CIAA-RepDroid: A Fine-Grained and Probabilistic Reputation Scheme for Android Apps Based on Sentiment Analysis of Reviews
To keep its business reliable, Google is concerned to ensure the quality of apps on the store. One crucial aspect concerning quality is security. Security is achieved through Google Play protect and anti-malware solutions. However, they are not totally efficient since they rely on application featur...
Gespeichert in:
| Veröffentlicht in: | Future internet Jg. 12; H. 9; S. 145 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.09.2020
|
| Schlagworte: | |
| ISSN: | 1999-5903, 1999-5903 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To keep its business reliable, Google is concerned to ensure the quality of apps on the store. One crucial aspect concerning quality is security. Security is achieved through Google Play protect and anti-malware solutions. However, they are not totally efficient since they rely on application features and application execution threads. Google provides additional elements to enable consumers to collectively evaluate applications providing their experiences via reviews or showing their satisfaction through rating. The latter is more informal and hides details of rating whereas the former is textually expressive but requires further processing to understand opinions behind it. Literature lacks approaches which mine reviews through sentiment analysis to extract useful information to improve the security aspects of provided applications. This work goes in this direction and in a fine-grained way, investigates in terms of confidentiality, integrity, availability, and authentication (CIAA). While assuming that reviews are reliable and not fake, the proposed approach determines review polarities based on CIAA-related keywords. We rely on the popular classifier Naive Bayes to classify reviews into positive, negative, and neutral sentiment. We then provide an aggregation model to fusion different polarities to obtain application global and CIAA reputations. Quantitative experiments have been conducted on 13 applications including e-banking, live messaging and anti-malware apps with a total of 1050 security-related reviews and 7,835,322 functionality-related reviews. Results show that 23% of applications (03 apps) have a reputation greater than 0.5 with an accent on integrity, authentication, and availability, while the remaining 77% has a polarity under 0.5. Developers should make a lot of effort in security while developing codes and that more efforts should be made to improve confidentiality reputation. Results also show that applications with good functionality-related reputation generally offer a bad security-related reputation. This situation means that even if the number of security reviews is low, it does not mean that the security aspect is not a consumer preoccupation. Unlike, developers put much more time to test whether applications work without errors even if they include possible security vulnerabilities. A quantitative comparison against well-known rating systems reveals the effectiveness and robustness of CIAA-RepDroid to repute apps in terms of security. CIAA-RepDroid can be associated with existing rating solutions to recommend developers exact CIAA aspects to improve within source codes. |
|---|---|
| AbstractList | To keep its business reliable, Google is concerned to ensure the quality of apps on the store. One crucial aspect concerning quality is security. Security is achieved through Google Play protect and anti-malware solutions. However, they are not totally efficient since they rely on application features and application execution threads. Google provides additional elements to enable consumers to collectively evaluate applications providing their experiences via reviews or showing their satisfaction through rating. The latter is more informal and hides details of rating whereas the former is textually expressive but requires further processing to understand opinions behind it. Literature lacks approaches which mine reviews through sentiment analysis to extract useful information to improve the security aspects of provided applications. This work goes in this direction and in a fine-grained way, investigates in terms of confidentiality, integrity, availability, and authentication (CIAA). While assuming that reviews are reliable and not fake, the proposed approach determines review polarities based on CIAA-related keywords. We rely on the popular classifier Naive Bayes to classify reviews into positive, negative, and neutral sentiment. We then provide an aggregation model to fusion different polarities to obtain application global and CIAA reputations. Quantitative experiments have been conducted on 13 applications including e-banking, live messaging and anti-malware apps with a total of 1050 security-related reviews and 7,835,322 functionality-related reviews. Results show that 23% of applications (03 apps) have a reputation greater than 0.5 with an accent on integrity, authentication, and availability, while the remaining 77% has a polarity under 0.5. Developers should make a lot of effort in security while developing codes and that more efforts should be made to improve confidentiality reputation. Results also show that applications with good functionality-related reputation generally offer a bad security-related reputation. This situation means that even if the number of security reviews is low, it does not mean that the security aspect is not a consumer preoccupation. Unlike, developers put much more time to test whether applications work without errors even if they include possible security vulnerabilities. A quantitative comparison against well-known rating systems reveals the effectiveness and robustness of CIAA-RepDroid to repute apps in terms of security. CIAA-RepDroid can be associated with existing rating solutions to recommend developers exact CIAA aspects to improve within source codes. To keep its business reliable, Google is concerned to ensure the quality of apps on the store. One crucial aspect concerning quality is security. Security is achieved through Google Play protect and anti-malware solutions. However, they are not totally efficient since they rely on application features and application execution threads. Google provides additional elements to enable consumers to collectively evaluate applications providing their experiences via reviews or showing their satisfaction through rating. The latter is more informal and hides details of rating whereas the former is textually expressive but requires further processing to understand opinions behind it. Literature lacks approaches which mine reviews through sentiment analysis to extract useful information to improve the security aspects of provided applications. This work goes in this direction and in a fine-grained way, investigates in terms of confidentiality, integrity, availability, and authentication (CIAA). While assuming that reviews are reliable and not fake, the proposed approach determines review polarities based on CIAA-related keywords. We rely on the popular classifier Naive Bayes to classify reviews into positive, negative, and neutral sentiment. We then provide an aggregation model to fusion different polarities to obtain application global and CIAA reputations. Quantitative experiments have been conducted on 13 applications including e-banking, live messaging and anti-malware apps with a total of 1050 security-related reviews and 7,835,322 functionality-related reviews. Results show that 23% of applications (03 apps) have a reputation greater than 0.5 with an accent on integrity, authentication, and availability, while the remaining 77% has a polarity under 0.5. Developers should make a lot of effort in security while developing codes and that more efforts should be made to improve confidentiality reputation. Results also show that applications with good functionality-related reputation generally offer a bad security-related reputation. This situation means that even if the number of security reviews is low, it does not mean that the security aspect is not a consumer preoccupation. Unlike, developers put much more time to test whether applications work without errors even if they include possible security vulnerabilities. A quantitative comparison against well-known rating systems reveals the effectiveness and robustness of CIAA-RepDroid to repute apps in terms of security. CIAA-RepDroid can be associated with existing rating solutions to recommend developers exact CIAA aspects to improve within source codes. Keywords: reputation; android; application; sentiment analysis; reviews; security service; NLP; Google Play; polarity |
| Audience | Academic |
| Author | Tchakounté, Franklin Kamgang, Jean Claude Yera Pagor, Athanase Esdras Atemkeng, Marcellin |
| Author_xml | – sequence: 1 givenname: Franklin orcidid: 0000-0003-0723-2640 surname: Tchakounté fullname: Tchakounté, Franklin – sequence: 2 givenname: Athanase Esdras surname: Yera Pagor fullname: Yera Pagor, Athanase Esdras – sequence: 3 givenname: Jean Claude orcidid: 0000-0002-3903-2283 surname: Kamgang fullname: Kamgang, Jean Claude – sequence: 4 givenname: Marcellin surname: Atemkeng fullname: Atemkeng, Marcellin |
| BookMark | eNptUV2L1DAUDbKC67ov_oKAb0LXpEnaxrc6ursDC4ofz-E2H2uGTlOTjjL_3jt2RRETyA0355xw7nlKzqY0eUKec3YlhGavQuQ104xL9Yicc611pTQTZ3_dn5DLUnYMl9B107Tn5LjZ9n310c9vc4ruNe3pdZx8dZMBi6MwOfohpwGGOMayREsRelhgiWmin-xXv_c0pEz7yZ34tJ_nQt9AQeoJ4Kcl7vHAdxiPJRaaAip8j_5HeUYeBxiLv3yoF-TL9bvPm9vq7v3NdtPfVVYytlR-kA4EMBFky4EHC9orJv0wSAt84FbVCupgubTSCembwNrWd4GJrmM6dOKCbFddl2Bn5hz3kI8mQTS_GinfG8jobPQmuCG0HiTOUEvFGdROeTfUba1Vjd-j1otVa87p28GXxezSIaO3YmqJEQimpUbU1Yq6BxSNU0hLBovb-X20mFmI2O8byVvVtJ1CAlsJNqdSsg_GxnXGSIyj4cycAjZ_AkbKy38ov539B_wTHMumbw |
| CitedBy_id | crossref_primary_10_1109_TDSC_2024_3444913 crossref_primary_10_1155_2023_6348831 |
| Cites_doi | 10.1016/j.procs.2019.11.175 10.1109/ACCESS.2020.3002842 10.1016/B978-0-12-804629-6.00006-7 10.1145/2884781.2884818 10.1109/ICEEICT.2014.6919058 10.1145/3325917.3325941 10.1016/j.future.2020.02.002 10.1109/ASE.2015.57 10.1109/SP.2019.00012 10.1145/3360310 10.1016/j.jpdc.2014.08.004 10.1007/978-981-15-1675-7_2 10.1007/s42044-020-00068-w 10.1109/IRI.2017.79 10.20944/preprints202003.0249.v1 10.1109/MS.2014.50 10.1109/ICSE.2017.18 10.1145/3180155.3180218 10.1016/j.future.2019.11.034 10.1109/ISSRE.2015.7381797 10.1007/978-3-030-36056-6_12 10.1109/ACCESS.2020.3002176 10.1145/2487575.2488202 10.1007/s13369-020-04365-1 10.1007/978-3-030-06176-0 10.1016/j.cose.2019.101663 10.1016/j.cose.2019.02.010 10.1016/j.jss.2016.11.027 10.1016/j.jss.2020.110533 10.26599/TST.2019.9010067 10.1016/j.jss.2020.110609 10.1016/j.infsof.2020.106290 10.1016/bs.adcom.2020.03.002 10.1109/MS.2015.56 10.1109/RE.2014.6912257 10.1016/j.ins.2018.11.037 10.20944/preprints202007.0646.v1 10.1109/TPS-ISA48467.2019.00024 10.1145/2976749.2978343 10.1109/TrustCom.2012.236 10.1109/TII.2017.2789219 10.1109/DSN.2018.00051 10.1007/978-981-15-0029-9_62 10.3390/info11030152 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 MDPI AG 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU COVID DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.3390/fi12090145 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Coronavirus Research Database ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (ND) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1999-5903 |
| ExternalDocumentID | oai_doaj_org_article_fdbf7ea490194510a2d5edb272952471 A641756785 10_3390_fi12090145 |
| GeographicLocations | Cameroon |
| GeographicLocations_xml | – name: Cameroon |
| GroupedDBID | -DT .4I 5VS 7WY 8FE 8FG 8FL AADQD AAFWJ AAKPC AAYXX ABDBF ABUWG ACIHN ADBBV ADMLS AEAQA AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z EAP EBS EJD ESX FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC K60 K6V K6~ K7- KQ8 M0C MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQBIZ PQBZA PQGLB PQQKQ PROAC RNS TR2 3V. 7SC 7XB 8AL 8FD 8FK ACUHS COVID JQ2 L.- L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c400t-eb4da3a03f471a1fca9e504ebb4ca1b1c525a2fc14c4d34e6f077e8f038809f83 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578900700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-5903 |
| IngestDate | Fri Oct 03 12:51:15 EDT 2025 Fri Jul 25 22:13:06 EDT 2025 Tue Nov 04 17:35:04 EST 2025 Sat Nov 29 07:10:27 EST 2025 Tue Nov 18 21:57:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-eb4da3a03f471a1fca9e504ebb4ca1b1c525a2fc14c4d34e6f077e8f038809f83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0723-2640 0000-0002-3903-2283 |
| OpenAccessLink | https://doaj.org/article/fdbf7ea490194510a2d5edb272952471 |
| PQID | 2439030949 |
| PQPubID | 2032396 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fdbf7ea490194510a2d5edb272952471 proquest_journals_2439030949 gale_infotracacademiconefile_A641756785 crossref_citationtrail_10_3390_fi12090145 crossref_primary_10_3390_fi12090145 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Future internet |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Raghuraman (ref_16) 2020; Volume 1045 ref_50 Gajrani (ref_13) 2020; Volume 119 ref_58 Kou (ref_25) 2019; 478 ref_56 ref_55 ref_10 ref_54 ref_53 Alzaylaee (ref_18) 2020; 89 ref_52 ref_51 Tiguiane (ref_11) 2019; 35 ref_59 Taheri (ref_9) 2020; 105 ref_60 Martinelli (ref_12) 2020; 50 Tang (ref_15) 2020; 25 Alazab (ref_8) 2020; 107 ref_24 Abran (ref_23) 2017; 125 ref_21 Abdullah (ref_14) 2020; Volume 978 AISC Khalid (ref_36) 2015; 32 ref_29 ref_26 Haryanto (ref_57) 2019; 161 Pan (ref_7) 2020; 8 ref_35 ref_34 ref_32 ref_31 Wang (ref_17) 2020; 167 ref_30 Tao (ref_46) 2020; 122 ref_39 ref_38 ref_37 Nagappan (ref_22) 2016; 33 Woods (ref_19) 2020; 63 Oyebode (ref_33) 2020; 8 ref_47 Li (ref_27) 2018; 14 Fu (ref_40) 2013; Volume Part F128815 ref_44 Xiao (ref_28) 2020; 163 ref_43 Hatamian (ref_45) 2019; 83 ref_42 ref_41 ref_1 ref_3 ref_2 ref_49 ref_48 Hendrikx (ref_20) 2015; 75 ref_5 ref_4 ref_6 |
| References_xml | – volume: 161 start-page: 715 year: 2019 ident: ref_57 article-title: Facebook analysis of community sentiment on 2019 Indonesian presidential candidates from Facebook opinion data publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.11.175 – volume: 8 start-page: 116363 year: 2020 ident: ref_7 article-title: A Systematic Literature Review of Android Malware Detection Using Static Analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3002842 – ident: ref_10 doi: 10.1016/B978-0-12-804629-6.00006-7 – ident: ref_5 – ident: ref_55 – ident: ref_41 doi: 10.1145/2884781.2884818 – ident: ref_21 doi: 10.1109/ICEEICT.2014.6919058 – ident: ref_26 doi: 10.1145/3325917.3325941 – volume: 107 start-page: 509 year: 2020 ident: ref_8 article-title: Intelligent mobile malware detection using permission requests and API calls publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.02.002 – ident: ref_37 doi: 10.1109/ASE.2015.57 – ident: ref_38 doi: 10.1109/SP.2019.00012 – volume: 63 start-page: 104 year: 2020 ident: ref_19 article-title: Cyber Warranties: Market Fix or Marketing Trick? publication-title: Commun. ACM doi: 10.1145/3360310 – volume: 75 start-page: 184 year: 2015 ident: ref_20 article-title: Reputation systems: A survey and taxonomy publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2014.08.004 – ident: ref_49 doi: 10.1007/978-981-15-1675-7_2 – ident: ref_50 doi: 10.1007/s42044-020-00068-w – ident: ref_31 doi: 10.1109/IRI.2017.79 – ident: ref_32 doi: 10.20944/preprints202003.0249.v1 – volume: 32 start-page: 70 year: 2015 ident: ref_36 article-title: What do mobile app users complain about? publication-title: IEEE Softw. doi: 10.1109/MS.2014.50 – ident: ref_39 doi: 10.1109/ICSE.2017.18 – ident: ref_42 doi: 10.1145/3180155.3180218 – volume: 105 start-page: 230 year: 2020 ident: ref_9 article-title: Similarity-based Android malware detection using Hamming distance of static binary features publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.11.034 – ident: ref_43 doi: 10.1109/ISSRE.2015.7381797 – volume: Volume 978 AISC start-page: 121 year: 2020 ident: ref_14 article-title: Android Ransomware Detection Based on Dynamic Obtained Features publication-title: Advances in Intelligent Systems and Computing doi: 10.1007/978-3-030-36056-6_12 – ident: ref_4 – ident: ref_56 – volume: 8 start-page: 111141 year: 2020 ident: ref_33 article-title: Using Machine Learning and Thematic Analysis Methods to Evaluate Mental Health Apps Based on User Reviews publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3002176 – volume: Volume Part F128815 start-page: 1276 year: 2013 ident: ref_40 article-title: Why people hate your App-Making sense of user feedback in a mobile app store publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining doi: 10.1145/2487575.2488202 – ident: ref_52 – ident: ref_1 doi: 10.1007/s13369-020-04365-1 – ident: ref_58 doi: 10.1007/978-3-030-06176-0 – volume: 89 start-page: 101663 year: 2020 ident: ref_18 article-title: DL-Droid: Deep learning based android malware detection using real devices publication-title: Comput. Secur. doi: 10.1016/j.cose.2019.101663 – volume: 83 start-page: 332 year: 2019 ident: ref_45 article-title: Revealing the unrevealed: Mining smartphone users privacy perception on app markets publication-title: Comput. Secur. doi: 10.1016/j.cose.2019.02.010 – volume: 125 start-page: 207 year: 2017 ident: ref_23 article-title: A systematic literature review: Opinion mining studies from mobile app store user reviews publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2016.11.027 – volume: 163 start-page: 110533 year: 2020 ident: ref_28 article-title: An Android application risk evaluation framework based on minimum permission set identification publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2020.110533 – ident: ref_59 – ident: ref_53 – volume: 25 start-page: 589 year: 2020 ident: ref_15 article-title: A novel hybrid method to analyze security vulnerabilities in android applications publication-title: Tsinghua Sci. Technol. doi: 10.26599/TST.2019.9010067 – volume: 167 start-page: 110609 year: 2020 ident: ref_17 article-title: Identifying vulnerabilities of SSL/TLS certificate verification in Android apps with static and dynamic analysis publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2020.110609 – volume: 122 start-page: 106290 year: 2020 ident: ref_46 article-title: Identifying security issues for mobile applications based on user review summarization publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2020.106290 – ident: ref_3 – volume: Volume 119 start-page: 73 year: 2020 ident: ref_13 article-title: Effectiveness of state-of-the-art dynamic analysis techniques in identifying diverse Android malware and future enhancements publication-title: Advances in Computers doi: 10.1016/bs.adcom.2020.03.002 – ident: ref_24 – volume: 33 start-page: 86 year: 2016 ident: ref_22 article-title: Examining the Rating System Used in Mobile-App Stores publication-title: IEEE Softw. doi: 10.1109/MS.2015.56 – volume: 50 start-page: 102423 year: 2020 ident: ref_12 article-title: Visualizing the outcome of dynamic analysis of Android malware with VizMal publication-title: J. Inf. Secur. Appl. – ident: ref_34 doi: 10.1109/RE.2014.6912257 – volume: 478 start-page: 461 year: 2019 ident: ref_25 article-title: A review on trust propagation and opinion dynamics in social networks and group decision making frameworks publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.11.037 – volume: 35 start-page: 26 year: 2019 ident: ref_11 article-title: Detection of Android Malware based on Sequence Alignment of Permissions publication-title: Int. J. Comput. (IJC) – ident: ref_6 – ident: ref_51 doi: 10.20944/preprints202007.0646.v1 – ident: ref_29 – ident: ref_54 – ident: ref_48 doi: 10.1109/TPS-ISA48467.2019.00024 – ident: ref_2 – ident: ref_30 doi: 10.1145/2976749.2978343 – ident: ref_47 doi: 10.1109/TrustCom.2012.236 – ident: ref_60 – volume: 14 start-page: 3216 year: 2018 ident: ref_27 article-title: Significant Permission Identification for Machine-Learning-Based Android Malware Detection publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2789219 – ident: ref_44 doi: 10.1109/DSN.2018.00051 – volume: Volume 1045 start-page: 793 year: 2020 ident: ref_16 article-title: Static and dynamic malware analysis using machine learning publication-title: Advances in Intelligent Systems and Computing doi: 10.1007/978-981-15-0029-9_62 – ident: ref_35 doi: 10.3390/info11030152 |
| SSID | ssj0000392667 |
| Score | 2.1747482 |
| Snippet | To keep its business reliable, Google is concerned to ensure the quality of apps on the store. One crucial aspect concerning quality is security. Security is... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 145 |
| SubjectTerms | Analysis android application Application programming interface Applications programs Availability Confidentiality Control Data mining Data security Electronic banking Ergonomics Integrity Internet Keywords Machine learning Malware Mobile applications Operating systems (Software) Ratings & rankings reputation Reputations reviews Security aspects security service Sentiment analysis Sentimentality Social networks Software security System effectiveness |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZK2gMcSnlUpKSVJSohDqvuw94HF7QJpOVAFKlFys3ys4pUdstugsS_Z2bXSUAqXLiux1pbM56HZ_wNIeccWKmljIIM84Mst2GgHMQ8ToFv6yLDC5l3zSay2SxfLIq5v3BrfVnlRid2itrUGu_IL2KwnJgOYMWH--8Bdo3C7KpvofGI7KNngyV9X8LJ9o4lBOOfplmPSprA_Au3xLeimEr7ww51cP1_U8qdpZk-_d81HpFD72PSsheKZ2TPVs_Jk9-QB1-Qn5PPZRmA9_2xqZfmPS3pFAaDS2wYYQ2VlaHzBo46ls4ikjMF0nWftafXwOdvloK3S7EcEuZT8GVbOgaDaCgSYAUS3jrSDeQJrR3tsxDtS_J1-ulmchX4LgyBhvO9CqxiRiYyTBzYMRk5LQvLQ2aVYlpGKtI85jJ2OmKamYTZ1IVZZnPXwcwULk-OyaCqK_uKUANSwQ1wxUnFrITgWDuwh3maK22SJBySdxueCO0hyrFTxp2AUAX5J3b8G5I3W9r7HpjjQaoxsnZLgWDa3Ye6uRX-bApnlMusZDCjYKCjZGy4NSqGuIPHsOkheYuCIfDIw3K09C8XYFMIniXKlIETBlYffjfaCIbwuqAVO6k4-ffwa_I4xmi-q2AbkcGqWdtTcqB_rJZtc9aJ9i_oFgKn priority: 102 providerName: ProQuest |
| Title | CIAA-RepDroid: A Fine-Grained and Probabilistic Reputation Scheme for Android Apps Based on Sentiment Analysis of Reviews |
| URI | https://www.proquest.com/docview/2439030949 https://doaj.org/article/fdbf7ea490194510a2d5edb272952471 |
| Volume | 12 |
| WOSCitedRecordID | wos000578900700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (ND) customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: 7WY dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: M0C dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG509aAH8Ymj69CgIB7C5tGdTrxlxh1dZIfgA3e9hH7CgM7IzKzgv_erTmYdQfHipQ9JhXSqqruqUtVfMfZMQpRW6yxRlB8UlU8TExDzBAPfNmRO1rqKzSbUfF6dndXtXqsvqgnr4YF7xh0FZ4LyWsBu1QIKpHMnvTM5nEKZi3h6PE9VvRdMxT0YZr8sVY9HWiCuPwoLOiVKSbTfLFAE6v_bdhxtzOw2uzU4h7zpJ3WHXfHLu-zmHmTgPfZjetI0CdzmV-vVwr3kDZ_hZvKaOj14x_XS8XaNNUo1rwTBzEF60afb-XsI6KvncFM51THieQ4ndMMnsGSOEwGVDtHvQr7DKuGrwPv0weY--zg7_jB9kwztExKLhblNvBFOFzotAtiks2B17WUqvDHC6sxkVuZS58FmwgpXCF-GVClfhYgPU4eqeMAOlqulf8i4gzilA1ODNsJrRLU2wJBVZWWsK4p0xF7sWNrZAVucWlx86RBjEPu7X-wfsaeXtN96RI0_Uk1IMpcUhIIdL0A3ukE3un_pxog9J7l2tFYxHauHIwf4KEK96ppSwHuCucbrDnei74ZFvOlyOGuUgRL1o_8xm8fsRk7BeixQO2QH2_WFf8Ku2-_bxWY9ZlfVp_MxuzY5nrfvxlGbMb5VCcbTdIqxlZ9xvz05bc9_ApXf-2E |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UKqgP3sXVqgMq4sPQXCY3QSRtXbtsXQpW6Ns417JQNzXZKv1T_kbPyWWroL71wdfkTJJJvpzLnDPfAXie4Kc0SoU8o_ygyF3AtceYx2v0bX1ok0LlbbOJbDbLDw-L_TX4MeyFobLKQSe2itpWhtbINyO0nJQOEMXbk6-cukZRdnVoodHBYurOvmPI1ryZ7OD3fRFF43cH27u87yrADeJ1yZ0WVsUqiD3qZRV6owqXBMJpLYwKdWiSKFGRN6EwwsbCpT7IMpf7ljal8HmM170El0WcZ_RfTTO-WtMJ0NlI06xjQY3xeTf9nPamUuruN7vXtgf4mxFoLdv45v_2Tm7Bjd6HZmUH-tuw5hZ34PovzIp34Wx7UpYco4uduprb16xkYzzJ31NDDGeZWli2X6Mqo9JgYqpmKHraVSWwj4jjL46hN8-o3BPHM_TVG7aFBt8yEqAKK1pVZQOlC6s867IszT34dCFzvw_ri2rhHgCziPrEIgq80sIpDP6NR3ufp7k2No6DEbwaMCBNT8FOnUCOJYZihBd5jpcRPFvJnnTEI3-U2iIorSSILLw9UNVHstc90lvtM6cEjigE6mAV2cRZHWFclUQ46RG8JCBKUmn4OEb1OzNwUkQOJstUoJOJXg3ebmMAoux1XSPPUfjw36efwtXdgw97cm8ymz6CaxGtXLTVehuwvqxP3WO4Yr4t5039pP2tGHy-aMz-BIMbYRE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAceCMCBVYChDhYsb3rFxJCbkMgKooiAVLVy7JPFAniYqeg_jV-HTN-pCABtx64xuPEG387-83O7DcAjxN8lUapKMgoPyhyFwbaY8zjNXJbH9mkUHnbbCKbz_ODg2KxBT-GszBUVjn4xNZR28rQHvk4xpWT0gGiGPu-LGIxmb48-hpQBynKtA7tNDqI7LuT7xi-NS9mE3zXT-J4-ur93pug7zAQGMTuOnBaWMVVyD36aBV5owqXhMJpLYyKdGSSOFGxN5EwwnLhUh9mmct9K6FS-Jzj956D8xnGmFROuEgON_s7IRKPNM06RVSOzz72SzqnSmm839bAtlXA3xaEdpWbXv2f_59rcKXn1qzsJsN12HKrG3D5F8XFm3CyNyvLAKOOSV0t7XNWsileDF5TowxnmVpZtqjRxVHJMClYMzQ97qoV2DvE9xfHkOUzKgPF-xly-IbtIhGwjAyo8op2W9kg9cIqz7rsS3MLPpzJ2G_D9qpauTvALM6GxCIivNLCKZ5z45EH5GmujeU8HMGzAQ_S9NLs1CHks8QQjbAjT7Ezgkcb26NOkOSPVrsEq40FiYi3H1T1J9n7JOmt9plTAu8oBPpmFdvEWR1jvJXEOOgRPCVQSnJ1-DhG9Sc2cFAkGibLVCD5RLaDP7czgFL2PrCRp4i8--_LD-EiQlW-nc3378GlmDY02iK-Hdhe18fuPlww39bLpn7QzjAGH88asj8BtPhqNQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CIAA-RepDroid%3A+A+Fine-Grained+and+Probabilistic+Reputation+Scheme+for+Android+Apps+Based+on+Sentiment+Analysis+of+Reviews&rft.jtitle=Future+internet&rft.au=Franklin+Tchakount%C3%A9&rft.au=Athanase+Esdras+Yera+Pagor&rft.au=Jean+Claude+Kamgang&rft.au=Marcellin+Atemkeng&rft.date=2020-09-01&rft.pub=MDPI+AG&rft.eissn=1999-5903&rft.volume=12&rft.issue=9&rft.spage=145&rft_id=info:doi/10.3390%2Ffi12090145&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fdbf7ea490194510a2d5edb272952471 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon |