A Short-Term Forecasting of Wind Power Outputs Based on Gradient Boosting Regression Tree Algorithms

With growing interest in sustainability and net-zero emissions, there has been a global trend to integrate wind power into energy grids. However, challenges such as the intermittency of wind energy remain, which leads to a significant need for accurate wind-power forecasting. Therefore, this study f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) Jg. 16; H. 3; S. 1132
Hauptverfasser: Park, Soyoung, Jung, Solyoung, Lee, Jaegul, Hur, Jin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.01.2023
Schlagworte:
ISSN:1996-1073, 1996-1073
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With growing interest in sustainability and net-zero emissions, there has been a global trend to integrate wind power into energy grids. However, challenges such as the intermittency of wind energy remain, which leads to a significant need for accurate wind-power forecasting. Therefore, this study focuses on creating a wind-power generation-forecasting model using a machine-learning algorithm. In this study, we used the gradient-boosting machine (GBM) algorithm to build a wind-power forecasting model. Time-series data with a 15 min interval from Jeju’s wind farms were applied to the model as input data. The short-term forecasting model trained by the same month with the test set turns out to have the best performance, with an NMAE value of 5.15%. Furthermore, the forecasting results were applied to Jeju’s power system to carry out a grid-security analysis. The improved accuracy of wind-power forecasting and its impact on the security of electrical grids in this study potentially contributes to greater integration of wind energy.
AbstractList With growing interest in sustainability and net-zero emissions, there has been a global trend to integrate wind power into energy grids. However, challenges such as the intermittency of wind energy remain, which leads to a significant need for accurate wind-power forecasting. Therefore, this study focuses on creating a wind-power generation-forecasting model using a machine-learning algorithm. In this study, we used the gradient-boosting machine (GBM) algorithm to build a wind-power forecasting model. Time-series data with a 15 min interval from Jeju’s wind farms were applied to the model as input data. The short-term forecasting model trained by the same month with the test set turns out to have the best performance, with an NMAE value of 5.15%. Furthermore, the forecasting results were applied to Jeju’s power system to carry out a grid-security analysis. The improved accuracy of wind-power forecasting and its impact on the security of electrical grids in this study potentially contributes to greater integration of wind energy.
Audience Academic
Author Jung, Solyoung
Lee, Jaegul
Park, Soyoung
Hur, Jin
Author_xml – sequence: 1
  givenname: Soyoung
  surname: Park
  fullname: Park, Soyoung
– sequence: 2
  givenname: Solyoung
  surname: Jung
  fullname: Jung, Solyoung
– sequence: 3
  givenname: Jaegul
  surname: Lee
  fullname: Lee, Jaegul
– sequence: 4
  givenname: Jin
  orcidid: 0000-0003-2239-3602
  surname: Hur
  fullname: Hur, Jin
BookMark eNptkVFvFCEUhYmpibX2xV9A4pvJVBiYYXjcNrY2aVKja3wkd-EyZbMLK7Bp_PdSR6MxwgPkcr6TezkvyUlMEQl5zdmFEJq9w8hHJjgX_TNyyrUeO86UOPnr_oKcl7JlbQnBhRCnxK3o54eUa7fGvKfXKaOFUkOcafL0a4iOfkyPmOn9sR6OtdBLKOhoivQmgwsYK71MaQE-4ZyxlNAe1xmRrnZzyqE-7Msr8tzDruD5r_OMfLl-v7760N3d39xere46KxmrHQolhbSTw9aaFEzokaFGGACQgfIahRu55RyU5WpwSjbCCrYZJfMClTgjt4uvS7A1hxz2kL-bBMH8LKQ8G8g12B0at-GDVMzqjUc5eA792Hy1Gifwkxv75vVm8Trk9O2IpZptOubY2je9UnLSPZdTU10sqhmaaYg-1Qy2bYf7YFs8PrT6qs3FZT8MT7ZsAWxOpWT0xoYKtX1aA8POcGaesjR_smzI23-Q35P9R_wDd7Ce_w
CitedBy_id crossref_primary_10_3390_jcs9050239
crossref_primary_10_1111_exsy_13716
crossref_primary_10_3390_en16062688
crossref_primary_10_3390_en18133462
crossref_primary_10_3390_app15073543
crossref_primary_10_3390_en16165896
crossref_primary_10_3390_app14093725
crossref_primary_10_1016_j_envres_2023_117142
crossref_primary_10_1109_ACCESS_2024_3467337
crossref_primary_10_3390_su151410757
crossref_primary_10_1016_j_segan_2024_101517
crossref_primary_10_1051_e3sconf_202560100067
crossref_primary_10_1080_23311916_2024_2434617
crossref_primary_10_3390_economies13080219
crossref_primary_10_1007_s42979_024_02765_w
crossref_primary_10_1007_s12206_025_0708_1
crossref_primary_10_1016_j_microc_2025_113206
crossref_primary_10_1016_j_istruc_2024_107015
crossref_primary_10_3390_jcs8030096
crossref_primary_10_3390_economies12010016
crossref_primary_10_3390_en18071713
crossref_primary_10_3390_w16020364
Cites_doi 10.3390/cli9090136
10.1109/PECI51586.2021.9435209
10.1109/ACCESS.2020.3017442
10.1007/978-1-4614-6849-3
10.1016/j.ifacol.2018.11.738
10.1016/B978-0-12-821353-7.00014-4
10.1007/978-0-387-84858-7
10.1109/eIT53891.2022.9813783
10.3389/fnbot.2013.00021
10.1109/NAPS.2010.5619586
10.3390/en14165196
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en16031132
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_db15470c9bfe45f1a2611a9768af8d62
A743142552
10_3390_en16031132
GeographicLocations South Korea
Jeju Island
GeographicLocations_xml – name: South Korea
– name: Jeju Island
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c400t-e37434c8de3334303960e9ea5aae0a7f9e3d61c11a7c175d74e37c30b640f3e73
IEDL.DBID DOA
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000930075300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:43:26 EDT 2025
Mon Jun 30 07:33:09 EDT 2025
Tue Nov 04 18:15:02 EST 2025
Tue Nov 18 21:13:39 EST 2025
Sat Nov 29 07:10:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-e37434c8de3334303960e9ea5aae0a7f9e3d61c11a7c175d74e37c30b640f3e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2239-3602
OpenAccessLink https://doaj.org/article/db15470c9bfe45f1a2611a9768af8d62
PQID 2774892148
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_db15470c9bfe45f1a2611a9768af8d62
proquest_journals_2774892148
gale_infotracacademiconefile_A743142552
crossref_citationtrail_10_3390_en16031132
crossref_primary_10_3390_en16031132
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chen (ref_7) 2018; 51
Choi (ref_10) 2021; 16
ref_14
ref_13
Natekin (ref_17) 2013; 7
ref_11
ref_21
ref_20
ref_1
ref_3
ref_2
ref_19
ref_18
ref_16
ref_15
ref_9
ref_8
Ahmadi (ref_12) 2020; 8
ref_5
ref_4
ref_6
References_xml – ident: ref_4
  doi: 10.3390/cli9090136
– ident: ref_6
– ident: ref_9
– ident: ref_11
  doi: 10.1109/PECI51586.2021.9435209
– volume: 16
  start-page: 329
  year: 2021
  ident: ref_10
  article-title: Prediction of Wind Power Generation using Deep Learnning
  publication-title: J. Korea Inst. Electron. Commun. Sci.
– ident: ref_5
– ident: ref_3
– volume: 8
  start-page: 151511
  year: 2020
  ident: ref_12
  article-title: Long-term wind power forecasting using tree-based learning algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3017442
– ident: ref_2
– ident: ref_15
  doi: 10.1007/978-1-4614-6849-3
– volume: 51
  start-page: 414
  year: 2018
  ident: ref_7
  article-title: Wind power forecasting
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.11.738
– ident: ref_16
  doi: 10.1016/B978-0-12-821353-7.00014-4
– ident: ref_18
  doi: 10.1007/978-0-387-84858-7
– ident: ref_1
– ident: ref_14
  doi: 10.1109/eIT53891.2022.9813783
– volume: 7
  start-page: 21
  year: 2013
  ident: ref_17
  article-title: Gradient boosting machines, a tutorial
  publication-title: Front. Neurorobotics
  doi: 10.3389/fnbot.2013.00021
– ident: ref_19
– ident: ref_8
  doi: 10.1109/NAPS.2010.5619586
– ident: ref_21
– ident: ref_20
– ident: ref_13
  doi: 10.3390/en14165196
SSID ssj0000331333
Score 2.4762397
Snippet With growing interest in sustainability and net-zero emissions, there has been a global trend to integrate wind power into energy grids. However, challenges...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1132
SubjectTerms Accuracy
Algorithms
Alternative energy sources
Artificial intelligence
Buildings and facilities
Data mining
Decision trees
Electric power production
Electricity
Forecasting
gradient-boosting machine (GBM)
Machine learning
Neural networks
renewable energy
Renewable resources
Wind farms
Wind power
wind-power forecasting
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAP5S1KC7IEEuJg1YmdODlVu6iFA1pWZRG9WY493iKVZJtk-f0dJ94tSMCFazK2HHveGX9DyBsOubK-KpgvMs9kziUrhQRWGpOWGDSXdsSZ_aRms-LiopzHhFsXyyo3OnFQ1K6xIUd-nKqAk5Ki936yumaha1T4uxpbaNwluwGpDPl8d3o6m59vsyxcCAzCxIhLKjC-P4Z6aKyciPQ3SzQA9v9NLQ-25uzB_67yIdmPXiadjGzxiNyB-jHZ-wV78AlxE_rlEn1vtkDdTEOHTmu6UANNG0-_YaRO56GBGv287lfrvqNTNHeONjX90A5VYj2dNs044ByWYzVtTRctAJ1cLXFN_eWP7in5ena6eP-RxZYLzKIw9wwEehTSFg5w1ySaNwxwoASTGQPcKF-CcHlik8Qoi46HUxJHWMGrXHIvQIlnZKduanhOqBQuq0oHvJK5dJU1Mtz5xTlTz7kBdUDebbZf24hHHtpiXGmMS8JR6dujOiCvt7SrEYXjj1TTcIpbioCcPTxo2qWOgqhdhU6j4rasPMjMJwZDyMSgU1YYX7gcJ3kbeEAH-cblWBOvKeBHBaQsPQkuFyq6DCmPNjygo-B3-pYBXvz79SG5HzrXj9mcI7LTt2t4Se7Zn_33rn0V-fgGL4_74g
  priority: 102
  providerName: ProQuest
Title A Short-Term Forecasting of Wind Power Outputs Based on Gradient Boosting Regression Tree Algorithms
URI https://www.proquest.com/docview/2774892148
https://doaj.org/article/db15470c9bfe45f1a2611a9768af8d62
Volume 16
WOSCitedRecordID wos000930075300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQywEOqHyJhVJZAglxiOqNnTg-7qItrUSXqCyinCzHHreVSlIl2R772xnHaVkkEBcuOVjjyBmPZ-ZF4zeEvGWQS-urIvFF5hORM5EoLiBRxqQKQbOykWf2k1wui9NTVW60-go1YZEeOCpu31UY5CWzqvIgMj81mPJPDQbRwvjCRe_LpNoAU4MP5hzBF498pBxx_T7UQ0PlKU9_i0ADUf_f3PEQYw52yKMxOaSzuKjH5B7UT8jDDcrAp8TN6JdzTJmTFbpUGhprWtOF0mXaePoNATYtQ98z-nndX637js4xSjna1PRjOxR39XTeNHHCCZzFItiarloAOrs8a9qL_vxH94x8PVisPhwmY6eExOIZ7BPgmAgIWzjAjxYYlRCXgAKTGQPMSK-Au3xqUXHSYr7gpMAZlrMqF8xzkPw52aqbGl4QKrjLKuWAVSIXrrJGhKu6-M7UM2ZATsj7W-1pO9KIh24WlxrhRNC0_qXpCXlzJ3sVyTP-KDUPm3AnEQivhwE0Az2agf6XGUzIu7CFOhxLXI414-0C_KhAcKVnIVNC_5Sh5O7tLuvxvHY6lYGFJ0Vs-PJ_rOYVeRDa0sdfNbtkq2_X8Jrct9f9Rdfuke35Ylme7A0mi8_jmwWOlUfH5fef1XvxAA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXKFAlY8EYUClgChFhEdWLntUBoBigddTqMYBBlZRz7elqpJEOSAfFTfCPXeUxBAnZdsE1sK7FP7sO5PoeQRwyiWNss8WwSWk9ETHgpF-ClSgUpJs2pbnlmJ_F0mhweprMN8qM_C-PKKnub2BhqU2i3R74TxI4nJcDo_fnyi-dUo9zf1V5Co4XFPnz_hilb9Wz8Etf3cRDsvpq_2PM6VQFPI15rDzg6TaETA5xzgRYcY3hIQYVKAVOxTYGbyNe-r2KNvtXEAntozrJIMMsh5jjuObIpEOxsQDZn44PZx_WuDuMckz7e8qBynrIdyBshZ58Hv3m-RiDgb26g8W27V_63WblKLndRNB22sL9GNiC_Ti79wq14g5ghfXeEuYU3R99DnQKpVpWr8aaFpR-Oc0NnTiCOvlnVy1Vd0RG6c0OLnL4umyq4mo6Kou3wFhZttXBO5yUAHZ4scA7qo8_VTfL-TF7zFhnkRQ63CRXchFlqgGUiEibTSrgzzThmYBlTEG-Rp_1yS93xrTvZjxOJeZeDhjyFxhZ5uG67bFlG_thq5FCzbuGYwZsLRbmQnaGRJsOgOGY6zSyI0PoKU2RfYdCZKJuYCAd54jAnnf3Cx9GqO4aBL-WYwOTQhZSI7RBbbveYk51hq-Qp4O78-_YDcmFvfjCRk_F0_y65GGBs2O5cbZNBXa7gHjmvv9bHVXm_-4Yo-XTWAP0Jj_1X9g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFiE48EYUClgChDhE68ROHB8Q2qVdqFotq7KovRnHj22lkixJFsRf49cxzmMLEnDrgWsytmL78zyc8XwIPSM24dplaeDS2AUsISwQlNlAKBUJCJqFbuvMHvDpND0-FrMN9KO_C-PTKnud2ChqU2h_Rj6MuK-TEoH3PnRdWsRsZ_J6-SXwDFL-T2tPp9FCZN9-_wbhW_VqbwfW-nkUTXbnb94FHcNAoAG7dWApGFCmU2MppQy0OfjzVlgVK2WJ4k5YapJQh6HiGuys4QxaaEqyhBFHLafQ7yW0ySkEPQO0Od6dzg7XJzyEUggAaVsTlVJBhjZvSJ1DGv1mBRuygL-ZhMbOTW78zzN0E13vvGs8arfDLbRh89vo2i81F-8gM8IfTiDmCOZgk7BnJtWq8rnfuHD46DQ3eOaJ4_D7Vb1c1RUeg5k3uMjx27LJjqvxuCjaBod20WYR53heWotHZwuYg_rkc3UXfbyQYd5Dg7zI7X2EGTVxJowlGUuYybRi_q4z9Bk5QpTlW-hlv_RSd3XYPR3ImYR4zMNEnsNkCz1dyy7b6iN_lBp7BK0lfMXw5kFRLmSngKTJwFnmRIvMWRa7UEHoHCpwRlPlUpNAJy88_qTXa_A5WnXXM2BQvkKYHHlXExR8DJLbPf5kp_AqeQ6-B_9-_QRdAVTKg73p_kN0NQKXsT3Q2kaDulzZR-iy_lqfVuXjbjth9Omi8fkTCxJgkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Short-Term+Forecasting+of+Wind+Power+Outputs+Based+on+Gradient+Boosting+Regression+Tree+Algorithms&rft.jtitle=Energies+%28Basel%29&rft.au=Park%2C+Soyoung&rft.au=Jung%2C+Solyoung&rft.au=Lee%2C+Jaegul&rft.au=Hur%2C+Jin&rft.date=2023-01-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=3&rft.spage=1132&rft_id=info:doi/10.3390%2Fen16031132&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en16031132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon