A Recursive Restricted Total Least-Squares Algorithm
We show that the generalized total least squares (GTLS) problem with a singular noise covariance matrix is equivalent to the restricted total least squares (RTLS) problem and propose a recursive method for its numerical solution. The method is based on the generalized inverse iteration. The estimati...
Saved in:
| Published in: | IEEE transactions on signal processing Vol. 62; no. 21; pp. 5652 - 5662 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.11.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects: | |
| ISSN: | 1053-587X, 1941-0476 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We show that the generalized total least squares (GTLS) problem with a singular noise covariance matrix is equivalent to the restricted total least squares (RTLS) problem and propose a recursive method for its numerical solution. The method is based on the generalized inverse iteration. The estimation error covariance matrix and the estimated augmented correction are also characterized and computed recursively. The algorithm is cheap to compute and is suitable for online implementation. Simulation results in least squares (LS), data least squares (DLS), total least squares (TLS), and restricted total least squares (RTLS) noise scenarios show fast convergence of the parameter estimates to their optimal values obtained by corresponding batch algorithms. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2014.2350959 |