An Intelligent Recognition Method for Low-Grade Fault Based on Attention Mechanism and Encoder–Decoder Network Structure

Low-grade faults play an important role in controlling oil and gas accumulations, but their fault throw is small and difficult to identify. Traditional low-grade fault recognition methods are time-consuming and inaccurate. Therefore, this study proposes a combination of a simulated low-grade fault s...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 15; no. 21; p. 8098
Main Authors: Zhang, Yujie, Wang, Dongdong, Ding, Renwei, Yang, Jing, Zhao, Lihong, Zhao, Shuo, Cai, Minghao, Han, Tianjiao
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2022
Subjects:
ISSN:1996-1073, 1996-1073
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Low-grade faults play an important role in controlling oil and gas accumulations, but their fault throw is small and difficult to identify. Traditional low-grade fault recognition methods are time-consuming and inaccurate. Therefore, this study proposes a combination of a simulated low-grade fault sample set and a self-constructed convolutional neural network to recognize low-grade faults. We used Wu’s method to generate 500 pairs of low-grade fault samples to provide the data for deep learning. By combining the attention mechanism with UNet, an SE-UNet with efficient allocation of limited attention resources was constructed, which can select the features that are more critical to the current task objective from ample feature information, thus improving the expression ability of the network. The network model is applied to real data, and the results show that the SE-UNet model has better generalization ability and can better recognize low-grade and more continuous faults. Compared with the original UNet model, the SE-UNet model is more accurate and has more advantages in recognizing low-grade faults.
AbstractList Low-grade faults play an important role in controlling oil and gas accumulations, but their fault throw is small and difficult to identify. Traditional low-grade fault recognition methods are time-consuming and inaccurate. Therefore, this study proposes a combination of a simulated low-grade fault sample set and a self-constructed convolutional neural network to recognize low-grade faults. We used Wu’s method to generate 500 pairs of low-grade fault samples to provide the data for deep learning. By combining the attention mechanism with UNet, an SE-UNet with efficient allocation of limited attention resources was constructed, which can select the features that are more critical to the current task objective from ample feature information, thus improving the expression ability of the network. The network model is applied to real data, and the results show that the SE-UNet model has better generalization ability and can better recognize low-grade and more continuous faults. Compared with the original UNet model, the SE-UNet model is more accurate and has more advantages in recognizing low-grade faults.
Audience Academic
Author Zhang, Yujie
Wang, Dongdong
Ding, Renwei
Yang, Jing
Han, Tianjiao
Zhao, Shuo
Cai, Minghao
Zhao, Lihong
Author_xml – sequence: 1
  givenname: Yujie
  surname: Zhang
  fullname: Zhang, Yujie
– sequence: 2
  givenname: Dongdong
  surname: Wang
  fullname: Wang, Dongdong
– sequence: 3
  givenname: Renwei
  surname: Ding
  fullname: Ding, Renwei
– sequence: 4
  givenname: Jing
  surname: Yang
  fullname: Yang, Jing
– sequence: 5
  givenname: Lihong
  orcidid: 0000-0002-5325-8086
  surname: Zhao
  fullname: Zhao, Lihong
– sequence: 6
  givenname: Shuo
  orcidid: 0000-0002-7891-6540
  surname: Zhao
  fullname: Zhao, Shuo
– sequence: 7
  givenname: Minghao
  surname: Cai
  fullname: Cai, Minghao
– sequence: 8
  givenname: Tianjiao
  surname: Han
  fullname: Han, Tianjiao
BookMark eNptkd1qFTEQx4NUsNbe-AQB74StyWY3u7k81n4cOCr4cR2yyeQ0xz1JzWYp9cp36Bv6JE67iiJmIDMM_9-fTOYpOYgpAiHPOTsRQrFXEHlb856p_hE55ErJirNOHPxVPyHH07RjeITgQohD8m0V6ToWGMewhVjoB7BpG0MJKdK3UK6Soz5lukk31UU2Dui5mcdCX5sJHEXNqhTEFrW9MjFMe2qio2fRJgf5x_e7N_BQ0XdQblL-Qj-WPNsyZ3hGHnszTnD8Kx-Rz-dnn04vq837i_XpalPZhrFSeSaHofaeASgpfMdbsDhAI4Rz1nDXyMG5VjolQcCAYaW3nWOsl621iokjsl58XTI7fZ3D3uRbnUzQD42Ut9rkEuwI2rFOyhYxOUCDfn0zALRi8Hirvpbo9WLxus7p6wxT0bs054jP13UnGlmrWipUnSyqrUHTEH0q2VgMB_tgcWk-YH_VNa1knPMGAbYANqdpyuC1DcXcfyuCYdSc6fsN6z8bRuTlP8jvyf4j_gldoqob
CitedBy_id crossref_primary_10_1007_s12145_024_01319_1
crossref_primary_10_1007_s11694_024_03010_x
crossref_primary_10_1007_s12145_025_01971_1
crossref_primary_10_3389_feart_2023_1102656
crossref_primary_10_1190_geo2024_0532_1
crossref_primary_10_1016_j_earscirev_2024_104887
crossref_primary_10_3390_app14188235
Cites_doi 10.1109/EMBC46164.2021.9629671
10.1007/s11770-012-0315-7
10.1111/1755-6724.12307_12
10.1190/1.1817297
10.1007/978-3-642-40763-5_78
10.1190/1.1438880
10.1080/1463922X.2016.1166406
10.1016/j.neucom.2013.04.017
10.1190/geo2018-0646.1
10.1002/wics.1223
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en15218098
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_d076655cc6be46e384bee53bfee59826
A745601114
10_3390_en15218098
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c400t-f06bb2ff0ee963f715ec000433ddca1d46bdd56d96e3ebebec6fc7d00865cc903
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000881080800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Mon Nov 10 04:34:19 EST 2025
Mon Jun 30 11:23:30 EDT 2025
Tue Nov 04 18:16:13 EST 2025
Sat Nov 29 07:15:00 EST 2025
Tue Nov 18 22:13:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-f06bb2ff0ee963f715ec000433ddca1d46bdd56d96e3ebebec6fc7d00865cc903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5325-8086
0000-0002-7891-6540
OpenAccessLink https://doaj.org/article/d076655cc6be46e384bee53bfee59826
PQID 2734629269
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_d076655cc6be46e384bee53bfee59826
proquest_journals_2734629269
gale_infotracacademiconefile_A745601114
crossref_citationtrail_10_3390_en15218098
crossref_primary_10_3390_en15218098
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_23) 2020; 57
Shang (ref_16) 2021; 38
ref_13
ref_35
Wu (ref_36) 2019; 85
Xu (ref_1) 2012; 33
ref_12
Taghanaki (ref_18) 2020; 54
ref_31
ref_30
Ma (ref_6) 2020; 44
ref_19
Liu (ref_17) 2022; 47
Han (ref_33) 2022; 46
Zhang (ref_8) 2015; 89
ref_37
He (ref_5) 2010; 32
Yang (ref_14) 2022; 37
Zhou (ref_11) 2013; 120
Zhou (ref_24) 2021; 57
Zhang (ref_34) 2022; 61
Li (ref_4) 2019; 38
Wang (ref_21) 2022; 52
Ai (ref_20) 2021; 128
Chang (ref_29) 2021; 56
Liu (ref_27) 2021; 36
Wu (ref_25) 2019; 84
ref_28
Carter (ref_2) 2001; 20
ref_26
Bi (ref_3) 2015; 41
Chen (ref_9) 2012; 9
Lodhi (ref_10) 2012; 4
Yang (ref_32) 2021; 60
ref_7
Tang (ref_15) 2021; 10
Yu (ref_22) 2020; 15
References_xml – ident: ref_28
– volume: 41
  start-page: 125
  year: 2015
  ident: ref_3
  article-title: Application of C3 coherence in fault identification of Ningbo tectonic belt
  publication-title: Inn. Mong. Petrochem. Ind.
– volume: 128
  start-page: 184
  year: 2021
  ident: ref_20
  article-title: Research on a medical image semantic segmentation algorithm based on deep learning
  publication-title: Basic Clin. Pharmacol. Toxicol.
– ident: ref_30
– ident: ref_19
  doi: 10.1109/EMBC46164.2021.9629671
– volume: 15
  start-page: 121
  year: 2020
  ident: ref_22
  article-title: Based on the improved fast iris localization of semantic segmentation model
  publication-title: Mod. Comput.
– volume: 36
  start-page: 2519
  year: 2021
  ident: ref_27
  article-title: Low-order fault identification technique based on 3D U-NET full Convolution Neural Network(CNN)
  publication-title: Prog. Geophys.
– volume: 60
  start-page: 751
  year: 2021
  ident: ref_32
  article-title: Global context and attention-based deep convolutional neural network for seismic data denoising
  publication-title: Geophys. Prospect. Pet.
– volume: 46
  start-page: 109
  year: 2022
  ident: ref_33
  article-title: Reverse Time Migration Compensation Method of Seismic Wave Based on Deep Learning
  publication-title: Well Logging Technol.
– volume: 57
  start-page: 395
  year: 2020
  ident: ref_23
  article-title: A Benchmark for Iris Segmentation
  publication-title: J. Comput. Res. Dev.
– ident: ref_26
– volume: 57
  start-page: 223
  year: 2021
  ident: ref_24
  article-title: PI-Unet: Research on Precise Iris Segmentation Neural Network Model for Heterogeneous Iris
  publication-title: Comput. Eng. Appl.
– volume: 61
  start-page: 454
  year: 2022
  ident: ref_34
  article-title: A multiple suppression method based on self-attention convolution auto-encoder
  publication-title: Geophys. Prospect. Pet.
– volume: 33
  start-page: 50
  year: 2012
  ident: ref_1
  article-title: Interpretation of seismic profile faults
  publication-title: China Pet. Chem. Stand. Qual.
– volume: 52
  start-page: 640
  year: 2022
  ident: ref_21
  article-title: Medical image segmentation based on multi⁃scale context⁃aware and semantic adaptor
  publication-title: J. Jilin Univ. Eng. Technol. Ed.
– ident: ref_37
– volume: 32
  start-page: 226
  year: 2010
  ident: ref_5
  article-title: Multi-scale Edge Detection Technology in Identifying Lower-order Faults
  publication-title: J. Oil Gas Technol.
– volume: 9
  start-page: 65
  year: 2012
  ident: ref_9
  article-title: The algorithm of 3D multi-scale volumetric curvature and its application
  publication-title: Appl. Geophys.
  doi: 10.1007/s11770-012-0315-7
– ident: ref_35
– volume: 38
  start-page: 174
  year: 2021
  ident: ref_16
  article-title: Semantic segmentation of road scene based on multi-scale feature extraction
  publication-title: Comput. Appl. Softw.
– volume: 54
  start-page: prepublish
  year: 2020
  ident: ref_18
  article-title: Deep Semantic Segmentation of Natural and Medical Images: A Review
  publication-title: Artif. Intell. Rev.
– volume: 37
  start-page: 298
  year: 2022
  ident: ref_14
  article-title: Research progress of intelligent identification of seismic faults based on deep learning
  publication-title: Prog. Geophys.
– volume: 47
  start-page: 30
  year: 2022
  ident: ref_17
  article-title: Lane Line Detection and Fitting Method Based on Semantic Segmentation Results
  publication-title: Automob. Appl. Technol.
– volume: 89
  start-page: 437
  year: 2015
  ident: ref_8
  article-title: The Application of Fracture Interpretation Technology Based on Ant Tracking in Sudeerte Oilfield
  publication-title: Acta Geol. Sin. Engl. Ed.
  doi: 10.1111/1755-6724.12307_12
– volume: 44
  start-page: 698
  year: 2020
  ident: ref_6
  article-title: Low-order fault structure-oriented Canny property edge detection and recognition method
  publication-title: Geophys. Geochem. Explor.
– ident: ref_7
  doi: 10.1190/1.1817297
– ident: ref_31
– ident: ref_12
  doi: 10.1007/978-3-642-40763-5_78
– volume: 20
  start-page: 64
  year: 2001
  ident: ref_2
  article-title: Fault imaging using edge detection and coherency measures on Hibernia 3-D seismic data
  publication-title: Lead. Edge
  doi: 10.1190/1.1438880
– ident: ref_13
  doi: 10.1080/1463922X.2016.1166406
– volume: 38
  start-page: 122
  year: 2019
  ident: ref_4
  article-title: Application of variance cube technology in the interpretation of small faults in Zhuanlongwan coal mine
  publication-title: Shaanxi Coal
– volume: 56
  start-page: 1
  year: 2021
  ident: ref_29
  article-title: Seismic fault interpretation based on deep convolutional neural networks
  publication-title: Oil Geophys. Prospect.
– volume: 85
  start-page: 4745
  year: 2019
  ident: ref_36
  article-title: Building realistic structure models to train convolutional neural networks for seismic structural interpretation
  publication-title: Geophysics
– volume: 10
  start-page: 69
  year: 2021
  ident: ref_15
  article-title: Semantic Segmentation of Street Scenes Based on Double Attention Mechanism
  publication-title: Comput. Mod.
– volume: 120
  start-page: 536
  year: 2013
  ident: ref_11
  article-title: Active deep learning method for semi-supervised sentiment classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.017
– volume: 84
  start-page: IM35
  year: 2019
  ident: ref_25
  article-title: FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation
  publication-title: Geophysics
  doi: 10.1190/geo2018-0646.1
– volume: 4
  start-page: 455
  year: 2012
  ident: ref_10
  article-title: Computational biology perspective: Kernel methods and deep learning
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.1223
SSID ssj0000331333
Score 2.3550146
Snippet Low-grade faults play an important role in controlling oil and gas accumulations, but their fault throw is small and difficult to identify. Traditional...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 8098
SubjectTerms Accuracy
Algorithms
Analysis
Artificial intelligence
attention mechanism
Deep learning
Fault lines
low-grade fault
Methods
Neural networks
SE-UNet
seismic data interpretation
Semantics
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BlgMceFcsFGQJJMQh2mycOPEJbaELldrVipfKyXL8QJVKUrIpSJz4D_xDfgkzjncLEnDiEkXxKLI143nYM98APOLSFjxcq2dFluTGV4kWlUxEqqVDVWmKkFX57qBcLKqjI7mM5dGrmFa51olBUQ9oz5S3jUp4YltDJ-YTAmURmcyEfHr6KaEeUnTXGhtqXIQtAt6qRrC13D9cvt-cuaScY0jGB5RSjtH-xDVkv6pUVr_ZpQDf_zclHSzP_Nr_nfN1uBo9UDYbROYGXHDNTbjyCy7hLfg6a9j-BquzZ6_WWUZtww5Dy2mGvi47aL8kLzptHZvrs5Oe7aJFtAxpZn0_ZFEiNVUWH68-Mt1YttdQBX3349v35y68scWQhc5eBxjbs87dhrfzvTfPXiaxSUNicPv3iU9FXWfep87hXvbltHAm3C9ya42e2lzU1hbCSuE4CgyKDFUXWQqlCmNkyrdh1LSNuwPM-spNTarr0k7Jr0HXSXvtRKY9l_jnMTxZs0iZiGBOjTROFEYyxE51zs4xPNzQng64HX-k2iVObygIazt8aLsPKm5dZdNSiAInK2qX4yqqvHau4LXHp8TobAyPSU4UaQScjtGxsAEXRdhaalbmFPZi4DmGnbWcqKgqVupcLO7-e_geXM6o9iIUQu7ACBnj7sMl87k_XnUPoqz_BO7nEn8
  priority: 102
  providerName: ProQuest
Title An Intelligent Recognition Method for Low-Grade Fault Based on Attention Mechanism and Encoder–Decoder Network Structure
URI https://www.proquest.com/docview/2734629269
https://doaj.org/article/d076655cc6be46e384bee53bfee59826
Volume 15
WOSCitedRecordID wos000881080800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxNBEB-k-qAPYv3AaC0LCuLD0cvt3eb2MbGJFpoQ6gf1adnbnYVCe5HkqtCH4v_gf-hf4szeJUZQfPHlOJbh2JuvnWFnfgPwQmpfyHitnhVZkrtQJlaVOlGp1Uiu0hWxqvLj8WA2K09P9Xxr1BfXhLXwwC3jDjwl2qoonFMV5gplmVeIhawCPTXFxux9KerZSqaiD5aSki_Z4pFKyusPsOaTqkx1-dsJFIH6_-aO4xkzuQd3u-BQDNtN7cINrO_DnS3IwAdwNazF0QZGsxEn6wKgRS2mcRq0oDBUHC--Jm-W1qOY2MvzRozosPKCaIZN0xY4EjU3_Z6tLoStvRjX3Ny-_PHt-yHGNzFrC8TFu4gwe7nEh_BhMn7_-m3SzU9IHFlmk4RUVVUWQopIZhYG_QJdvPqT3jvb97mqvC-U18RWkiVJkxt_PGc5xG-dykewUy9qfAzChxL7LrXVwPc55KCoxgaLKrNBavpyD16teWpcBy7OMy7ODSUZzH_zi_89eL6h_dxCavyRasSi2VAwDHZcIOUwnXKYfylHD16yYA0bK23H2a7ngH6KYa_McJBzRko5YQ_21rI3nRWvDEP_qExnSj_5H7t5Crczbp6InYx7sEPiw2dwy31pzlbLfbg5Gs_mJ_tRkek5vR7T2vxoOv_0E2SR_Gk
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFAk48I8IFFgJEOJg1fHaa-8BoZQ2NGoSRVCqcjLr3TWqVOziuFRw4h14Dx6KJ2FmbacgAbceuFiWPbI89uf58c58A_CISxNxt6weRIEX6jzxlEikJ3wlLZpKHbmqyr1JPJsl-_tyvgLfu14YKqvsbKIz1KbU9I98nWhYRCADIZ8fffRoahStrnYjNBpY7NjPJ5iyLZ6NN_H9Pg6C0dbui22vnSrgacRr7eW-yLIgz31rEXx5PIisdgti3BitBiYUmTGRMFJYjhqijtQOYyj2j7SWPsfrnoPVEMGe9GB1Pp7O3y7_6vicY9LHGx5UzqW_bgvykIkvk988nxsQ8Dc34Hzb6Mr_9lSuwuU2imbDBvbXYMUW1-HSL9yKN-DLsGDjJd9ozV51lVJlwaZubDbDeJ1NyhPvZaWMZSN1fFizDfTqhqHMsK6bSlCUpu7og8UHpgrDtgpiAah-fP22ad0emzWV9Oy1o-I9ruxNeHMmyt-CXlEW9jYwkyd2oH2VxWZAsRmGfypXVgQq5xKv3IenHQhS3bKw0zCQwxSzMQJMegqYPjxcyh413CN_lNogLC0liC_cHSir92lrflLjx0JEeLMisyFqkYSZtRHPctxKzDD78ISQmJJVw9vRqm3OQKWIHywdxiGl7pg892GtQ2LamrtFegrDO_8-_QAubO9OJ-lkPNu5CxcD6iVxjZ1r0MOXZO_Bef2pPlhU99svi8G7s4btT1RXZ2c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EYECqwECHGw4njttfeAUEoaiJpGEY-qnJb1PlClYhfHpYIT_4F_w8_hlzC7tlOQgFsPXCzLHlke-_M8vDPfADygXCfUL6tHSRTEymaBZBkPWCi5QVOpEl9VuTtL5_Nsb48v1uB71wvjyio7m-gNtS6V-0c-cDQsLOIR4wPblkUsxpOnhx8DN0HKrbR24zQaiGybz8eYvi2fTMf4rh9G0WTr9bMXQTthIFCI3TqwIcvzyNrQGASiTYeJUX5xjGqt5FDHLNc6YZozQ1Fb1Ne1xmiXByRK8ZDidc_AOobkcdyD9cV0Z_F29YcnpBQTQNpwolLKw4EpnLfMQp795gX9sIC_uQTv5yaX_ucndBkuttE1GTWfwxVYM8VVuPAL5-I1-DIqyHTFQ1qTl10FVVmQHT9Om2AcT2blcfC8ktqQiTw6qMkmentNUGZU102FKEq7run95QciC022CscOUP34-m1s_B6ZNxX25JWn6D2qzHV4cyrK34BeURbmJhBtMzNUocxTPXQxG4aF0krDImkpxyv34XEHCKFadnY3JORAYJbmwCNOwNOH-yvZw4aT5I9Smw5XKwnHI-4PlNV70ZolocOUsQRvluUmRi2yODcmobnFLcfMsw-PHCqFs3Z4O0q2TRuolOMNE6M0dik9JtV92OhQKVozuBQnkLz179P34BxiVcym8-3bcD5yLSa-33MDeviOzB04qz7V-8vqbvuREXh32qj9Cc6wcCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent+Recognition+Method+for+Low-Grade+Fault+Based+on+Attention+Mechanism+and+Encoder%E2%80%93Decoder+Network+Structure&rft.jtitle=Energies+%28Basel%29&rft.au=Zhang%2C+Yujie&rft.au=Wang%2C+Dongdong&rft.au=Ding%2C+Renwei&rft.au=Yang%2C+Jing&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=15&rft.issue=21&rft_id=info:doi/10.3390%2Fen15218098&rft.externalDocID=A745601114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon