. Mater. Chem. A – volume: 20 start-page: 26 year: 2006 end-page: 33 ident: bib0250 article-title: Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carriers for chemical-looping combustion publication-title: Energy Fuels – volume: 26 start-page: 617 year: 2015 end-page: 629 ident: bib0215 article-title: Thermodynamic analysis of dry reforming of CH publication-title: J. Nat. Gas Sci. Eng. – volume: 185 start-page: 687 year: 2017 end-page: 697 ident: bib0045 article-title: Energy-efficient biogas reforming process to produce syngas: the enhanced methane conversion by O publication-title: Appl. Energy – year: 2006 ident: bib0260 article-title: Concepts of Modern Catalysis and Kinetics – volume: 164 start-page: 184 year: 2015 end-page: 191 ident: bib0085 article-title: Catalyst-assisted chemical looping for CO publication-title: Appl. Catal. B – volume: 17 start-page: 20 year: 2017 end-page: 31 ident: bib0185 article-title: A core-shell structured Fe publication-title: J. CO – volume: 239 start-page: 502 year: 2018 end-page: 512 ident: bib0285 article-title: Mechanism of carbon deposits removal from supported Ni catalysts publication-title: Appl. Catal. B – volume: 22 start-page: 1720 year: 2008 end-page: 1730 ident: bib0100 article-title: Synthesis gas production with an adjustable H publication-title: Energy Fuels – volume: 55 start-page: 5911 year: 2016 end-page: 5922 ident: bib0290 article-title: Deactivation study of Fe publication-title: Ind. Eng. Chem. Res. – volume: 30 start-page: 504 year: 2015 end-page: 514 ident: bib0205 article-title: High-pressure chemical-looping of methane and synthesis gas with Ni and Cu oxygen carriers publication-title: Energy Fuels – volume: 208 start-page: 54 year: 2002 end-page: 63 ident: bib0240 article-title: Structural change of Ni species in Ni/SiO publication-title: J. Catal. – volume: 162 start-page: 1141 year: 2016 end-page: 1152 ident: bib0130 article-title: Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery publication-title: Appl. Energy – volume: 41 start-page: 223 year: 2003 end-page: 233 ident: bib0245 article-title: Decomposition of methane over Ni catalysts supported on carbon fibers formed from different hydrocarbons publication-title: Carbon – volume: 7 start-page: 52414 year: 2017 end-page: 52422 ident: bib0105 article-title: Syngas production: diverse H publication-title: RSC Adv. – year: 2008 ident: bib0040 article-title: Global Warming: Looking Beyond Kyoto – volume: 6 start-page: 790 year: 2014 end-page: 799 ident: bib0180 article-title: Fe publication-title: ChemCatChem – volume: 35 start-page: 1281 year: 2012 end-page: 1290 ident: bib0060 article-title: Chemical looping dry reforming as novel, intensified process for CO publication-title: Chem. Eng. Technol. – volume: 11 start-page: 1788 year: 2018 end-page: 1802 ident: bib0110 article-title: Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane publication-title: Energy Environ. Sci. – volume: 12 start-page: 850 year: 2013 ident: bib0095 article-title: Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution publication-title: Nat. Mater. – volume: 122 start-page: 523 year: 2017 end-page: 529 ident: bib0075 article-title: Chemical looping dry reforming of methane: toward shale-gas and biogas valorization publication-title: Chem. Eng. Process.: Process Intensif. – volume: 38 start-page: 215 year: 2012 end-page: 282 ident: bib0010 article-title: Progress in chemical-looping combustion and reforming technologies publication-title: Prog. Energy Combust. Sci. – volume: 11 start-page: 1187 year: 2018 ident: bib0145 article-title: Advanced chemical looping materials for CO publication-title: Materials – volume: 25 start-page: 62 year: 2016 end-page: 70 ident: bib0070 article-title: Evaluation of multi-cycle performance of chemical looping dry reforming using CO publication-title: J. Energy Chem. – volume: 46 start-page: 431 year: 2012 end-page: 441 ident: bib0030 article-title: Progress and trends in CO publication-title: Energy – volume: 2 start-page: 349 year: 2018 ident: bib0150 article-title: Metal oxide redox chemistry for chemical looping processes publication-title: Int. Rev. Chem. Eng. – volume: 176–177 start-page: 513 year: 2015 end-page: 521 ident: bib0190 article-title: Coke-resistant Ni@SiO publication-title: Appl. Catal. B – volume: 61 start-page: 2 year: 2015 end-page: 22 ident: bib0065 article-title: Chemical-looping technology platform publication-title: AlChE J. – volume: 5 start-page: 3028 year: 2015 end-page: 3039 ident: bib0280 article-title: Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe publication-title: ACS Catal. – year: 2013 ident: bib0265 article-title: Ekvicalc and Ekvibase: Version 4.30; Svensk Energi Data – volume: 3 start-page: 16251 year: 2015 end-page: 16262 ident: bib0155 article-title: Mg–Fe–Al–O for advanced CO publication-title: J. Mater. Chem. A – volume: 346 start-page: 1 year: 2008 end-page: 27 ident: bib0125 article-title: A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts publication-title: Appl. Catal. A Gen. – volume: 5 start-page: 7912 year: 2017 ident: 10.1016/j.apcatb.2019.01.084_bib0170 article-title: Redox chemistry of CaMnO3 and Ca0.8Sr0.2MnO3 oxygen storage perovskites publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00822H – volume: 5 start-page: 403 year: 2013 ident: 10.1016/j.apcatb.2019.01.084_bib0090 article-title: Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer publication-title: Nat. Chem. doi: 10.1038/nchem.1621 – volume: 231 start-page: 123 year: 2018 ident: 10.1016/j.apcatb.2019.01.084_bib0195 article-title: Catalyst-assisted chemical looping auto-thermal dry reforming: spatial structuring effects on process efficiency publication-title: Appl. Catal. doi: 10.1016/j.apcatb.2018.03.004 – volume: 151 start-page: 143 year: 2015 ident: 10.1016/j.apcatb.2019.01.084_bib0005 article-title: Progress in oxygen carrier development of methane-based chemical-looping reforming: a review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.04.017 – volume: 61 start-page: 2 year: 2015 ident: 10.1016/j.apcatb.2019.01.084_bib0065 article-title: Chemical-looping technology platform publication-title: AlChE J. doi: 10.1002/aic.14695 – volume: 17 start-page: 20 year: 2017 ident: 10.1016/j.apcatb.2019.01.084_bib0185 article-title: A core-shell structured Fe2O3/ZrO2@ZrO2 nanomaterial with enhanced redox activity and stability for CO2 conversion publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2016.11.003 – volume: 44 start-page: 4846 year: 2005 ident: 10.1016/j.apcatb.2019.01.084_bib0275 article-title: Coke Formation over a nickel catalyst under methane dry reforming conditions: thermodynamic and kinetic models publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0496333 – volume: 25 start-page: 62 year: 2016 ident: 10.1016/j.apcatb.2019.01.084_bib0070 article-title: Evaluation of multi-cycle performance of chemical looping dry reforming using CO2 as an oxidant with Fe–Ni bimetallic oxides publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2015.10.008 – volume: 22 start-page: 1720 year: 2008 ident: 10.1016/j.apcatb.2019.01.084_bib0100 article-title: Synthesis gas production with an adjustable H2/CO ratio through the coal gasification process: effects of coal ranks and methane addition publication-title: Energy Fuels doi: 10.1021/ef7005707 – volume: 3 start-page: 22739 year: 2013 ident: 10.1016/j.apcatb.2019.01.084_bib0035 article-title: Review of recent advances in carbon dioxide separation and capture publication-title: RSC Adv. doi: 10.1039/c3ra43965h – volume: 108 start-page: 465 year: 2013 ident: 10.1016/j.apcatb.2019.01.084_bib0165 article-title: The use of La1−xSrxFeO3 perovskite-type oxides as oxygen carriers in chemical-looping reforming of methane publication-title: Fuel doi: 10.1016/j.fuel.2012.11.035 – volume: 3 start-page: 16251 year: 2015 ident: 10.1016/j.apcatb.2019.01.084_bib0155 article-title: Mg–Fe–Al–O for advanced CO2 to CO conversion: carbon monoxide yield vs. Oxygen storage capacity publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02289D – start-page: 33 year: 2015 ident: 10.1016/j.apcatb.2019.01.084_bib0020 article-title: Carbon dioxide separation, capture, and storage in porous materials doi: 10.1007/978-3-319-06656-1_3 – volume: 46 start-page: 431 year: 2012 ident: 10.1016/j.apcatb.2019.01.084_bib0030 article-title: Progress and trends in CO2 capture/separation technologies: a review publication-title: Energy doi: 10.1016/j.energy.2012.08.006 – volume: 239 start-page: 502 year: 2018 ident: 10.1016/j.apcatb.2019.01.084_bib0285 article-title: Mechanism of carbon deposits removal from supported Ni catalysts publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.08.042 – volume: 94 start-page: 125 year: 2010 ident: 10.1016/j.apcatb.2019.01.084_bib0135 article-title: Auto-thermal and dry reforming of landfill gas over a Rh/γ-Al2O3 monolith catalyst publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2009.10.029 – volume: 39 start-page: 1891 year: 2000 ident: 10.1016/j.apcatb.2019.01.084_bib0235 article-title: Catalytic performance and carbon deposition behavior of a NiO−MgO solid solution in methane reforming with carbon dioxide under pressurized conditions publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie990884z – volume: 1 start-page: 674 year: 2012 ident: 10.1016/j.apcatb.2019.01.084_bib0230 article-title: Carbon deposition on borated alumina supported nano-sized Ni catalysts for dry reforming of CH4 publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.07.011 – volume: 102 start-page: 1439 year: 2013 ident: 10.1016/j.apcatb.2019.01.084_bib0015 article-title: Advances in CO2 capture technology: a patent review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.09.009 – volume: 29 start-page: 2656 year: 2015 ident: 10.1016/j.apcatb.2019.01.084_bib0255 article-title: Reactivity of oxygen carriers for chemical-looping combustion in packed bed reactors under pressurized conditions publication-title: Energy Fuels doi: 10.1021/ef5027899 – volume: 89 start-page: 1533 year: 2011 ident: 10.1016/j.apcatb.2019.01.084_bib0055 article-title: Carbon capture and utilization via chemical looping dry reforming publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2010.12.017 – volume: 41 start-page: 223 year: 2003 ident: 10.1016/j.apcatb.2019.01.084_bib0245 article-title: Decomposition of methane over Ni catalysts supported on carbon fibers formed from different hydrocarbons publication-title: Carbon doi: 10.1016/S0008-6223(02)00308-1 – volume: 11 start-page: 1187 year: 2018 ident: 10.1016/j.apcatb.2019.01.084_bib0145 article-title: Advanced chemical looping materials for CO2 utilization: a Review publication-title: Materials doi: 10.3390/ma11071187 – volume: 2 start-page: 349 year: 2018 ident: 10.1016/j.apcatb.2019.01.084_bib0150 article-title: Metal oxide redox chemistry for chemical looping processes publication-title: Int. Rev. Chem. Eng. – volume: 185 start-page: 687 year: 2017 ident: 10.1016/j.apcatb.2019.01.084_bib0045 article-title: Energy-efficient biogas reforming process to produce syngas: the enhanced methane conversion by O2 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.10.114 – year: 2013 ident: 10.1016/j.apcatb.2019.01.084_bib0265 – volume: 45 start-page: 710 year: 2015 ident: 10.1016/j.apcatb.2019.01.084_bib0225 article-title: Dry reforming of methane: influence of process parameters—a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.02.026 – volume: 10 start-page: 1345 year: 2017 ident: 10.1016/j.apcatb.2019.01.084_bib0080 article-title: Utilization of CO2 as a partial substitute for methane feedstock in chemical looping methane-steam redox processes for syngas production publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03701A – volume: 208 start-page: 54 year: 2002 ident: 10.1016/j.apcatb.2019.01.084_bib0240 article-title: Structural change of Ni species in Ni/SiO2 catalyst during decomposition of methane publication-title: J. Catal. doi: 10.1006/jcat.2002.3523 – volume: 164 start-page: 184 year: 2015 ident: 10.1016/j.apcatb.2019.01.084_bib0085 article-title: Catalyst-assisted chemical looping for CO2 conversion to CO publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.09.007 – volume: 162 start-page: 1141 year: 2016 ident: 10.1016/j.apcatb.2019.01.084_bib0130 article-title: Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.01.056 – volume: 156 start-page: 156 year: 2017 ident: 10.1016/j.apcatb.2019.01.084_bib0210 article-title: Chemical looping reforming in packed-bed reactors: Modelling, experimental validation and large-scale reactor design publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.10.014 – volume: 222 start-page: 59 year: 2018 ident: 10.1016/j.apcatb.2019.01.084_bib0295 article-title: Bifunctional Co- and Ni- ferrites for catalyst-assisted chemical looping with alcohols publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.09.067 – volume: 55 start-page: 5911 year: 2016 ident: 10.1016/j.apcatb.2019.01.084_bib0290 article-title: Deactivation study of Fe2O3–CeO2 during redox cycles for CO production from CO2 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b00963 – volume: 8 start-page: 5983 year: 2018 ident: 10.1016/j.apcatb.2019.01.084_bib0220 article-title: Fe-containing magnesium aluminate support for stability and carbon control during methane reforming publication-title: ACS Catal. doi: 10.1021/acscatal.8b01039 – volume: 346 start-page: 1 year: 2008 ident: 10.1016/j.apcatb.2019.01.084_bib0125 article-title: A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2008.05.018 – volume: 35 start-page: 1281 year: 2012 ident: 10.1016/j.apcatb.2019.01.084_bib0060 article-title: Chemical looping dry reforming as novel, intensified process for CO2 activation publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201100649 – volume: 20 start-page: 26 year: 2006 ident: 10.1016/j.apcatb.2019.01.084_bib0250 article-title: Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carriers for chemical-looping combustion publication-title: Energy Fuels doi: 10.1021/ef050238e – volume: 5 start-page: 3028 year: 2015 ident: 10.1016/j.apcatb.2019.01.084_bib0280 article-title: Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe publication-title: ACS Catal. doi: 10.1021/acscatal.5b00357 – volume: 10 start-page: 1039 year: 2017 ident: 10.1016/j.apcatb.2019.01.084_bib0050 article-title: The chemical route to a carbon dioxide neutral world publication-title: ChemSusChem doi: 10.1002/cssc.201601051 – volume: 54 start-page: 907 year: 2011 ident: 10.1016/j.apcatb.2019.01.084_bib0120 article-title: Hydrogen production from methane and carbon dioxide by catalyst-assisted chemical looping publication-title: Top. Catal. doi: 10.1007/s11244-011-9709-7 – volume: 16 start-page: 8 year: 2016 ident: 10.1016/j.apcatb.2019.01.084_bib0140 article-title: CO2 conversion to CO by auto-thermal catalyst-assisted chemical looping publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2016.05.006 – volume: 38 start-page: 215 year: 2012 ident: 10.1016/j.apcatb.2019.01.084_bib0010 article-title: Progress in chemical-looping combustion and reforming technologies publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2011.09.001 – volume: 122 start-page: 523 year: 2017 ident: 10.1016/j.apcatb.2019.01.084_bib0075 article-title: Chemical looping dry reforming of methane: toward shale-gas and biogas valorization publication-title: Chem. Eng. Process.: Process Intensif. doi: 10.1016/j.cep.2017.05.003 – volume: 7 start-page: 52414 year: 2017 ident: 10.1016/j.apcatb.2019.01.084_bib0105 article-title: Syngas production: diverse H2/CO range by regulating carbonates electrolyte composition from CO2/H2O via co-electrolysis in eutectic molten salts publication-title: RSC Adv. doi: 10.1039/C7RA07320H – year: 2008 ident: 10.1016/j.apcatb.2019.01.084_bib0040 – volume: 12 start-page: 850 year: 2013 ident: 10.1016/j.apcatb.2019.01.084_bib0095 article-title: Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution publication-title: Nat. Mater. doi: 10.1038/nmat3700 – volume: 354 start-page: 449 year: 2016 ident: 10.1016/j.apcatb.2019.01.084_bib0115 article-title: Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle publication-title: Science doi: 10.1126/science.aah7161 – volume: 71 start-page: 227 year: 2002 ident: 10.1016/j.apcatb.2019.01.084_bib0200 article-title: The Fischer–tropsch process: 1950–2000 publication-title: Catal. Today doi: 10.1016/S0920-5861(01)00453-9 – volume: 26 start-page: 617 year: 2015 ident: 10.1016/j.apcatb.2019.01.084_bib0215 article-title: Thermodynamic analysis of dry reforming of CH4 with CO2 at high pressures publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.07.001 – volume: 11 start-page: 1788 year: 2018 ident: 10.1016/j.apcatb.2019.01.084_bib0110 article-title: Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01059E – volume: 2 start-page: 13016 year: 2014 ident: 10.1016/j.apcatb.2019.01.084_bib0175 article-title: Fe3O4/PANI/m-SiO2 as robust reactive catalyst supports for noble metal nanoparticles with improved stability and recyclability publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01795A – volume: 6 start-page: 11306 year: 2018 ident: 10.1016/j.apcatb.2019.01.084_bib0160 article-title: Enhanced hydrogen production performance through controllable redox exsolution within CoFeAlOx spinel oxygen carrier materials publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02477D – volume: 6 start-page: 790 year: 2014 ident: 10.1016/j.apcatb.2019.01.084_bib0180 article-title: Fe2O3@LaxSr1−xFeO3 core-shell redox catalyst for methane partial oxidation publication-title: ChemCatChem doi: 10.1002/cctc.201301104 – volume: 30 start-page: 504 year: 2015 ident: 10.1016/j.apcatb.2019.01.084_bib0205 article-title: High-pressure chemical-looping of methane and synthesis gas with Ni and Cu oxygen carriers publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b01986 – volume: 176–177 start-page: 513 year: 2015 ident: 10.1016/j.apcatb.2019.01.084_bib0190 article-title: Coke-resistant Ni@SiO2 catalyst for dry reforming of methane publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.04.039 – volume: 53 start-page: 14423 year: 2014 ident: 10.1016/j.apcatb.2019.01.084_bib0270 article-title: Design and control of the dry methane reforming process publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie5023942 – volume: 25 start-page: 1 year: 2016 ident: 10.1016/j.apcatb.2019.01.084_bib0025 article-title: CO2 removal from flue gas with amine-impregnated titanate nanotubes publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.038 – year: 2006 ident: 10.1016/j.apcatb.2019.01.084_bib0260 |
| SSID | ssj0002328 |
| Score | 2.4105437 |
| Snippet | [Display omitted]
•Catalyst-assisted chemical looping dry reforming is a promising technology for syngas production.•Pressure-induced collapse of the... Catalyst-assisted chemical looping dry reforming is a promising technology for CO-rich syngas production with maximized CO2 utilization, especially when... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 86 |
| SubjectTerms | Auto-thermal reforming Bifunctional catalyst Carbon Carbon dioxide Catalysis Catalysts CO2 utilization Control stability Core-shell structure Cycles Deactivation Deposition Filaments High pressure Industrial applications Iron Melting point Melting points Methane Nanomaterials Nanotechnology Nickel Organic chemistry Oxygen Phase transitions Pressure Reactors Redox properties Reduction Reforming Sintering Synthesis gas Zirconium |
| Title | Pressure-induced deactivation of core-shell nanomaterials for catalyst-assisted chemical looping |
| URI | https://dx.doi.org/10.1016/j.apcatb.2019.01.084 https://www.proquest.com/docview/2195252962 |
| Volume | 247 |
| WOSCitedRecordID | wos000460715100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002328 issn: 0926-3373 databaseCode: AIEXJ dateStart: 19950211 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FFAk4IAhUFAraA7doI8defx1LKSoIVRxKlZtZr8eSK2NHsRvaH9T_yax31_kSlB64WImVXa0zLzNvN_NmCHk_DdDxSleyCAAYTzkwMXUDJoCDdFwBvhYKfw3PzqLZLP42GNxaLcyyDKsqur6O5__V1HgPja2ks_cwdz8p3sDXaHS8otnx-k-G14K_BTDcbV-pf_czUOKFZc8NVeFK1qgE0HElqhopq15Wl3HYHefcNC1DUq0QkI2lLSlQ1p24ap3OWg5rRhXNZPyh864r-ZwoV8jpIFOIX1D0aT-iXBaawF6UIit-FovxxaT31zWU5oT2tCizHoMfoRWqRXBhVIx9gYT1MwwlmwqYVnHaw0iEh-fppibWL7u6FKfxrLZgdvdG91Ta8f76IOJyIub42KnK24u7mqy6Cd1mse2tINinJtqst8tEz5KoWRJnmuAsD8ieG_pxNCR7R59PZl_6kI-0tAv59jGsRrNLJNxdzZ840BYb6CjO-TPy1OxN6JHG1HMygGpEHh3bloAj8mSteuWI7G9YmZoo0bwgP7YhSNchSOucriBINyBIEYJ0B4LUQpAaCL4k3z-dnB-fMtPJg0mMES3LpQNRHMjQ5xCIMENHgEE2y50pCIfjJh3cWPgOeI4QUeoC5FJlQQbgSu5FmfD2ybCqK3hFqC9xtM_T3EljjsEjkhHnueQ5l1EoQnFAPPvdJtKUuVfdVsrkb5Y9IKwfNddlXu74fGjNlhiqqilogli8Y-ShtXJivEaTIG3wXZUB4b6-50LekMerH9QhGbaLK3hLHsplWzSLdwanvwEnCske |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pressure-induced+deactivation+of+core-shell+nanomaterials+for+catalyst-assisted+chemical+looping&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Hu%2C+Jiawei&rft.au=Galvita%2C+Vladimir+V.&rft.au=Poelman%2C+Hilde&rft.au=Detavernier%2C+Christophe&rft.date=2019-06-15&rft.issn=0926-3373&rft.volume=247&rft.spage=86&rft.epage=99&rft_id=info:doi/10.1016%2Fj.apcatb.2019.01.084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2019_01_084 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |