A Short-Term Forecasting of Wind Power Outputs Based on Gradient Boosting Regression Tree Algorithms
With growing interest in sustainability and net-zero emissions, there has been a global trend to integrate wind power into energy grids. However, challenges such as the intermittency of wind energy remain, which leads to a significant need for accurate wind-power forecasting. Therefore, this study f...
Gespeichert in:
| Veröffentlicht in: | Energies (Basel) Jg. 16; H. 3; S. 1132 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.01.2023
|
| Schlagworte: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With growing interest in sustainability and net-zero emissions, there has been a global trend to integrate wind power into energy grids. However, challenges such as the intermittency of wind energy remain, which leads to a significant need for accurate wind-power forecasting. Therefore, this study focuses on creating a wind-power generation-forecasting model using a machine-learning algorithm. In this study, we used the gradient-boosting machine (GBM) algorithm to build a wind-power forecasting model. Time-series data with a 15 min interval from Jeju’s wind farms were applied to the model as input data. The short-term forecasting model trained by the same month with the test set turns out to have the best performance, with an NMAE value of 5.15%. Furthermore, the forecasting results were applied to Jeju’s power system to carry out a grid-security analysis. The improved accuracy of wind-power forecasting and its impact on the security of electrical grids in this study potentially contributes to greater integration of wind energy. |
|---|---|
| AbstractList | With growing interest in sustainability and net-zero emissions, there has been a global trend to integrate wind power into energy grids. However, challenges such as the intermittency of wind energy remain, which leads to a significant need for accurate wind-power forecasting. Therefore, this study focuses on creating a wind-power generation-forecasting model using a machine-learning algorithm. In this study, we used the gradient-boosting machine (GBM) algorithm to build a wind-power forecasting model. Time-series data with a 15 min interval from Jeju’s wind farms were applied to the model as input data. The short-term forecasting model trained by the same month with the test set turns out to have the best performance, with an NMAE value of 5.15%. Furthermore, the forecasting results were applied to Jeju’s power system to carry out a grid-security analysis. The improved accuracy of wind-power forecasting and its impact on the security of electrical grids in this study potentially contributes to greater integration of wind energy. |
| Audience | Academic |
| Author | Jung, Solyoung Lee, Jaegul Park, Soyoung Hur, Jin |
| Author_xml | – sequence: 1 givenname: Soyoung surname: Park fullname: Park, Soyoung – sequence: 2 givenname: Solyoung surname: Jung fullname: Jung, Solyoung – sequence: 3 givenname: Jaegul surname: Lee fullname: Lee, Jaegul – sequence: 4 givenname: Jin orcidid: 0000-0003-2239-3602 surname: Hur fullname: Hur, Jin |
| BookMark | eNptkVFvFCEUhYmpibX2xV9A4pvJVBiYYXjcNrY2aVKja3wkd-EyZbMLK7Bp_PdSR6MxwgPkcr6TezkvyUlMEQl5zdmFEJq9w8hHJjgX_TNyyrUeO86UOPnr_oKcl7JlbQnBhRCnxK3o54eUa7fGvKfXKaOFUkOcafL0a4iOfkyPmOn9sR6OtdBLKOhoivQmgwsYK71MaQE-4ZyxlNAe1xmRrnZzyqE-7Msr8tzDruD5r_OMfLl-v7760N3d39xere46KxmrHQolhbSTw9aaFEzokaFGGACQgfIahRu55RyU5WpwSjbCCrYZJfMClTgjt4uvS7A1hxz2kL-bBMH8LKQ8G8g12B0at-GDVMzqjUc5eA792Hy1Gifwkxv75vVm8Trk9O2IpZptOubY2je9UnLSPZdTU10sqhmaaYg-1Qy2bYf7YFs8PrT6qs3FZT8MT7ZsAWxOpWT0xoYKtX1aA8POcGaesjR_smzI23-Q35P9R_wDd7Ce_w |
| CitedBy_id | crossref_primary_10_3390_jcs9050239 crossref_primary_10_1111_exsy_13716 crossref_primary_10_3390_en16062688 crossref_primary_10_3390_en18133462 crossref_primary_10_3390_app15073543 crossref_primary_10_3390_en16165896 crossref_primary_10_3390_app14093725 crossref_primary_10_1016_j_envres_2023_117142 crossref_primary_10_1109_ACCESS_2024_3467337 crossref_primary_10_3390_su151410757 crossref_primary_10_1016_j_segan_2024_101517 crossref_primary_10_1051_e3sconf_202560100067 crossref_primary_10_1080_23311916_2024_2434617 crossref_primary_10_3390_economies13080219 crossref_primary_10_1007_s42979_024_02765_w crossref_primary_10_1007_s12206_025_0708_1 crossref_primary_10_1016_j_microc_2025_113206 crossref_primary_10_1016_j_istruc_2024_107015 crossref_primary_10_3390_jcs8030096 crossref_primary_10_3390_economies12010016 crossref_primary_10_3390_en18071713 crossref_primary_10_3390_w16020364 |
| Cites_doi | 10.3390/cli9090136 10.1109/PECI51586.2021.9435209 10.1109/ACCESS.2020.3017442 10.1007/978-1-4614-6849-3 10.1016/j.ifacol.2018.11.738 10.1016/B978-0-12-821353-7.00014-4 10.1007/978-0-387-84858-7 10.1109/eIT53891.2022.9813783 10.3389/fnbot.2013.00021 10.1109/NAPS.2010.5619586 10.3390/en14165196 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en16031132 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_db15470c9bfe45f1a2611a9768af8d62 A743142552 10_3390_en16031132 |
| GeographicLocations | South Korea Jeju Island |
| GeographicLocations_xml | – name: South Korea – name: Jeju Island |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c400t-e37434c8de3334303960e9ea5aae0a7f9e3d61c11a7c175d74e37c30b640f3e73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000930075300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:43:26 EDT 2025 Mon Jun 30 07:33:09 EDT 2025 Tue Nov 04 18:15:02 EST 2025 Tue Nov 18 21:13:39 EST 2025 Sat Nov 29 07:10:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-e37434c8de3334303960e9ea5aae0a7f9e3d61c11a7c175d74e37c30b640f3e73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2239-3602 |
| OpenAccessLink | https://doaj.org/article/db15470c9bfe45f1a2611a9768af8d62 |
| PQID | 2774892148 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_db15470c9bfe45f1a2611a9768af8d62 proquest_journals_2774892148 gale_infotracacademiconefile_A743142552 crossref_citationtrail_10_3390_en16031132 crossref_primary_10_3390_en16031132 |
| PublicationCentury | 2000 |
| PublicationDate | 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 20230101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Chen (ref_7) 2018; 51 Choi (ref_10) 2021; 16 ref_14 ref_13 Natekin (ref_17) 2013; 7 ref_11 ref_21 ref_20 ref_1 ref_3 ref_2 ref_19 ref_18 ref_16 ref_15 ref_9 ref_8 Ahmadi (ref_12) 2020; 8 ref_5 ref_4 ref_6 |
| References_xml | – ident: ref_4 doi: 10.3390/cli9090136 – ident: ref_6 – ident: ref_9 – ident: ref_11 doi: 10.1109/PECI51586.2021.9435209 – volume: 16 start-page: 329 year: 2021 ident: ref_10 article-title: Prediction of Wind Power Generation using Deep Learnning publication-title: J. Korea Inst. Electron. Commun. Sci. – ident: ref_5 – ident: ref_3 – volume: 8 start-page: 151511 year: 2020 ident: ref_12 article-title: Long-term wind power forecasting using tree-based learning algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3017442 – ident: ref_2 – ident: ref_15 doi: 10.1007/978-1-4614-6849-3 – volume: 51 start-page: 414 year: 2018 ident: ref_7 article-title: Wind power forecasting publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.11.738 – ident: ref_16 doi: 10.1016/B978-0-12-821353-7.00014-4 – ident: ref_18 doi: 10.1007/978-0-387-84858-7 – ident: ref_1 – ident: ref_14 doi: 10.1109/eIT53891.2022.9813783 – volume: 7 start-page: 21 year: 2013 ident: ref_17 article-title: Gradient boosting machines, a tutorial publication-title: Front. Neurorobotics doi: 10.3389/fnbot.2013.00021 – ident: ref_19 – ident: ref_8 doi: 10.1109/NAPS.2010.5619586 – ident: ref_21 – ident: ref_20 – ident: ref_13 doi: 10.3390/en14165196 |
| SSID | ssj0000331333 |
| Score | 2.4762397 |
| Snippet | With growing interest in sustainability and net-zero emissions, there has been a global trend to integrate wind power into energy grids. However, challenges... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1132 |
| SubjectTerms | Accuracy Algorithms Alternative energy sources Artificial intelligence Buildings and facilities Data mining Decision trees Electric power production Electricity Forecasting gradient-boosting machine (GBM) Machine learning Neural networks renewable energy Renewable resources Wind farms Wind power wind-power forecasting |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAP5S1KC7IEEuJg1YmdODlVu6iFA1pWZRG9WY493iKVZJtk-f0dJ94tSMCFazK2HHveGX9DyBsOubK-KpgvMs9kziUrhQRWGpOWGDSXdsSZ_aRms-LiopzHhFsXyyo3OnFQ1K6xIUd-nKqAk5Ki936yumaha1T4uxpbaNwluwGpDPl8d3o6m59vsyxcCAzCxIhLKjC-P4Z6aKyciPQ3SzQA9v9NLQ-25uzB_67yIdmPXiadjGzxiNyB-jHZ-wV78AlxE_rlEn1vtkDdTEOHTmu6UANNG0-_YaRO56GBGv287lfrvqNTNHeONjX90A5VYj2dNs044ByWYzVtTRctAJ1cLXFN_eWP7in5ena6eP-RxZYLzKIw9wwEehTSFg5w1ySaNwxwoASTGQPcKF-CcHlik8Qoi46HUxJHWMGrXHIvQIlnZKduanhOqBQuq0oHvJK5dJU1Mtz5xTlTz7kBdUDebbZf24hHHtpiXGmMS8JR6dujOiCvt7SrEYXjj1TTcIpbioCcPTxo2qWOgqhdhU6j4rasPMjMJwZDyMSgU1YYX7gcJ3kbeEAH-cblWBOvKeBHBaQsPQkuFyq6DCmPNjygo-B3-pYBXvz79SG5HzrXj9mcI7LTt2t4Se7Zn_33rn0V-fgGL4_74g priority: 102 providerName: ProQuest |
| Title | A Short-Term Forecasting of Wind Power Outputs Based on Gradient Boosting Regression Tree Algorithms |
| URI | https://www.proquest.com/docview/2774892148 https://doaj.org/article/db15470c9bfe45f1a2611a9768af8d62 |
| Volume | 16 |
| WOSCitedRecordID | wos000930075300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQywEOqHyJhVJZAglxiOqNnTg-7qItrUSXqCyinCzHHreVSlIl2R772xnHaVkkEBcuOVjjyBmPZ-ZF4zeEvGWQS-urIvFF5hORM5EoLiBRxqQKQbOykWf2k1wui9NTVW60-go1YZEeOCpu31UY5CWzqvIgMj81mPJPDQbRwvjCRe_LpNoAU4MP5hzBF498pBxx_T7UQ0PlKU9_i0ADUf_f3PEQYw52yKMxOaSzuKjH5B7UT8jDDcrAp8TN6JdzTJmTFbpUGhprWtOF0mXaePoNATYtQ98z-nndX637js4xSjna1PRjOxR39XTeNHHCCZzFItiarloAOrs8a9qL_vxH94x8PVisPhwmY6eExOIZ7BPgmAgIWzjAjxYYlRCXgAKTGQPMSK-Au3xqUXHSYr7gpMAZlrMqF8xzkPw52aqbGl4QKrjLKuWAVSIXrrJGhKu6-M7UM2ZATsj7W-1pO9KIh24WlxrhRNC0_qXpCXlzJ3sVyTP-KDUPm3AnEQivhwE0Az2agf6XGUzIu7CFOhxLXI414-0C_KhAcKVnIVNC_5Sh5O7tLuvxvHY6lYGFJ0Vs-PJ_rOYVeRDa0sdfNbtkq2_X8Jrct9f9Rdfuke35Ylme7A0mi8_jmwWOlUfH5fef1XvxAA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXKFAlY8EYUClgChFhEdWLntUBoBigddTqMYBBlZRz7elqpJEOSAfFTfCPXeUxBAnZdsE1sK7FP7sO5PoeQRwyiWNss8WwSWk9ETHgpF-ClSgUpJs2pbnlmJ_F0mhweprMN8qM_C-PKKnub2BhqU2i3R74TxI4nJcDo_fnyi-dUo9zf1V5Co4XFPnz_hilb9Wz8Etf3cRDsvpq_2PM6VQFPI15rDzg6TaETA5xzgRYcY3hIQYVKAVOxTYGbyNe-r2KNvtXEAntozrJIMMsh5jjuObIpEOxsQDZn44PZx_WuDuMckz7e8qBynrIdyBshZ58Hv3m-RiDgb26g8W27V_63WblKLndRNB22sL9GNiC_Ti79wq14g5ghfXeEuYU3R99DnQKpVpWr8aaFpR-Oc0NnTiCOvlnVy1Vd0RG6c0OLnL4umyq4mo6Kou3wFhZttXBO5yUAHZ4scA7qo8_VTfL-TF7zFhnkRQ63CRXchFlqgGUiEibTSrgzzThmYBlTEG-Rp_1yS93xrTvZjxOJeZeDhjyFxhZ5uG67bFlG_thq5FCzbuGYwZsLRbmQnaGRJsOgOGY6zSyI0PoKU2RfYdCZKJuYCAd54jAnnf3Cx9GqO4aBL-WYwOTQhZSI7RBbbveYk51hq-Qp4O78-_YDcmFvfjCRk_F0_y65GGBs2O5cbZNBXa7gHjmvv9bHVXm_-4Yo-XTWAP0Jj_1X9g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFiE48EYUClgChDhE68ROHB8Q2qVdqFotq7KovRnHj22lkixJFsRf49cxzmMLEnDrgWsytmL78zyc8XwIPSM24dplaeDS2AUsISwQlNlAKBUJCJqFbuvMHvDpND0-FrMN9KO_C-PTKnud2ChqU2h_Rj6MuK-TEoH3PnRdWsRsZ_J6-SXwDFL-T2tPp9FCZN9-_wbhW_VqbwfW-nkUTXbnb94FHcNAoAG7dWApGFCmU2MppQy0OfjzVlgVK2WJ4k5YapJQh6HiGuys4QxaaEqyhBFHLafQ7yW0ySkEPQO0Od6dzg7XJzyEUggAaVsTlVJBhjZvSJ1DGv1mBRuygL-ZhMbOTW78zzN0E13vvGs8arfDLbRh89vo2i81F-8gM8IfTiDmCOZgk7BnJtWq8rnfuHD46DQ3eOaJ4_D7Vb1c1RUeg5k3uMjx27LJjqvxuCjaBod20WYR53heWotHZwuYg_rkc3UXfbyQYd5Dg7zI7X2EGTVxJowlGUuYybRi_q4z9Bk5QpTlW-hlv_RSd3XYPR3ImYR4zMNEnsNkCz1dyy7b6iN_lBp7BK0lfMXw5kFRLmSngKTJwFnmRIvMWRa7UEHoHCpwRlPlUpNAJy88_qTXa_A5WnXXM2BQvkKYHHlXExR8DJLbPf5kp_AqeQ6-B_9-_QRdAVTKg73p_kN0NQKXsT3Q2kaDulzZR-iy_lqfVuXjbjth9Omi8fkTCxJgkA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Short-Term+Forecasting+of+Wind+Power+Outputs+Based+on+Gradient+Boosting+Regression+Tree+Algorithms&rft.jtitle=Energies+%28Basel%29&rft.au=Park%2C+Soyoung&rft.au=Jung%2C+Solyoung&rft.au=Lee%2C+Jaegul&rft.au=Hur%2C+Jin&rft.date=2023-01-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=3&rft.spage=1132&rft_id=info:doi/10.3390%2Fen16031132&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en16031132 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |