CIAA-RepDroid: A Fine-Grained and Probabilistic Reputation Scheme for Android Apps Based on Sentiment Analysis of Reviews

To keep its business reliable, Google is concerned to ensure the quality of apps on the store. One crucial aspect concerning quality is security. Security is achieved through Google Play protect and anti-malware solutions. However, they are not totally efficient since they rely on application featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future internet Jg. 12; H. 9; S. 145
Hauptverfasser: Tchakounté, Franklin, Yera Pagor, Athanase Esdras, Kamgang, Jean Claude, Atemkeng, Marcellin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.09.2020
Schlagworte:
ISSN:1999-5903, 1999-5903
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To keep its business reliable, Google is concerned to ensure the quality of apps on the store. One crucial aspect concerning quality is security. Security is achieved through Google Play protect and anti-malware solutions. However, they are not totally efficient since they rely on application features and application execution threads. Google provides additional elements to enable consumers to collectively evaluate applications providing their experiences via reviews or showing their satisfaction through rating. The latter is more informal and hides details of rating whereas the former is textually expressive but requires further processing to understand opinions behind it. Literature lacks approaches which mine reviews through sentiment analysis to extract useful information to improve the security aspects of provided applications. This work goes in this direction and in a fine-grained way, investigates in terms of confidentiality, integrity, availability, and authentication (CIAA). While assuming that reviews are reliable and not fake, the proposed approach determines review polarities based on CIAA-related keywords. We rely on the popular classifier Naive Bayes to classify reviews into positive, negative, and neutral sentiment. We then provide an aggregation model to fusion different polarities to obtain application global and CIAA reputations. Quantitative experiments have been conducted on 13 applications including e-banking, live messaging and anti-malware apps with a total of 1050 security-related reviews and 7,835,322 functionality-related reviews. Results show that 23% of applications (03 apps) have a reputation greater than 0.5 with an accent on integrity, authentication, and availability, while the remaining 77% has a polarity under 0.5. Developers should make a lot of effort in security while developing codes and that more efforts should be made to improve confidentiality reputation. Results also show that applications with good functionality-related reputation generally offer a bad security-related reputation. This situation means that even if the number of security reviews is low, it does not mean that the security aspect is not a consumer preoccupation. Unlike, developers put much more time to test whether applications work without errors even if they include possible security vulnerabilities. A quantitative comparison against well-known rating systems reveals the effectiveness and robustness of CIAA-RepDroid to repute apps in terms of security. CIAA-RepDroid can be associated with existing rating solutions to recommend developers exact CIAA aspects to improve within source codes.
AbstractList To keep its business reliable, Google is concerned to ensure the quality of apps on the store. One crucial aspect concerning quality is security. Security is achieved through Google Play protect and anti-malware solutions. However, they are not totally efficient since they rely on application features and application execution threads. Google provides additional elements to enable consumers to collectively evaluate applications providing their experiences via reviews or showing their satisfaction through rating. The latter is more informal and hides details of rating whereas the former is textually expressive but requires further processing to understand opinions behind it. Literature lacks approaches which mine reviews through sentiment analysis to extract useful information to improve the security aspects of provided applications. This work goes in this direction and in a fine-grained way, investigates in terms of confidentiality, integrity, availability, and authentication (CIAA). While assuming that reviews are reliable and not fake, the proposed approach determines review polarities based on CIAA-related keywords. We rely on the popular classifier Naive Bayes to classify reviews into positive, negative, and neutral sentiment. We then provide an aggregation model to fusion different polarities to obtain application global and CIAA reputations. Quantitative experiments have been conducted on 13 applications including e-banking, live messaging and anti-malware apps with a total of 1050 security-related reviews and 7,835,322 functionality-related reviews. Results show that 23% of applications (03 apps) have a reputation greater than 0.5 with an accent on integrity, authentication, and availability, while the remaining 77% has a polarity under 0.5. Developers should make a lot of effort in security while developing codes and that more efforts should be made to improve confidentiality reputation. Results also show that applications with good functionality-related reputation generally offer a bad security-related reputation. This situation means that even if the number of security reviews is low, it does not mean that the security aspect is not a consumer preoccupation. Unlike, developers put much more time to test whether applications work without errors even if they include possible security vulnerabilities. A quantitative comparison against well-known rating systems reveals the effectiveness and robustness of CIAA-RepDroid to repute apps in terms of security. CIAA-RepDroid can be associated with existing rating solutions to recommend developers exact CIAA aspects to improve within source codes.
To keep its business reliable, Google is concerned to ensure the quality of apps on the store. One crucial aspect concerning quality is security. Security is achieved through Google Play protect and anti-malware solutions. However, they are not totally efficient since they rely on application features and application execution threads. Google provides additional elements to enable consumers to collectively evaluate applications providing their experiences via reviews or showing their satisfaction through rating. The latter is more informal and hides details of rating whereas the former is textually expressive but requires further processing to understand opinions behind it. Literature lacks approaches which mine reviews through sentiment analysis to extract useful information to improve the security aspects of provided applications. This work goes in this direction and in a fine-grained way, investigates in terms of confidentiality, integrity, availability, and authentication (CIAA). While assuming that reviews are reliable and not fake, the proposed approach determines review polarities based on CIAA-related keywords. We rely on the popular classifier Naive Bayes to classify reviews into positive, negative, and neutral sentiment. We then provide an aggregation model to fusion different polarities to obtain application global and CIAA reputations. Quantitative experiments have been conducted on 13 applications including e-banking, live messaging and anti-malware apps with a total of 1050 security-related reviews and 7,835,322 functionality-related reviews. Results show that 23% of applications (03 apps) have a reputation greater than 0.5 with an accent on integrity, authentication, and availability, while the remaining 77% has a polarity under 0.5. Developers should make a lot of effort in security while developing codes and that more efforts should be made to improve confidentiality reputation. Results also show that applications with good functionality-related reputation generally offer a bad security-related reputation. This situation means that even if the number of security reviews is low, it does not mean that the security aspect is not a consumer preoccupation. Unlike, developers put much more time to test whether applications work without errors even if they include possible security vulnerabilities. A quantitative comparison against well-known rating systems reveals the effectiveness and robustness of CIAA-RepDroid to repute apps in terms of security. CIAA-RepDroid can be associated with existing rating solutions to recommend developers exact CIAA aspects to improve within source codes. Keywords: reputation; android; application; sentiment analysis; reviews; security service; NLP; Google Play; polarity
Audience Academic
Author Tchakounté, Franklin
Kamgang, Jean Claude
Yera Pagor, Athanase Esdras
Atemkeng, Marcellin
Author_xml – sequence: 1
  givenname: Franklin
  orcidid: 0000-0003-0723-2640
  surname: Tchakounté
  fullname: Tchakounté, Franklin
– sequence: 2
  givenname: Athanase Esdras
  surname: Yera Pagor
  fullname: Yera Pagor, Athanase Esdras
– sequence: 3
  givenname: Jean Claude
  orcidid: 0000-0002-3903-2283
  surname: Kamgang
  fullname: Kamgang, Jean Claude
– sequence: 4
  givenname: Marcellin
  surname: Atemkeng
  fullname: Atemkeng, Marcellin
BookMark eNptUV2L1DAUDbKC67ov_oKAb0LXpEnaxrc6ursDC4ofz-E2H2uGTlOTjjL_3jt2RRETyA0355xw7nlKzqY0eUKec3YlhGavQuQ104xL9Yicc611pTQTZ3_dn5DLUnYMl9B107Tn5LjZ9n310c9vc4ruNe3pdZx8dZMBi6MwOfohpwGGOMayREsRelhgiWmin-xXv_c0pEz7yZ34tJ_nQt9AQeoJ4Kcl7vHAdxiPJRaaAip8j_5HeUYeBxiLv3yoF-TL9bvPm9vq7v3NdtPfVVYytlR-kA4EMBFky4EHC9orJv0wSAt84FbVCupgubTSCembwNrWd4GJrmM6dOKCbFddl2Bn5hz3kI8mQTS_GinfG8jobPQmuCG0HiTOUEvFGdROeTfUba1Vjd-j1otVa87p28GXxezSIaO3YmqJEQimpUbU1Yq6BxSNU0hLBovb-X20mFmI2O8byVvVtJ1CAlsJNqdSsg_GxnXGSIyj4cycAjZ_AkbKy38ov539B_wTHMumbw
CitedBy_id crossref_primary_10_1109_TDSC_2024_3444913
crossref_primary_10_1155_2023_6348831
Cites_doi 10.1016/j.procs.2019.11.175
10.1109/ACCESS.2020.3002842
10.1016/B978-0-12-804629-6.00006-7
10.1145/2884781.2884818
10.1109/ICEEICT.2014.6919058
10.1145/3325917.3325941
10.1016/j.future.2020.02.002
10.1109/ASE.2015.57
10.1109/SP.2019.00012
10.1145/3360310
10.1016/j.jpdc.2014.08.004
10.1007/978-981-15-1675-7_2
10.1007/s42044-020-00068-w
10.1109/IRI.2017.79
10.20944/preprints202003.0249.v1
10.1109/MS.2014.50
10.1109/ICSE.2017.18
10.1145/3180155.3180218
10.1016/j.future.2019.11.034
10.1109/ISSRE.2015.7381797
10.1007/978-3-030-36056-6_12
10.1109/ACCESS.2020.3002176
10.1145/2487575.2488202
10.1007/s13369-020-04365-1
10.1007/978-3-030-06176-0
10.1016/j.cose.2019.101663
10.1016/j.cose.2019.02.010
10.1016/j.jss.2016.11.027
10.1016/j.jss.2020.110533
10.26599/TST.2019.9010067
10.1016/j.jss.2020.110609
10.1016/j.infsof.2020.106290
10.1016/bs.adcom.2020.03.002
10.1109/MS.2015.56
10.1109/RE.2014.6912257
10.1016/j.ins.2018.11.037
10.20944/preprints202007.0646.v1
10.1109/TPS-ISA48467.2019.00024
10.1145/2976749.2978343
10.1109/TrustCom.2012.236
10.1109/TII.2017.2789219
10.1109/DSN.2018.00051
10.1007/978-981-15-0029-9_62
10.3390/info11030152
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
COVID
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/fi12090145
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (ND)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1999-5903
ExternalDocumentID oai_doaj_org_article_fdbf7ea490194510a2d5edb272952471
A641756785
10_3390_fi12090145
GeographicLocations Cameroon
GeographicLocations_xml – name: Cameroon
GroupedDBID -DT
.4I
5VS
7WY
8FE
8FG
8FL
AADQD
AAFWJ
AAKPC
AAYXX
ABDBF
ABUWG
ACIHN
ADBBV
ADMLS
AEAQA
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
EAP
EBS
EJD
ESX
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K60
K6V
K6~
K7-
KQ8
M0C
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
RNS
TR2
3V.
7SC
7XB
8AL
8FD
8FK
ACUHS
COVID
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c400t-eb4da3a03f471a1fca9e504ebb4ca1b1c525a2fc14c4d34e6f077e8f038809f83
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578900700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-5903
IngestDate Fri Oct 03 12:51:15 EDT 2025
Fri Jul 25 22:13:06 EDT 2025
Tue Nov 04 17:35:04 EST 2025
Sat Nov 29 07:10:27 EST 2025
Tue Nov 18 21:57:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-eb4da3a03f471a1fca9e504ebb4ca1b1c525a2fc14c4d34e6f077e8f038809f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0723-2640
0000-0002-3903-2283
OpenAccessLink https://doaj.org/article/fdbf7ea490194510a2d5edb272952471
PQID 2439030949
PQPubID 2032396
ParticipantIDs doaj_primary_oai_doaj_org_article_fdbf7ea490194510a2d5edb272952471
proquest_journals_2439030949
gale_infotracacademiconefile_A641756785
crossref_citationtrail_10_3390_fi12090145
crossref_primary_10_3390_fi12090145
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Future internet
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Raghuraman (ref_16) 2020; Volume 1045
ref_50
Gajrani (ref_13) 2020; Volume 119
ref_58
Kou (ref_25) 2019; 478
ref_56
ref_55
ref_10
ref_54
ref_53
Alzaylaee (ref_18) 2020; 89
ref_52
ref_51
Tiguiane (ref_11) 2019; 35
ref_59
Taheri (ref_9) 2020; 105
ref_60
Martinelli (ref_12) 2020; 50
Tang (ref_15) 2020; 25
Alazab (ref_8) 2020; 107
ref_24
Abran (ref_23) 2017; 125
ref_21
Abdullah (ref_14) 2020; Volume 978 AISC
Khalid (ref_36) 2015; 32
ref_29
ref_26
Haryanto (ref_57) 2019; 161
Pan (ref_7) 2020; 8
ref_35
ref_34
ref_32
ref_31
Wang (ref_17) 2020; 167
ref_30
Tao (ref_46) 2020; 122
ref_39
ref_38
ref_37
Nagappan (ref_22) 2016; 33
Woods (ref_19) 2020; 63
Oyebode (ref_33) 2020; 8
ref_47
Li (ref_27) 2018; 14
Fu (ref_40) 2013; Volume Part F128815
ref_44
Xiao (ref_28) 2020; 163
ref_43
Hatamian (ref_45) 2019; 83
ref_42
ref_41
ref_1
ref_3
ref_2
ref_49
ref_48
Hendrikx (ref_20) 2015; 75
ref_5
ref_4
ref_6
References_xml – volume: 161
  start-page: 715
  year: 2019
  ident: ref_57
  article-title: Facebook analysis of community sentiment on 2019 Indonesian presidential candidates from Facebook opinion data
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.11.175
– volume: 8
  start-page: 116363
  year: 2020
  ident: ref_7
  article-title: A Systematic Literature Review of Android Malware Detection Using Static Analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002842
– ident: ref_10
  doi: 10.1016/B978-0-12-804629-6.00006-7
– ident: ref_5
– ident: ref_55
– ident: ref_41
  doi: 10.1145/2884781.2884818
– ident: ref_21
  doi: 10.1109/ICEEICT.2014.6919058
– ident: ref_26
  doi: 10.1145/3325917.3325941
– volume: 107
  start-page: 509
  year: 2020
  ident: ref_8
  article-title: Intelligent mobile malware detection using permission requests and API calls
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.02.002
– ident: ref_37
  doi: 10.1109/ASE.2015.57
– ident: ref_38
  doi: 10.1109/SP.2019.00012
– volume: 63
  start-page: 104
  year: 2020
  ident: ref_19
  article-title: Cyber Warranties: Market Fix or Marketing Trick?
  publication-title: Commun. ACM
  doi: 10.1145/3360310
– volume: 75
  start-page: 184
  year: 2015
  ident: ref_20
  article-title: Reputation systems: A survey and taxonomy
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2014.08.004
– ident: ref_49
  doi: 10.1007/978-981-15-1675-7_2
– ident: ref_50
  doi: 10.1007/s42044-020-00068-w
– ident: ref_31
  doi: 10.1109/IRI.2017.79
– ident: ref_32
  doi: 10.20944/preprints202003.0249.v1
– volume: 32
  start-page: 70
  year: 2015
  ident: ref_36
  article-title: What do mobile app users complain about?
  publication-title: IEEE Softw.
  doi: 10.1109/MS.2014.50
– ident: ref_39
  doi: 10.1109/ICSE.2017.18
– ident: ref_42
  doi: 10.1145/3180155.3180218
– volume: 105
  start-page: 230
  year: 2020
  ident: ref_9
  article-title: Similarity-based Android malware detection using Hamming distance of static binary features
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.11.034
– ident: ref_43
  doi: 10.1109/ISSRE.2015.7381797
– volume: Volume 978 AISC
  start-page: 121
  year: 2020
  ident: ref_14
  article-title: Android Ransomware Detection Based on Dynamic Obtained Features
  publication-title: Advances in Intelligent Systems and Computing
  doi: 10.1007/978-3-030-36056-6_12
– ident: ref_4
– ident: ref_56
– volume: 8
  start-page: 111141
  year: 2020
  ident: ref_33
  article-title: Using Machine Learning and Thematic Analysis Methods to Evaluate Mental Health Apps Based on User Reviews
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002176
– volume: Volume Part F128815
  start-page: 1276
  year: 2013
  ident: ref_40
  article-title: Why people hate your App-Making sense of user feedback in a mobile app store
  publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  doi: 10.1145/2487575.2488202
– ident: ref_52
– ident: ref_1
  doi: 10.1007/s13369-020-04365-1
– ident: ref_58
  doi: 10.1007/978-3-030-06176-0
– volume: 89
  start-page: 101663
  year: 2020
  ident: ref_18
  article-title: DL-Droid: Deep learning based android malware detection using real devices
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2019.101663
– volume: 83
  start-page: 332
  year: 2019
  ident: ref_45
  article-title: Revealing the unrevealed: Mining smartphone users privacy perception on app markets
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2019.02.010
– volume: 125
  start-page: 207
  year: 2017
  ident: ref_23
  article-title: A systematic literature review: Opinion mining studies from mobile app store user reviews
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2016.11.027
– volume: 163
  start-page: 110533
  year: 2020
  ident: ref_28
  article-title: An Android application risk evaluation framework based on minimum permission set identification
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2020.110533
– ident: ref_59
– ident: ref_53
– volume: 25
  start-page: 589
  year: 2020
  ident: ref_15
  article-title: A novel hybrid method to analyze security vulnerabilities in android applications
  publication-title: Tsinghua Sci. Technol.
  doi: 10.26599/TST.2019.9010067
– volume: 167
  start-page: 110609
  year: 2020
  ident: ref_17
  article-title: Identifying vulnerabilities of SSL/TLS certificate verification in Android apps with static and dynamic analysis
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2020.110609
– volume: 122
  start-page: 106290
  year: 2020
  ident: ref_46
  article-title: Identifying security issues for mobile applications based on user review summarization
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2020.106290
– ident: ref_3
– volume: Volume 119
  start-page: 73
  year: 2020
  ident: ref_13
  article-title: Effectiveness of state-of-the-art dynamic analysis techniques in identifying diverse Android malware and future enhancements
  publication-title: Advances in Computers
  doi: 10.1016/bs.adcom.2020.03.002
– ident: ref_24
– volume: 33
  start-page: 86
  year: 2016
  ident: ref_22
  article-title: Examining the Rating System Used in Mobile-App Stores
  publication-title: IEEE Softw.
  doi: 10.1109/MS.2015.56
– volume: 50
  start-page: 102423
  year: 2020
  ident: ref_12
  article-title: Visualizing the outcome of dynamic analysis of Android malware with VizMal
  publication-title: J. Inf. Secur. Appl.
– ident: ref_34
  doi: 10.1109/RE.2014.6912257
– volume: 478
  start-page: 461
  year: 2019
  ident: ref_25
  article-title: A review on trust propagation and opinion dynamics in social networks and group decision making frameworks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.11.037
– volume: 35
  start-page: 26
  year: 2019
  ident: ref_11
  article-title: Detection of Android Malware based on Sequence Alignment of Permissions
  publication-title: Int. J. Comput. (IJC)
– ident: ref_6
– ident: ref_51
  doi: 10.20944/preprints202007.0646.v1
– ident: ref_29
– ident: ref_54
– ident: ref_48
  doi: 10.1109/TPS-ISA48467.2019.00024
– ident: ref_2
– ident: ref_30
  doi: 10.1145/2976749.2978343
– ident: ref_47
  doi: 10.1109/TrustCom.2012.236
– ident: ref_60
– volume: 14
  start-page: 3216
  year: 2018
  ident: ref_27
  article-title: Significant Permission Identification for Machine-Learning-Based Android Malware Detection
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2789219
– ident: ref_44
  doi: 10.1109/DSN.2018.00051
– volume: Volume 1045
  start-page: 793
  year: 2020
  ident: ref_16
  article-title: Static and dynamic malware analysis using machine learning
  publication-title: Advances in Intelligent Systems and Computing
  doi: 10.1007/978-981-15-0029-9_62
– ident: ref_35
  doi: 10.3390/info11030152
SSID ssj0000392667
Score 2.1747482
Snippet To keep its business reliable, Google is concerned to ensure the quality of apps on the store. One crucial aspect concerning quality is security. Security is...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 145
SubjectTerms Analysis
android
application
Application programming interface
Applications programs
Availability
Confidentiality
Control
Data mining
Data security
Electronic banking
Ergonomics
Integrity
Internet
Keywords
Machine learning
Malware
Mobile applications
Operating systems (Software)
Ratings & rankings
reputation
Reputations
reviews
Security aspects
security service
Sentiment analysis
Sentimentality
Social networks
Software security
System effectiveness
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZK2gMcSnlUpKSVJSohDqvuw94HF7QJpOVAFKlFys3ys4pUdstugsS_Z2bXSUAqXLiux1pbM56HZ_wNIeccWKmljIIM84Mst2GgHMQ8ToFv6yLDC5l3zSay2SxfLIq5v3BrfVnlRid2itrUGu_IL2KwnJgOYMWH--8Bdo3C7KpvofGI7KNngyV9X8LJ9o4lBOOfplmPSprA_Au3xLeimEr7ww51cP1_U8qdpZk-_d81HpFD72PSsheKZ2TPVs_Jk9-QB1-Qn5PPZRmA9_2xqZfmPS3pFAaDS2wYYQ2VlaHzBo46ls4ikjMF0nWftafXwOdvloK3S7EcEuZT8GVbOgaDaCgSYAUS3jrSDeQJrR3tsxDtS_J1-ulmchX4LgyBhvO9CqxiRiYyTBzYMRk5LQvLQ2aVYlpGKtI85jJ2OmKamYTZ1IVZZnPXwcwULk-OyaCqK_uKUANSwQ1wxUnFrITgWDuwh3maK22SJBySdxueCO0hyrFTxp2AUAX5J3b8G5I3W9r7HpjjQaoxsnZLgWDa3Ye6uRX-bApnlMusZDCjYKCjZGy4NSqGuIPHsOkheYuCIfDIw3K09C8XYFMIniXKlIETBlYffjfaCIbwuqAVO6k4-ffwa_I4xmi-q2AbkcGqWdtTcqB_rJZtc9aJ9i_oFgKn
  priority: 102
  providerName: ProQuest
Title CIAA-RepDroid: A Fine-Grained and Probabilistic Reputation Scheme for Android Apps Based on Sentiment Analysis of Reviews
URI https://www.proquest.com/docview/2439030949
https://doaj.org/article/fdbf7ea490194510a2d5edb272952471
Volume 12
WOSCitedRecordID wos000578900700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (ND)
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: 7WY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: M0C
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG509aAH8Ymj69CgIB7C5tGdTrxlxh1dZIfgA3e9hH7CgM7IzKzgv_erTmYdQfHipQ9JhXSqqruqUtVfMfZMQpRW6yxRlB8UlU8TExDzBAPfNmRO1rqKzSbUfF6dndXtXqsvqgnr4YF7xh0FZ4LyWsBu1QIKpHMnvTM5nEKZi3h6PE9VvRdMxT0YZr8sVY9HWiCuPwoLOiVKSbTfLFAE6v_bdhxtzOw2uzU4h7zpJ3WHXfHLu-zmHmTgPfZjetI0CdzmV-vVwr3kDZ_hZvKaOj14x_XS8XaNNUo1rwTBzEF60afb-XsI6KvncFM51THieQ4ndMMnsGSOEwGVDtHvQr7DKuGrwPv0weY--zg7_jB9kwztExKLhblNvBFOFzotAtiks2B17WUqvDHC6sxkVuZS58FmwgpXCF-GVClfhYgPU4eqeMAOlqulf8i4gzilA1ODNsJrRLU2wJBVZWWsK4p0xF7sWNrZAVucWlx86RBjEPu7X-wfsaeXtN96RI0_Uk1IMpcUhIIdL0A3ukE3un_pxog9J7l2tFYxHauHIwf4KEK96ppSwHuCucbrDnei74ZFvOlyOGuUgRL1o_8xm8fsRk7BeixQO2QH2_WFf8Ku2-_bxWY9ZlfVp_MxuzY5nrfvxlGbMb5VCcbTdIqxlZ9xvz05bc9_ApXf-2E
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UKqgP3sXVqgMq4sPQXCY3QSRtXbtsXQpW6Ns417JQNzXZKv1T_kbPyWWroL71wdfkTJJJvpzLnDPfAXie4Kc0SoU8o_ygyF3AtceYx2v0bX1ok0LlbbOJbDbLDw-L_TX4MeyFobLKQSe2itpWhtbINyO0nJQOEMXbk6-cukZRdnVoodHBYurOvmPI1ryZ7OD3fRFF43cH27u87yrADeJ1yZ0WVsUqiD3qZRV6owqXBMJpLYwKdWiSKFGRN6EwwsbCpT7IMpf7ljal8HmM170El0WcZ_RfTTO-WtMJ0NlI06xjQY3xeTf9nPamUuruN7vXtgf4mxFoLdv45v_2Tm7Bjd6HZmUH-tuw5hZ34PovzIp34Wx7UpYco4uduprb16xkYzzJ31NDDGeZWli2X6Mqo9JgYqpmKHraVSWwj4jjL46hN8-o3BPHM_TVG7aFBt8yEqAKK1pVZQOlC6s867IszT34dCFzvw_ri2rhHgCziPrEIgq80sIpDP6NR3ufp7k2No6DEbwaMCBNT8FOnUCOJYZihBd5jpcRPFvJnnTEI3-U2iIorSSILLw9UNVHstc90lvtM6cEjigE6mAV2cRZHWFclUQ46RG8JCBKUmn4OEb1OzNwUkQOJstUoJOJXg3ebmMAoux1XSPPUfjw36efwtXdgw97cm8ymz6CaxGtXLTVehuwvqxP3WO4Yr4t5039pP2tGHy-aMz-BIMbYRE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAceCMCBVYChDhYsb3rFxJCbkMgKooiAVLVy7JPFAniYqeg_jV-HTN-pCABtx64xuPEG387-83O7DcAjxN8lUapKMgoPyhyFwbaY8zjNXJbH9mkUHnbbCKbz_ODg2KxBT-GszBUVjn4xNZR28rQHvk4xpWT0gGiGPu-LGIxmb48-hpQBynKtA7tNDqI7LuT7xi-NS9mE3zXT-J4-ur93pug7zAQGMTuOnBaWMVVyD36aBV5owqXhMJpLYyKdGSSOFGxN5EwwnLhUh9mmct9K6FS-Jzj956D8xnGmFROuEgON_s7IRKPNM06RVSOzz72SzqnSmm839bAtlXA3xaEdpWbXv2f_59rcKXn1qzsJsN12HKrG3D5F8XFm3CyNyvLAKOOSV0t7XNWsileDF5TowxnmVpZtqjRxVHJMClYMzQ97qoV2DvE9xfHkOUzKgPF-xly-IbtIhGwjAyo8op2W9kg9cIqz7rsS3MLPpzJ2G_D9qpauTvALM6GxCIivNLCKZ5z45EH5GmujeU8HMGzAQ_S9NLs1CHks8QQjbAjT7Ezgkcb26NOkOSPVrsEq40FiYi3H1T1J9n7JOmt9plTAu8oBPpmFdvEWR1jvJXEOOgRPCVQSnJ1-DhG9Sc2cFAkGibLVCD5RLaDP7czgFL2PrCRp4i8--_LD-EiQlW-nc3378GlmDY02iK-Hdhe18fuPlww39bLpn7QzjAGH88asj8BtPhqNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CIAA-RepDroid%3A+A+Fine-Grained+and+Probabilistic+Reputation+Scheme+for+Android+Apps+Based+on+Sentiment+Analysis+of+Reviews&rft.jtitle=Future+internet&rft.au=Franklin+Tchakount%C3%A9&rft.au=Athanase+Esdras+Yera+Pagor&rft.au=Jean+Claude+Kamgang&rft.au=Marcellin+Atemkeng&rft.date=2020-09-01&rft.pub=MDPI+AG&rft.eissn=1999-5903&rft.volume=12&rft.issue=9&rft.spage=145&rft_id=info:doi/10.3390%2Ffi12090145&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fdbf7ea490194510a2d5edb272952471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon