Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes
The aim of this work was to clarify the dynamics behind the influence of ionic strength on the changes in drug release from large unilamellar vesicles (LUVs). For this purpose, we have investigated the transport of two different model drugs (caffeine and hydrocortisone) formulated into liposomes thr...
Uložené v:
| Vydané v: | European journal of pharmaceutical sciences Ročník 138; s. 105026 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.10.2019
|
| Predmet: | |
| ISSN: | 0928-0987, 1879-0720, 1879-0720 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The aim of this work was to clarify the dynamics behind the influence of ionic strength on the changes in drug release from large unilamellar vesicles (LUVs). For this purpose, we have investigated the transport of two different model drugs (caffeine and hydrocortisone) formulated into liposomes through different types of barriers with different retention properties (regenerated cellulose and the newly introduced biomimetic barrier, Permeapad®). Drug release from liposomes was studied utilizing the standard Franz diffusion cells. LUV dispersions were exposed to the isotonic, hypotonic and hypertonic environment (difference of 300 mOsm/kg between the initial LUVs and the environment) and experimental data treated with both linear and non-linear (Korsmeyer-Peppas) regression models. To alter the rigidity of the liposomal membranes, cholesterol was introduced in the liposomal barriers (up to 25% w/w). Korsmeyer-Peppas model was proven to be suited to analyse experimental data throughout the experimental time frame, providing important additive information in comparison to standard linear approximation. The obtained results are highly relevant as they improve the interpretation of drug release kinetics from LUVs under osmotic stress. Moreover, the findings can be utilized in the development of liposomal formulations intended for nose-to-brain targeted drug delivery.
[Display omitted] |
|---|---|
| AbstractList | The aim of this work was to clarify the dynamics behind the influence of ionic strength on the changes in drug release from large unilamellar vesicles (LUVs). For this purpose, we have investigated the transport of two different model drugs (caffeine and hydrocortisone) formulated into liposomes through different types of barriers with different retention properties (regenerated cellulose and the newly introduced biomimetic barrier, Permeapad®). Drug release from liposomes was studied utilizing the standard Franz diffusion cells. LUV dispersions were exposed to the isotonic, hypotonic and hypertonic environment (difference of 300 mOsm/kg between the initial LUVs and the environment) and experimental data treated with both linear and non-linear (Korsmeyer-Peppas) regression models. To alter the rigidity of the liposomal membranes, cholesterol was introduced in the liposomal barriers (up to 25% w/w). Korsmeyer-Peppas model was proven to be suited to analyse experimental data throughout the experimental time frame, providing important additive information in comparison to standard linear approximation. The obtained results are highly relevant as they improve the interpretation of drug release kinetics from LUVs under osmotic stress. Moreover, the findings can be utilized in the development of liposomal formulations intended for nose-to-brain targeted drug delivery.The aim of this work was to clarify the dynamics behind the influence of ionic strength on the changes in drug release from large unilamellar vesicles (LUVs). For this purpose, we have investigated the transport of two different model drugs (caffeine and hydrocortisone) formulated into liposomes through different types of barriers with different retention properties (regenerated cellulose and the newly introduced biomimetic barrier, Permeapad®). Drug release from liposomes was studied utilizing the standard Franz diffusion cells. LUV dispersions were exposed to the isotonic, hypotonic and hypertonic environment (difference of 300 mOsm/kg between the initial LUVs and the environment) and experimental data treated with both linear and non-linear (Korsmeyer-Peppas) regression models. To alter the rigidity of the liposomal membranes, cholesterol was introduced in the liposomal barriers (up to 25% w/w). Korsmeyer-Peppas model was proven to be suited to analyse experimental data throughout the experimental time frame, providing important additive information in comparison to standard linear approximation. The obtained results are highly relevant as they improve the interpretation of drug release kinetics from LUVs under osmotic stress. Moreover, the findings can be utilized in the development of liposomal formulations intended for nose-to-brain targeted drug delivery. The aim of this work was to clarify the dynamics behind the influence of ionic strength on the changes in drug release from large unilamellar vesicles (LUVs). For this purpose, we have investigated the transport of two different model drugs (caffeine and hydrocortisone) formulated into liposomes through different types of barriers with different retention properties (regenerated cellulose and the newly introduced biomimetic barrier, Permeapad®). Drug release from liposomes was studied utilizing the standard Franz diffusion cells. LUV dispersions were exposed to the isotonic, hypotonic and hypertonic environment (difference of 300 mOsm/kg between the initial LUVs and the environment) and experimental data treated with both linear and non-linear (Korsmeyer-Peppas) regression models. To alter the rigidity of the liposomal membranes, cholesterol was introduced in the liposomal barriers (up to 25% w/w). Korsmeyer-Peppas model was proven to be suited to analyse experimental data throughout the experimental time frame, providing important additive information in comparison to standard linear approximation. The obtained results are highly relevant as they improve the interpretation of drug release kinetics from LUVs under osmotic stress. Moreover, the findings can be utilized in the development of liposomal formulations intended for nose-to-brain targeted drug delivery. The aim of this work was to clarify the dynamics behind the influence of ionic strength on the changes in drug release from large unilamellar vesicles (LUVs). For this purpose, we have investigated the transport of two different model drugs (caffeine and hydrocortisone) formulated into liposomes through different types of barriers with different retention properties (regenerated cellulose and the newly introduced biomimetic barrier, Permeapad®). Drug release from liposomes was studied utilizing the standard Franz diffusion cells. LUV dispersions were exposed to the isotonic, hypotonic and hypertonic environment (difference of 300 mOsm/kg between the initial LUVs and the environment) and experimental data treated with both linear and non-linear (Korsmeyer-Peppas) regression models. To alter the rigidity of the liposomal membranes, cholesterol was introduced in the liposomal barriers (up to 25% w/w). Korsmeyer-Peppas model was proven to be suited to analyse experimental data throughout the experimental time frame, providing important additive information in comparison to standard linear approximation. The obtained results are highly relevant as they improve the interpretation of drug release kinetics from LUVs under osmotic stress. Moreover, the findings can be utilized in the development of liposomal formulations intended for nose-to-brain targeted drug delivery. [Display omitted] |
| ArticleNumber | 105026 |
| Author | di Cagno, Massimiliano Pio Wu, Iren Yeeling Škalko-Basnet, Nataša Bala, Sonali |
| Author_xml | – sequence: 1 givenname: Iren Yeeling surname: Wu fullname: Wu, Iren Yeeling organization: Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway – sequence: 2 givenname: Sonali surname: Bala fullname: Bala, Sonali organization: Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway – sequence: 3 givenname: Nataša surname: Škalko-Basnet fullname: Škalko-Basnet, Nataša organization: Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway – sequence: 4 givenname: Massimiliano Pio orcidid: 0000-0003-2179-6792 surname: di Cagno fullname: di Cagno, Massimiliano Pio email: m.p.d.cagno@farmasi.uio.no organization: Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31374254$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kT1PHDEQhq0IFA7IH0gRuUyzh-398kZpIsSXQIICastnzyKfvOuNx4t0_Hp8WpKCgsrS6HlmrPc9JgdjGIGQ75ytOePN2XYN2wnXgvEuD2ommi9kxWXbFawV7ICsWCdkwTrZHpFjxC1jrJEt-0qOSl62lairFYk3Y4I4RUhufKb5QOHdCDpSG-dnal3fz-jCSK1O-hd9Ss671z15GyIOsINYPMA0aaRDsOBpChTTbHeLHsGDRqB9DAP1bgoYBsBTcthrj_Dt_T0hT5cXj-fXxd391c35n7vCVIylwkq5Aeh5_nIvpdGitm0ngVUgbNcaCRtWi6rcNEZXOQEwtoe6sSbjZSOgKk_Iz2XvFMPfGTCpwaEB7_UIYUYlRCNLLpqyzuiPd3TeDGDVFN2g4079yykDYgFMDIgR-v8IZ2pfhtqqfRlqX4ZaysiS_CAZl3TKcaaonf9c_b2okAN6cRAVGgejAesimKRscJ_pb3R0pxQ |
| CitedBy_id | crossref_primary_10_1007_s11095_020_02807_x crossref_primary_10_1007_s12247_025_10036_1 crossref_primary_10_1007_s10934_022_01367_2 crossref_primary_10_3390_gels9080660 crossref_primary_10_1016_j_ejps_2023_106559 crossref_primary_10_1016_j_ijbiomac_2024_129638 crossref_primary_10_3389_fbioe_2023_1254299 crossref_primary_10_1016_j_colsurfa_2021_126447 crossref_primary_10_1016_j_procbio_2024_06_023 crossref_primary_10_3390_ijms24010880 crossref_primary_10_3390_pharmaceutics16060757 crossref_primary_10_1016_j_ijbiomac_2025_144880 crossref_primary_10_1016_j_molstruc_2021_130067 crossref_primary_10_1016_j_ijbiomac_2021_12_124 crossref_primary_10_1080_03639045_2025_2494126 crossref_primary_10_1007_s11696_025_04072_x crossref_primary_10_1002_app_57292 crossref_primary_10_1016_j_jconrel_2020_04_032 crossref_primary_10_3390_gels10100668 crossref_primary_10_34133_bmr_0194 crossref_primary_10_1039_D1EN00981H crossref_primary_10_1016_j_ejpb_2025_114864 crossref_primary_10_1016_j_jddst_2024_106508 crossref_primary_10_1007_s10934_021_01037_9 crossref_primary_10_3762_bjnano_15_10 crossref_primary_10_1016_j_matt_2022_03_001 crossref_primary_10_1016_j_ejps_2022_106294 crossref_primary_10_3389_fphar_2021_713616 crossref_primary_10_3390_pharmaceutics16020184 crossref_primary_10_1002_admt_202200731 crossref_primary_10_1016_j_ijpharm_2025_126150 crossref_primary_10_1016_j_fochx_2025_102730 crossref_primary_10_1016_j_fbio_2025_105975 crossref_primary_10_1016_j_ijbiomac_2022_08_190 crossref_primary_10_2147_IJN_S245135 crossref_primary_10_1021_acsapm_5c01302 crossref_primary_10_1208_s12249_024_02930_7 crossref_primary_10_1016_j_ijpharm_2023_123675 crossref_primary_10_1016_j_jconrel_2022_09_067 crossref_primary_10_1007_s43621_025_01756_y crossref_primary_10_3390_cancers16091695 crossref_primary_10_2174_0115672018333862240830072536 crossref_primary_10_1080_25740881_2022_2033771 crossref_primary_10_3390_gels11040228 crossref_primary_10_1016_j_molliq_2023_123766 crossref_primary_10_3390_molecules29030630 crossref_primary_10_1016_j_ijpharm_2025_125991 crossref_primary_10_3390_ijms24109044 crossref_primary_10_1016_j_bbrc_2024_149806 crossref_primary_10_22159_ijap_2025v17i4_53890 crossref_primary_10_1016_j_molliq_2024_125563 crossref_primary_10_1007_s11696_025_04371_3 crossref_primary_10_3390_pharmaceutics13020234 crossref_primary_10_1016_j_jconrel_2023_02_006 crossref_primary_10_1080_1061186X_2025_2540849 crossref_primary_10_1016_j_jddst_2021_102660 crossref_primary_10_3390_pharmaceutics15122685 crossref_primary_10_3390_polym14071355 crossref_primary_10_1007_s10570_025_06564_1 crossref_primary_10_1007_s12668_020_00729_x crossref_primary_10_1016_j_ijpharm_2022_122270 crossref_primary_10_1016_j_jddst_2023_104921 crossref_primary_10_3390_ijms222111353 crossref_primary_10_1016_j_foodhyd_2023_109394 crossref_primary_10_1080_10837450_2022_2025540 crossref_primary_10_3390_gels10100629 crossref_primary_10_1016_j_ijpharm_2022_122123 crossref_primary_10_1016_j_procbio_2022_05_027 crossref_primary_10_1016_j_colsurfb_2024_114416 crossref_primary_10_3390_pharmaceutics12090828 crossref_primary_10_1016_j_foodchem_2020_128611 crossref_primary_10_1016_j_ijpharm_2024_125072 crossref_primary_10_1016_j_mtla_2025_102402 crossref_primary_10_3390_gels11090700 crossref_primary_10_1016_j_heliyon_2024_e40374 crossref_primary_10_1016_j_bcdf_2023_100351 crossref_primary_10_3390_jfb15100312 crossref_primary_10_4274_tjps_galenos_2024_11278 crossref_primary_10_3390_pharmaceutics14081592 crossref_primary_10_1016_j_ejpb_2024_114535 crossref_primary_10_1039_D5RA01275A crossref_primary_10_1016_j_jcis_2022_07_025 crossref_primary_10_1039_D5NJ01893E crossref_primary_10_3390_pharmaceutics13101698 crossref_primary_10_1007_s12247_023_09747_0 crossref_primary_10_1016_j_jddst_2023_104509 crossref_primary_10_1002_adsu_202300269 crossref_primary_10_3390_chemengineering7050096 crossref_primary_10_1016_j_fpsl_2021_100653 crossref_primary_10_1016_j_ijbiomac_2023_128087 crossref_primary_10_1208_s12249_020_01828_4 crossref_primary_10_1016_j_jddst_2025_107489 crossref_primary_10_1002_cctc_202401042 crossref_primary_10_1016_j_ejpb_2022_09_024 crossref_primary_10_1016_j_colsurfa_2023_131772 crossref_primary_10_1016_j_fpsl_2021_100793 crossref_primary_10_1021_acsfoodscitech_5c00200 crossref_primary_10_1016_j_ejpb_2025_114705 crossref_primary_10_3390_pharmaceutics15051364 crossref_primary_10_1007_s13346_023_01360_5 crossref_primary_10_1016_j_jddst_2021_102511 crossref_primary_10_3390_molecules25112660 crossref_primary_10_1080_01932691_2021_1964987 crossref_primary_10_1208_s12249_021_02048_0 crossref_primary_10_1080_03639045_2020_1821053 crossref_primary_10_1016_j_ijpharm_2022_122221 crossref_primary_10_1016_j_inoche_2025_115108 crossref_primary_10_3390_pharmaceutics17070870 crossref_primary_10_1080_09205063_2025_2515944 crossref_primary_10_1007_s42114_024_00908_4 crossref_primary_10_1002_slct_202401440 crossref_primary_10_1016_j_ijbiomac_2025_143296 crossref_primary_10_1016_j_micromeso_2024_113188 crossref_primary_10_1007_s42250_024_01133_8 crossref_primary_10_1080_14786419_2023_2214841 crossref_primary_10_1016_j_ijpharm_2023_123621 crossref_primary_10_3390_nano10030561 crossref_primary_10_1016_j_ejpb_2023_12_007 crossref_primary_10_3390_ma17225502 crossref_primary_10_1016_j_diamond_2022_108993 crossref_primary_10_1016_j_eurpolymj_2024_113184 crossref_primary_10_1002_app_52423 crossref_primary_10_1080_17480272_2025_2551744 crossref_primary_10_1016_j_ijbiomac_2025_144472 crossref_primary_10_52711_0975_4377_2022_00002 crossref_primary_10_2174_0126667797361763250221092927 crossref_primary_10_1016_j_jddst_2025_107142 crossref_primary_10_1016_j_bbamem_2025_184426 crossref_primary_10_1016_j_foodres_2025_115809 crossref_primary_10_1016_j_jddst_2025_107380 crossref_primary_10_1016_j_carbpol_2023_121595 crossref_primary_10_1039_D5SU00229J crossref_primary_10_1016_j_jddst_2024_105929 crossref_primary_10_1016_j_ijbiomac_2024_134395 crossref_primary_10_1016_j_saa_2021_120600 crossref_primary_10_1002_adma_202504057 crossref_primary_10_1016_j_ijbiomac_2024_136569 crossref_primary_10_1016_j_ijbiomac_2023_123889 crossref_primary_10_3390_foods12051008 crossref_primary_10_3390_foods14122024 crossref_primary_10_3390_pharmaceutics15102425 crossref_primary_10_1016_j_ijbiomac_2022_09_064 crossref_primary_10_1016_j_jddst_2024_106577 crossref_primary_10_1016_j_molliq_2022_119488 crossref_primary_10_1016_j_ijbiomac_2024_134819 crossref_primary_10_3390_pharmaceutics14030524 crossref_primary_10_1007_s11947_023_03136_8 crossref_primary_10_3390_pharmaceutics15020592 crossref_primary_10_3390_pharmaceutics16070965 crossref_primary_10_3390_ijms241814251 crossref_primary_10_1039_D5CY00632E crossref_primary_10_1134_S1070363224100232 crossref_primary_10_3390_md19050269 crossref_primary_10_3390_pharmaceutics13030418 crossref_primary_10_1016_j_ijbiomac_2024_139275 crossref_primary_10_1016_j_molliq_2025_127036 crossref_primary_10_5937_arhfarm72_35133 crossref_primary_10_1016_j_ijpharm_2024_124631 crossref_primary_10_1016_j_jconrel_2022_10_034 crossref_primary_10_1002_app_53411 crossref_primary_10_1080_87559129_2021_1963978 crossref_primary_10_1002_adma_202403813 crossref_primary_10_2478_acph_2025_0026 crossref_primary_10_1016_j_ijbiomac_2025_147160 crossref_primary_10_1080_03639045_2024_2433621 crossref_primary_10_1016_j_compositesa_2022_107030 crossref_primary_10_1016_j_indcrop_2024_120048 crossref_primary_10_1016_j_carbpol_2022_119647 crossref_primary_10_3390_pharmaceutics16121617 crossref_primary_10_1007_s00289_021_03903_7 crossref_primary_10_1016_j_ijpharm_2024_124884 crossref_primary_10_1016_j_jsps_2021_02_003 crossref_primary_10_1111_1541_4337_13224 crossref_primary_10_1590_s2175_97902025e24249 crossref_primary_10_1016_j_jddst_2022_104057 crossref_primary_10_1016_j_mtcomm_2024_108235 crossref_primary_10_1016_j_nanoso_2025_101530 crossref_primary_10_3390_nano12091472 crossref_primary_10_4155_tde_2022_0008 crossref_primary_10_1016_j_foodchem_2024_141850 crossref_primary_10_3390_gels8050290 crossref_primary_10_1515_chem_2024_0084 crossref_primary_10_1016_j_colsurfb_2025_115062 crossref_primary_10_1007_s11696_020_01422_9 crossref_primary_10_1016_j_jcis_2024_08_208 crossref_primary_10_1039_D2NJ01893D crossref_primary_10_1080_17425247_2020_1811224 crossref_primary_10_1016_j_jddst_2025_107391 crossref_primary_10_1016_j_carbpol_2025_123446 crossref_primary_10_1016_j_jddst_2023_104529 crossref_primary_10_1016_j_ijpharm_2020_120173 crossref_primary_10_3390_scipharm93030028 crossref_primary_10_2217_nnm_2021_0229 crossref_primary_10_3390_ijms24054419 crossref_primary_10_1016_j_lwt_2024_117307 crossref_primary_10_1016_j_ijpharm_2025_125880 crossref_primary_10_3390_gels9090708 crossref_primary_10_1016_j_ijbiomac_2025_146291 crossref_primary_10_1016_j_jddst_2021_102690 crossref_primary_10_1016_j_ijbiomac_2023_125638 crossref_primary_10_1016_j_ijbiomac_2023_126969 crossref_primary_10_1016_j_jddst_2025_107185 crossref_primary_10_1016_j_ijbiomac_2024_136890 crossref_primary_10_1080_10406638_2024_2344764 crossref_primary_10_3390_pharmaceutics12060502 crossref_primary_10_1016_j_jenvman_2022_117073 crossref_primary_10_1039_D1RA05616F crossref_primary_10_3390_coatings15020240 crossref_primary_10_1016_j_ijpharm_2023_123576 crossref_primary_10_1039_D5RA01989C crossref_primary_10_1007_s10876_023_02528_2 crossref_primary_10_1016_j_jddst_2024_105602 crossref_primary_10_52711_0974_360X_2023_00253 crossref_primary_10_1002_adhm_202301933 crossref_primary_10_1088_1748_605X_ad2a3a crossref_primary_10_1002_star_70061 crossref_primary_10_1007_s00396_024_05298_z crossref_primary_10_1002_macp_202100086 crossref_primary_10_1016_j_jcis_2023_11_086 crossref_primary_10_1039_D4RA06514J crossref_primary_10_3390_nano14100846 crossref_primary_10_3390_ijms21239292 crossref_primary_10_1007_s42729_025_02523_8 crossref_primary_10_1002_pen_26653 crossref_primary_10_1208_s12249_024_02922_7 crossref_primary_10_3390_gels10020087 crossref_primary_10_1021_acsomega_5c01171 crossref_primary_10_1016_j_actbio_2025_02_013 crossref_primary_10_1016_j_mtchem_2022_101289 crossref_primary_10_1142_S1088424621500073 crossref_primary_10_3390_ph17121614 crossref_primary_10_1016_j_jconrel_2023_03_006 crossref_primary_10_3390_pharmaceutics16101282 crossref_primary_10_1016_j_ijbiomac_2023_126506 crossref_primary_10_3390_ijms231911811 crossref_primary_10_3390_pharmaceutics15030980 crossref_primary_10_1016_j_chemosphere_2021_131481 crossref_primary_10_3390_ijms23041940 crossref_primary_10_3390_pharmaceutics15010224 crossref_primary_10_1208_s12249_025_03099_3 crossref_primary_10_1016_j_colsurfb_2023_113309 crossref_primary_10_1016_j_eurpolymj_2023_112084 crossref_primary_10_3390_polym16152160 crossref_primary_10_3390_antiox14091123 crossref_primary_10_1002_adfm_202102033 crossref_primary_10_1016_j_jcis_2020_01_110 crossref_primary_10_1016_j_jddst_2025_107077 crossref_primary_10_1016_j_jddst_2020_102281 crossref_primary_10_1080_09205063_2022_2157671 crossref_primary_10_3390_nano15060415 crossref_primary_10_3390_pharmaceutics14030507 crossref_primary_10_1039_D4BM00349G crossref_primary_10_1002_slct_202303014 crossref_primary_10_1021_acs_molpharmaceut_5c00611 crossref_primary_10_1080_02652048_2023_2167011 crossref_primary_10_1016_j_ijbiomac_2025_145741 crossref_primary_10_1016_j_ijpharm_2024_124050 crossref_primary_10_3390_pharmaceutics15082128 |
| Cites_doi | 10.1016/j.desal.2005.04.032 10.1021/la900777g 10.1002/jps.2600760905 10.1016/j.ijpharm.2004.07.010 10.1016/j.jchromb.2017.11.020 10.1016/S0022-2836(64)80115-7 10.2478/v10007-008-0014-3 10.1016/0005-2736(86)90549-3 10.1016/j.ejpb.2018.05.009 10.1016/j.ejmech.2019.01.007 10.1046/j.1365-2273.1998.00172.x 10.1515/jnet.1984.9.3.217 10.2147/IJN.S117210 10.1016/j.xphs.2019.03.006 10.1016/j.bpj.2016.09.043 10.1016/0005-2736(86)90311-1 10.1016/S0006-3495(96)79575-9 10.1208/s12248-016-9958-2 10.1016/j.ejps.2013.01.006 10.1080/21691401.2017.1304403 10.1016/S0006-3495(93)81385-7 10.1016/j.colsurfb.2017.05.062 10.1016/0009-3084(93)90053-6 10.1016/S0006-3495(01)75914-0 10.1016/j.chemphyslip.2015.05.001 10.1016/S0223-5234(02)01360-0 10.1111/j.2042-7158.2010.01090.x 10.1016/S0006-3495(01)75753-0 10.1016/S0928-0987(01)00095-1 10.1016/0009-3084(67)90030-8 10.1517/17425247.2013.766714 10.1016/0005-2736(77)90117-1 10.1016/j.bbamem.2018.05.018 10.1016/j.ejps.2018.05.004 10.1007/s00424-006-0157-3 10.1016/j.ejps.2015.03.019 10.1021/sb4001917 10.1046/j.1365-2273.2000.00420.x 10.1016/j.chemphyslip.2016.10.005 10.1208/s12248-017-0142-0 10.1002/jps.20718 10.1016/j.addr.2012.09.037 10.1007/s13346-015-0220-8 10.1016/j.ejpb.2019.04.005 10.1016/j.ejps.2005.08.007 10.1016/S0014-827X(98)00081-0 10.1016/j.matpr.2017.09.189 10.1016/j.ejpb.2018.11.010 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.ejps.2019.105026 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1879-0720 |
| ExternalDocumentID | 31374254 10_1016_j_ejps_2019_105026 S0928098719302908 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFRF ABJNI ABLJU ABMAC ABMYL ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPCBC SSP SSZ T5K TEORI ~G- 29G 5VS 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMT HVGLF HZ~ OK1 R2- SEW SPT WUQ ~HD ADPDF CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c400t-d88beef1687f88ca25d798e04e2d97c8eb05243b6ca4019ecdfe56dc87f362e43 |
| ISICitedReferencesCount | 305 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000485819800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0928-0987 1879-0720 |
| IngestDate | Sun Nov 09 13:43:54 EST 2025 Wed Feb 19 02:32:13 EST 2025 Tue Nov 18 20:45:09 EST 2025 Sat Nov 29 07:02:38 EST 2025 Sat Mar 23 16:29:36 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | RT iso LUVs SPC K Osmotic stress SD R2adj Large unilamellar vesicles Korsmeyer-Peppas model hyper EE PBS hypo Mt/M Cholesterol n RB Drug release kinetics t Permepad ZP PI RL PL |
| Language | English |
| License | Copyright © 2019 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c400t-d88beef1687f88ca25d798e04e2d97c8eb05243b6ca4019ecdfe56dc87f362e43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2179-6792 |
| OpenAccessLink | http://hdl.handle.net/10852/76053 |
| PMID | 31374254 |
| PQID | 2268312635 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2268312635 pubmed_primary_31374254 crossref_primary_10_1016_j_ejps_2019_105026 crossref_citationtrail_10_1016_j_ejps_2019_105026 elsevier_sciencedirect_doi_10_1016_j_ejps_2019_105026 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 2019-10-00 2019-Oct-01 20191001 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | European journal of pharmaceutical sciences |
| PublicationTitleAlternate | Eur J Pharm Sci |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Fadda, Baroli, Maccioni, Sinico, Valenti, Alhaique (bb0090) 1998; 53 Wu, Škalko-Basnet, Di Cagno (bb0250) 2017; 157 Wacker (bb0245) 2017; 4 Sun, Milon, Tanaka, Ourisson, Nakatani (bb0230) 1986; 860 Bartels, Franks, Rybar, Schierach, Wilf (bb0040) 2005; 184 Xie, Shao, Jin, Zhang, Jiang, Xiong, Su, Xu (bb0260) 2018; 1072 Di Cagno, Bibi, Bauer-Brandl (bb0085) 2015; 73 Flaten, Dhanikula, Luthman, Brandl (bb0095) 2006; 27 Fujiwara, Yanagisawa (bb0100) 2014; 3 Milon, A., Lazrak, T., Albrecht, A.-M., Wolff, G., Weill, G., Ourisson, G. & Nakatani, Y. 1986. Osmotic swelling of unilamellar vesicles by the stopped-flow light scattering method. Influence of vesicle size, solute, temperature, cholesterol and three α,ω-dihydroxycarotenoids. Biochim. Biophys. Acta Biomembr., 859, 1–9. doi Arumugam, Subramanian, Mallayasamy, Averineni, Reddy, Udupa (bb0025) 2008; 58 Quraishi, Jones, Mason (bb0215) 1998; 23 Ahumada, Calderon, Alvarez, Lanio, Lissi (bb0005) 2015; 188 Bourganis, Kammona, Alexopoulos, Kiparissides (bb0050) 2018; 128 Grit, Crommelin (bb0105) 1993; 64 Vieira, Gamarra (bb0240) 2016; 11 Bangham, Horne (bb0030) 1964; 8 Di Cagno, Stein (bb0080) 2019; 139 Pencer, White, Hallett (bb0190) 2001; 81 Schullery (bb0220) 1977; 468 Di Cagno, Bauer-Brandl (bb0075) 2014 Alam shibly, Sayed, Ghatak, Karal, Mohammad, Moniruzzaman, Yamazaki (bb0010) 2016; 111 Mohammed, Weston, Coombes, Fitzgerald, Perrie (bb0150) 2004; 285 Pubchem National Center for Biotechnology Information Compound Database (bb0200) 2019 Leite, Martins, Fazani, Vieira, Dos Santos Cabrera (bb0135) 2018; 1860 Benavente (bb0045) 1984; 9 Ali, Kirby, Mohammed, Perrie (bb0015) 2010; 62 (86)90311–1. Ohno, Hamada, Takiguchi, Homma (bb0170) 2009; 25 Allen, Cullis (bb0020) 2013; 65 Briuglia, Rotella, Mcfarlane, Lamprou (bb0060) 2015; 5 di Cagno, Luppi (bb0900) 2013; 48 Bangham, De Gier, Greville (bb0035) 1967; 1 Li, Du, Guo, Teng, Meng, Sun, Li, Yu, Galons (bb0140) 2019; 164 Haghiralsadat, Amoabediny, Helder, Naderinezhad, Sheikhha, Forouzanfar, Zandieh-Doulabi (bb0110) 2018; 46 Tang, Srinivasan, Yuan, Ming, Liu, Dai, Noble, Hayes, Zheng, Jiang, Szoka, Schwendeman (bb0235) 2019; 134 Illum (bb0120) 2007; 96 Solomon, Gupta, Mulla, Shukla, Guerrero, Gupta (bb0225) 2017; 19 Yuan, Kuai, Dai, Yuan, Zheng, Jiang, Noble, Hayes, Szoka, Schwendeman (bb0265) 2017; 19 Zhu, Jiang, Chen, Hwang (bb0270) 2002; 37 Jain, Jain (bb0125) 2016; 201 New (bb0160) 1990; vol. 58 Paula, Volkov, Van Hoek, Haines, Deamer (bb0180) 1996; 70 Ohwaki, Ando, Kakimoto, Uesugi, Watanabe, Miyake, Kayano (bb0175) 1987; 76 Homer, Dowley, Condon, El-Jassar, Sood (bb0115) 2000; 25 Nothnagel, Wacker (bb0165) 2018; 120 Polozov, Anantharamaiah, Segrest, Epand (bb0195) 2001; 81 Wu, Nikolaisen, Škalko-Basnet, Di Cagno (bb0255) 2019 Brandl, Eide Flaten, Bauer-Brandl, Begley (bb0055) 2007 Brodin, Steffansen, Uhd Nielsen (bb0065) 2010 Pedersen, Braunstein, Jorgensen, Larsen, Holstein-Rathlou, Frederiksen (bb0185) 2007; 453 Lai, Fadda, Sinico (bb0130) 2013; 10 Pubchem National Center for Biotechnology Information Compound Database (bb0210) 2019 Costa, Sousa Lobo (bb0070) 2001; 13 Mui, Cullis, Evans, Madden (bb0155) 1993; 64 Alam shibly (10.1016/j.ejps.2019.105026_bb0010) 2016; 111 Solomon (10.1016/j.ejps.2019.105026_bb0225) 2017; 19 Bangham (10.1016/j.ejps.2019.105026_bb0030) 1964; 8 Benavente (10.1016/j.ejps.2019.105026_bb0045) 1984; 9 Mui (10.1016/j.ejps.2019.105026_bb0155) 1993; 64 Ahumada (10.1016/j.ejps.2019.105026_bb0005) 2015; 188 Brodin (10.1016/j.ejps.2019.105026_bb0065) 2010 Di Cagno (10.1016/j.ejps.2019.105026_bb0085) 2015; 73 Ali (10.1016/j.ejps.2019.105026_bb0015) 2010; 62 Leite (10.1016/j.ejps.2019.105026_bb0135) 2018; 1860 Lai (10.1016/j.ejps.2019.105026_bb0130) 2013; 10 Flaten (10.1016/j.ejps.2019.105026_bb0095) 2006; 27 Pencer (10.1016/j.ejps.2019.105026_bb0190) 2001; 81 Costa (10.1016/j.ejps.2019.105026_bb0070) 2001; 13 Paula (10.1016/j.ejps.2019.105026_bb0180) 1996; 70 Bourganis (10.1016/j.ejps.2019.105026_bb0050) 2018; 128 Brandl (10.1016/j.ejps.2019.105026_bb0055) 2007 Di Cagno (10.1016/j.ejps.2019.105026_bb0080) 2019; 139 Haghiralsadat (10.1016/j.ejps.2019.105026_bb0110) 2018; 46 Bartels (10.1016/j.ejps.2019.105026_bb0040) 2005; 184 Tang (10.1016/j.ejps.2019.105026_bb0235) 2019; 134 Di Cagno (10.1016/j.ejps.2019.105026_bb0075) 2014 Arumugam (10.1016/j.ejps.2019.105026_bb0025) 2008; 58 Quraishi (10.1016/j.ejps.2019.105026_bb0215) 1998; 23 Homer (10.1016/j.ejps.2019.105026_bb0115) 2000; 25 Wu (10.1016/j.ejps.2019.105026_bb0250) 2017; 157 Grit (10.1016/j.ejps.2019.105026_bb0105) 1993; 64 Nothnagel (10.1016/j.ejps.2019.105026_bb0165) 2018; 120 Xie (10.1016/j.ejps.2019.105026_bb0260) 2018; 1072 Yuan (10.1016/j.ejps.2019.105026_bb0265) 2017; 19 Pubchem National Center for Biotechnology Information Compound Database (10.1016/j.ejps.2019.105026_bb0210) 2019 Jain (10.1016/j.ejps.2019.105026_bb0125) 2016; 201 Fadda (10.1016/j.ejps.2019.105026_bb0090) 1998; 53 Li (10.1016/j.ejps.2019.105026_bb0140) 2019; 164 Wu (10.1016/j.ejps.2019.105026_bb0255) 2019 Mohammed (10.1016/j.ejps.2019.105026_bb0150) 2004; 285 Ohno (10.1016/j.ejps.2019.105026_bb0170) 2009; 25 di Cagno (10.1016/j.ejps.2019.105026_bb0900) 2013; 48 Briuglia (10.1016/j.ejps.2019.105026_bb0060) 2015; 5 Vieira (10.1016/j.ejps.2019.105026_bb0240) 2016; 11 Pubchem National Center for Biotechnology Information Compound Database (10.1016/j.ejps.2019.105026_bb0200) 2019 Illum (10.1016/j.ejps.2019.105026_bb0120) 2007; 96 Fujiwara (10.1016/j.ejps.2019.105026_bb0100) 2014; 3 Wacker (10.1016/j.ejps.2019.105026_bb0245) 2017; 4 Bangham (10.1016/j.ejps.2019.105026_bb0035) 1967; 1 10.1016/j.ejps.2019.105026_bb0145 New (10.1016/j.ejps.2019.105026_bb0160) 1990; vol. 58 Polozov (10.1016/j.ejps.2019.105026_bb0195) 2001; 81 Pedersen (10.1016/j.ejps.2019.105026_bb0185) 2007; 453 Allen (10.1016/j.ejps.2019.105026_bb0020) 2013; 65 Schullery (10.1016/j.ejps.2019.105026_bb0220) 1977; 468 Zhu (10.1016/j.ejps.2019.105026_bb0270) 2002; 37 Ohwaki (10.1016/j.ejps.2019.105026_bb0175) 1987; 76 Sun (10.1016/j.ejps.2019.105026_bb0230) 1986; 860 |
| References_xml | – volume: 19 start-page: 150 year: 2017 end-page: 160 ident: bb0265 article-title: Development of a flow-through USP-4 apparatus drug release assay to evaluate doxorubicin liposomes publication-title: AAPS J. – year: 2019 ident: bb0210 publication-title: Rivastigmine, CID=77991 [Online] – volume: 48 start-page: 775 year: 2013 end-page: 780 ident: bb0900 article-title: Drug ‘‘supersaturation’’ states induced by polymeric micelles and liposomes: A mechanistic investigation into permeability enhancements publication-title: Eur. J Pharm. Sci. – volume: 111 start-page: 2190 year: 2016 end-page: 2201 ident: bb0010 article-title: Experimental estimation of membrane tension induced by osmotic pressure publication-title: Biophys. J. – volume: 81 start-page: 2716 year: 2001 end-page: 2728 ident: bb0190 article-title: Osmotically induced shape changes of large unilamellar vesicles measured by dynamic light scattering publication-title: Biophys. J. – volume: 11 start-page: 5381 year: 2016 end-page: 5414 ident: bb0240 article-title: Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier publication-title: Int. J. Nanomedicine – volume: 25 start-page: 11680 year: 2009 end-page: 11685 ident: bb0170 article-title: Dynamic behavior of giant liposomes at desired osmotic pressures publication-title: Langmuir – year: 2019 ident: bb0200 publication-title: Caffeine, CID=2519 [Online] – volume: 27 start-page: 80 year: 2006 end-page: 90 ident: bb0095 article-title: Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion publication-title: Eur. J. Pharm. Sci. – volume: 1860 start-page: 2320 year: 2018 end-page: 2328 ident: bb0135 article-title: Cholesterol modulates curcumin partitioning and membrane effects publication-title: Biochim. Biophys. Acta Biomembr. – volume: 62 start-page: 1646 year: 2010 end-page: 1655 ident: bb0015 article-title: Solubilisation of drugs within liposomal bilayers: alternatives to cholesterol as a membrane stabilising agent publication-title: J. Pharm. Pharmacol. – volume: 468 start-page: 238 year: 1977 end-page: 244 ident: bb0220 article-title: Permeability of iodide in multilamellar liposomes modeled by two compartments and a reservoir publication-title: Biochim. Biophys. Acta Biomembr. – volume: 3 start-page: 870 year: 2014 end-page: 874 ident: bb0100 article-title: Generation of giant unilamellar liposomes containing biomacromolecules at physiological intracellular concentrations using hypertonic conditions publication-title: ACS Synth. Biol. – volume: 19 start-page: 1669 year: 2017 end-page: 1681 ident: bb0225 article-title: Role of in vitro release methods in liposomal formulation development: challenges and regulatory perspective publication-title: AAPS J. – volume: 53 start-page: 650 year: 1998 end-page: 654 ident: bb0090 article-title: Phospholipid-detergent systems: effects of polysorbates on the release of liposomal caffeine publication-title: Farmaco – volume: 10 start-page: 1003 year: 2013 end-page: 1022 ident: bb0130 article-title: Liposomes for brain delivery publication-title: Expert Opin Drug Deliv – volume: 453 start-page: 777 year: 2007 end-page: 785 ident: bb0185 article-title: Stimulation of aquaporin-5 and transepithelial water permeability in human airway epithelium by hyperosmotic stress publication-title: Pflugers Arch. – volume: 184 start-page: 185 year: 2005 end-page: 195 ident: bb0040 article-title: The effect of feed ionic strength on salt passage through reverse osmosis membranes publication-title: Desalination – volume: 25 start-page: 558 year: 2000 end-page: 560 ident: bb0115 article-title: The effect of hypertonicity on nasal mucociliary clearance publication-title: Clin Otolaryngol Allied Sci – volume: 201 start-page: 28 year: 2016 end-page: 40 ident: bb0125 article-title: In vitro release model fitting of liposomes: an insight publication-title: Chem. Phys. Lipids – volume: 8 start-page: 660 year: 1964 end-page: 668 ident: bb0030 article-title: Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope publication-title: J. Mol. Biol. – year: 2007 ident: bb0055 article-title: Passive diffusion across membranes publication-title: Wiley Encyclopedia of Chemical Biology – volume: 37 start-page: 399 year: 2002 end-page: 407 ident: bb0270 article-title: A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential publication-title: Eur. J. Med. Chem. – volume: 70 start-page: 339 year: 1996 end-page: 348 ident: bb0180 article-title: Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness publication-title: Biophys. J. – volume: 81 start-page: 949 year: 2001 end-page: 959 ident: bb0195 article-title: Osmotically induced membrane tension modulates membrane permeabilization by class L amphipathic helical peptides: nucleation model of defect formation publication-title: Biophys. J. – volume: 128 start-page: 337 year: 2018 end-page: 362 ident: bb0050 article-title: Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics publication-title: Eur. J. Pharm. Biopharm. – volume: 73 start-page: 29 year: 2015 end-page: 34 ident: bb0085 article-title: New biomimetic barrier Permeapad™ for efficient investigation of passive permeability of drugs publication-title: Eur. J. Pharm. Sci. – volume: vol. 58 start-page: 1 year: 1990 end-page: 32 ident: bb0160 article-title: Chapter 1: Introduction. Liposomes: A Practical Approach – volume: 23 start-page: 403 year: 1998 end-page: 413 ident: bb0215 article-title: The rheology of nasal mucus: a review publication-title: Clin Otolaryngol Allied Sci – start-page: 135 year: 2010 end-page: 152 ident: bb0065 article-title: Chapter 3.2 passive diffusion of drug substances: the concepts of flux and permeability publication-title: Molecular Biopharmaceutics: Aspects of Drug Characterisation, Drug Delivery and Dosage Form Evaluation – volume: 1072 start-page: 149 year: 2018 end-page: 160 ident: bb0260 article-title: Determination of non-liposomal and liposomal doxorubicin in plasma by LC–MS/MS coupled with an effective solid phase extraction: in comparison with ultrafiltration technique and application to a pharmacokinetic study publication-title: J. Chromatogr. B – volume: 188 start-page: 54 year: 2015 end-page: 60 ident: bb0005 article-title: Response of unilamellar DPPC and DPPC:SM vesicles to hypo and hyper osmotic shocks: a comparison publication-title: Chem. Phys. Lipids – volume: 64 start-page: 3 year: 1993 end-page: 18 ident: bb0105 article-title: Chemical stability of liposomes: implications for their physical stability publication-title: Chem. Phys. Lipids – volume: 860 start-page: 525 year: 1986 end-page: 530 ident: bb0230 article-title: Osmotic swelling of unilamellar vesicles by the stopped-flow light scattering method. Elastic properties of vesicles publication-title: Biochim. Biophys. Acta Biomembr. – volume: 96 start-page: 473 year: 2007 end-page: 483 ident: bb0120 article-title: Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? publication-title: J. Pharm. Sci. – volume: 4 start-page: S214 year: 2017 end-page: S217 ident: bb0245 article-title: Challenges in the drug release testing of next-generation nanomedicines – what do we know? publication-title: Mater Today Proc – year: 2019 ident: bb0255 article-title: The hypotonic environmental changes affect liposomal formulations for nose-to-brain targeted drug delivery publication-title: J. Pharm. Sci. – reference: (86)90311–1. – volume: 46 start-page: 169 year: 2018 end-page: 177 ident: bb0110 article-title: A comprehensive mathematical model of drug release kinetics from nano-liposomes, derived from optimization studies of cationic PEGylated liposomal doxorubicin formulations for drug-gene delivery publication-title: Artif Cells Nanomed Biotechnol – volume: 1 start-page: 225 year: 1967 end-page: 246 ident: bb0035 article-title: Osmotic properties and water permeability of phospholipid liquid crystals publication-title: Chem. Phys. Lipids – volume: 164 start-page: 640 year: 2019 end-page: 653 ident: bb0140 article-title: Composition design and medical application of liposomes publication-title: Eur. J. Med. Chem. – volume: 120 start-page: 199 year: 2018 end-page: 211 ident: bb0165 article-title: How to measure release from nanosized carriers? publication-title: Eur. J. Pharm. Sci. – volume: 65 start-page: 36 year: 2013 end-page: 48 ident: bb0020 article-title: Liposomal drug delivery systems: from concept to clinical applications publication-title: Adv. Drug Deliv. Rev. – volume: 285 start-page: 23 year: 2004 end-page: 34 ident: bb0150 article-title: Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability publication-title: Int. J. Pharm. – volume: 58 start-page: 287 year: 2008 end-page: 297 ident: bb0025 article-title: A study of rivastigmine liposomes for delivery into the brain through intranasal route publication-title: Acta Pharma. – volume: 13 start-page: 123 year: 2001 end-page: 133 ident: bb0070 article-title: Modeling and comparison of dissolution profiles publication-title: Eur. J. Pharm. Sci. – volume: 5 start-page: 231 year: 2015 end-page: 242 ident: bb0060 article-title: Influence of cholesterol on liposome stability and on in vitro drug release publication-title: Drug Deliv Transl Res – volume: 64 start-page: 443 year: 1993 end-page: 453 ident: bb0155 article-title: Osmotic properties of large unilamellar vesicles prepared by extrusion publication-title: Biophys. J. – reference: Milon, A., Lazrak, T., Albrecht, A.-M., Wolff, G., Weill, G., Ourisson, G. & Nakatani, Y. 1986. Osmotic swelling of unilamellar vesicles by the stopped-flow light scattering method. Influence of vesicle size, solute, temperature, cholesterol and three α,ω-dihydroxycarotenoids. Biochim. Biophys. Acta Biomembr., 859, 1–9. doi: – volume: 76 start-page: 695 year: 1987 end-page: 698 ident: bb0175 article-title: Effects of dose, pH, and osmolarity on nasal absorption of secretin in rats II: histological aspects of the nasal mucosa in relation to the absorption variation due to the effects of pH and osmolarity publication-title: J. Pharm. Sci. – volume: 134 start-page: 107 year: 2019 end-page: 116 ident: bb0235 article-title: Development of a flow-through USP 4 apparatus drug release assay for the evaluation of amphotericin B liposome publication-title: Eur. J. Pharm. Biopharm. – volume: 139 start-page: 205 year: 2019 end-page: 212 ident: bb0080 article-title: Studying the effect of solubilizing agents on drug diffusion through the unstirred water layer (UWL) by localized spectroscopy publication-title: Eur. J. Pharm. Biopharm. – volume: 157 start-page: 65 year: 2017 end-page: 71 ident: bb0250 article-title: Influence of the environmental tonicity perturbations on the release of model compounds from large unilamellar vesicles (LUVs): a mechanistic investigation publication-title: Colloids Surf B – year: 2014 ident: bb0075 article-title: Assembly for Assessing Drug Permeability With Adjustable Biomimetic Properties. WO 2016/078667 A1 – volume: 9 start-page: 217 year: 1984 end-page: 224 ident: bb0045 article-title: A study of membrane potentials across a cellophane membrane for different electrolytes publication-title: J Non-Equilib Thermodyn – year: 2007 ident: 10.1016/j.ejps.2019.105026_bb0055 article-title: Passive diffusion across membranes – volume: 184 start-page: 185 year: 2005 ident: 10.1016/j.ejps.2019.105026_bb0040 article-title: The effect of feed ionic strength on salt passage through reverse osmosis membranes publication-title: Desalination doi: 10.1016/j.desal.2005.04.032 – volume: 25 start-page: 11680 year: 2009 ident: 10.1016/j.ejps.2019.105026_bb0170 article-title: Dynamic behavior of giant liposomes at desired osmotic pressures publication-title: Langmuir doi: 10.1021/la900777g – volume: 76 start-page: 695 year: 1987 ident: 10.1016/j.ejps.2019.105026_bb0175 article-title: Effects of dose, pH, and osmolarity on nasal absorption of secretin in rats II: histological aspects of the nasal mucosa in relation to the absorption variation due to the effects of pH and osmolarity publication-title: J. Pharm. Sci. doi: 10.1002/jps.2600760905 – volume: 285 start-page: 23 year: 2004 ident: 10.1016/j.ejps.2019.105026_bb0150 article-title: Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2004.07.010 – volume: 1072 start-page: 149 year: 2018 ident: 10.1016/j.ejps.2019.105026_bb0260 article-title: Determination of non-liposomal and liposomal doxorubicin in plasma by LC–MS/MS coupled with an effective solid phase extraction: in comparison with ultrafiltration technique and application to a pharmacokinetic study publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2017.11.020 – volume: 8 start-page: 660 year: 1964 ident: 10.1016/j.ejps.2019.105026_bb0030 article-title: Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(64)80115-7 – volume: 58 start-page: 287 year: 2008 ident: 10.1016/j.ejps.2019.105026_bb0025 article-title: A study of rivastigmine liposomes for delivery into the brain through intranasal route publication-title: Acta Pharma. doi: 10.2478/v10007-008-0014-3 – volume: 860 start-page: 525 year: 1986 ident: 10.1016/j.ejps.2019.105026_bb0230 article-title: Osmotic swelling of unilamellar vesicles by the stopped-flow light scattering method. Elastic properties of vesicles publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/0005-2736(86)90549-3 – year: 2019 ident: 10.1016/j.ejps.2019.105026_bb0210 publication-title: Rivastigmine, CID=77991 [Online] – volume: 128 start-page: 337 year: 2018 ident: 10.1016/j.ejps.2019.105026_bb0050 article-title: Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2018.05.009 – volume: 164 start-page: 640 year: 2019 ident: 10.1016/j.ejps.2019.105026_bb0140 article-title: Composition design and medical application of liposomes publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2019.01.007 – year: 2014 ident: 10.1016/j.ejps.2019.105026_bb0075 – volume: 23 start-page: 403 year: 1998 ident: 10.1016/j.ejps.2019.105026_bb0215 article-title: The rheology of nasal mucus: a review publication-title: Clin Otolaryngol Allied Sci doi: 10.1046/j.1365-2273.1998.00172.x – volume: 9 start-page: 217 year: 1984 ident: 10.1016/j.ejps.2019.105026_bb0045 article-title: A study of membrane potentials across a cellophane membrane for different electrolytes publication-title: J Non-Equilib Thermodyn doi: 10.1515/jnet.1984.9.3.217 – volume: 11 start-page: 5381 year: 2016 ident: 10.1016/j.ejps.2019.105026_bb0240 article-title: Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S117210 – volume: vol. 58 start-page: 1 year: 1990 ident: 10.1016/j.ejps.2019.105026_bb0160 – year: 2019 ident: 10.1016/j.ejps.2019.105026_bb0255 article-title: The hypotonic environmental changes affect liposomal formulations for nose-to-brain targeted drug delivery publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2019.03.006 – volume: 111 start-page: 2190 year: 2016 ident: 10.1016/j.ejps.2019.105026_bb0010 article-title: Experimental estimation of membrane tension induced by osmotic pressure publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.09.043 – ident: 10.1016/j.ejps.2019.105026_bb0145 doi: 10.1016/0005-2736(86)90311-1 – volume: 70 start-page: 339 year: 1996 ident: 10.1016/j.ejps.2019.105026_bb0180 article-title: Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness publication-title: Biophys. J. doi: 10.1016/S0006-3495(96)79575-9 – volume: 19 start-page: 150 year: 2017 ident: 10.1016/j.ejps.2019.105026_bb0265 article-title: Development of a flow-through USP-4 apparatus drug release assay to evaluate doxorubicin liposomes publication-title: AAPS J. doi: 10.1208/s12248-016-9958-2 – start-page: 135 year: 2010 ident: 10.1016/j.ejps.2019.105026_bb0065 article-title: Chapter 3.2 passive diffusion of drug substances: the concepts of flux and permeability – volume: 48 start-page: 775 year: 2013 ident: 10.1016/j.ejps.2019.105026_bb0900 article-title: Drug ‘‘supersaturation’’ states induced by polymeric micelles and liposomes: A mechanistic investigation into permeability enhancements publication-title: Eur. J Pharm. Sci. doi: 10.1016/j.ejps.2013.01.006 – volume: 46 start-page: 169 year: 2018 ident: 10.1016/j.ejps.2019.105026_bb0110 article-title: A comprehensive mathematical model of drug release kinetics from nano-liposomes, derived from optimization studies of cationic PEGylated liposomal doxorubicin formulations for drug-gene delivery publication-title: Artif Cells Nanomed Biotechnol doi: 10.1080/21691401.2017.1304403 – volume: 64 start-page: 443 year: 1993 ident: 10.1016/j.ejps.2019.105026_bb0155 article-title: Osmotic properties of large unilamellar vesicles prepared by extrusion publication-title: Biophys. J. doi: 10.1016/S0006-3495(93)81385-7 – volume: 157 start-page: 65 year: 2017 ident: 10.1016/j.ejps.2019.105026_bb0250 article-title: Influence of the environmental tonicity perturbations on the release of model compounds from large unilamellar vesicles (LUVs): a mechanistic investigation publication-title: Colloids Surf B doi: 10.1016/j.colsurfb.2017.05.062 – volume: 64 start-page: 3 year: 1993 ident: 10.1016/j.ejps.2019.105026_bb0105 article-title: Chemical stability of liposomes: implications for their physical stability publication-title: Chem. Phys. Lipids doi: 10.1016/0009-3084(93)90053-6 – volume: 81 start-page: 2716 year: 2001 ident: 10.1016/j.ejps.2019.105026_bb0190 article-title: Osmotically induced shape changes of large unilamellar vesicles measured by dynamic light scattering publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)75914-0 – volume: 188 start-page: 54 year: 2015 ident: 10.1016/j.ejps.2019.105026_bb0005 article-title: Response of unilamellar DPPC and DPPC:SM vesicles to hypo and hyper osmotic shocks: a comparison publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2015.05.001 – volume: 37 start-page: 399 year: 2002 ident: 10.1016/j.ejps.2019.105026_bb0270 article-title: A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential publication-title: Eur. J. Med. Chem. doi: 10.1016/S0223-5234(02)01360-0 – volume: 62 start-page: 1646 year: 2010 ident: 10.1016/j.ejps.2019.105026_bb0015 article-title: Solubilisation of drugs within liposomal bilayers: alternatives to cholesterol as a membrane stabilising agent publication-title: J. Pharm. Pharmacol. doi: 10.1111/j.2042-7158.2010.01090.x – volume: 81 start-page: 949 year: 2001 ident: 10.1016/j.ejps.2019.105026_bb0195 article-title: Osmotically induced membrane tension modulates membrane permeabilization by class L amphipathic helical peptides: nucleation model of defect formation publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)75753-0 – volume: 13 start-page: 123 year: 2001 ident: 10.1016/j.ejps.2019.105026_bb0070 article-title: Modeling and comparison of dissolution profiles publication-title: Eur. J. Pharm. Sci. doi: 10.1016/S0928-0987(01)00095-1 – volume: 1 start-page: 225 year: 1967 ident: 10.1016/j.ejps.2019.105026_bb0035 article-title: Osmotic properties and water permeability of phospholipid liquid crystals publication-title: Chem. Phys. Lipids doi: 10.1016/0009-3084(67)90030-8 – volume: 10 start-page: 1003 year: 2013 ident: 10.1016/j.ejps.2019.105026_bb0130 article-title: Liposomes for brain delivery publication-title: Expert Opin Drug Deliv doi: 10.1517/17425247.2013.766714 – volume: 468 start-page: 238 year: 1977 ident: 10.1016/j.ejps.2019.105026_bb0220 article-title: Permeability of iodide in multilamellar liposomes modeled by two compartments and a reservoir publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/0005-2736(77)90117-1 – volume: 1860 start-page: 2320 year: 2018 ident: 10.1016/j.ejps.2019.105026_bb0135 article-title: Cholesterol modulates curcumin partitioning and membrane effects publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2018.05.018 – volume: 120 start-page: 199 year: 2018 ident: 10.1016/j.ejps.2019.105026_bb0165 article-title: How to measure release from nanosized carriers? publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2018.05.004 – volume: 453 start-page: 777 year: 2007 ident: 10.1016/j.ejps.2019.105026_bb0185 article-title: Stimulation of aquaporin-5 and transepithelial water permeability in human airway epithelium by hyperosmotic stress publication-title: Pflugers Arch. doi: 10.1007/s00424-006-0157-3 – volume: 73 start-page: 29 year: 2015 ident: 10.1016/j.ejps.2019.105026_bb0085 article-title: New biomimetic barrier Permeapad™ for efficient investigation of passive permeability of drugs publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2015.03.019 – volume: 3 start-page: 870 year: 2014 ident: 10.1016/j.ejps.2019.105026_bb0100 article-title: Generation of giant unilamellar liposomes containing biomacromolecules at physiological intracellular concentrations using hypertonic conditions publication-title: ACS Synth. Biol. doi: 10.1021/sb4001917 – volume: 25 start-page: 558 year: 2000 ident: 10.1016/j.ejps.2019.105026_bb0115 article-title: The effect of hypertonicity on nasal mucociliary clearance publication-title: Clin Otolaryngol Allied Sci doi: 10.1046/j.1365-2273.2000.00420.x – volume: 201 start-page: 28 year: 2016 ident: 10.1016/j.ejps.2019.105026_bb0125 article-title: In vitro release model fitting of liposomes: an insight publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2016.10.005 – year: 2019 ident: 10.1016/j.ejps.2019.105026_bb0200 publication-title: Caffeine, CID=2519 [Online] – volume: 19 start-page: 1669 year: 2017 ident: 10.1016/j.ejps.2019.105026_bb0225 article-title: Role of in vitro release methods in liposomal formulation development: challenges and regulatory perspective publication-title: AAPS J. doi: 10.1208/s12248-017-0142-0 – volume: 96 start-page: 473 year: 2007 ident: 10.1016/j.ejps.2019.105026_bb0120 article-title: Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? publication-title: J. Pharm. Sci. doi: 10.1002/jps.20718 – volume: 65 start-page: 36 year: 2013 ident: 10.1016/j.ejps.2019.105026_bb0020 article-title: Liposomal drug delivery systems: from concept to clinical applications publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.09.037 – volume: 5 start-page: 231 year: 2015 ident: 10.1016/j.ejps.2019.105026_bb0060 article-title: Influence of cholesterol on liposome stability and on in vitro drug release publication-title: Drug Deliv Transl Res doi: 10.1007/s13346-015-0220-8 – volume: 139 start-page: 205 year: 2019 ident: 10.1016/j.ejps.2019.105026_bb0080 article-title: Studying the effect of solubilizing agents on drug diffusion through the unstirred water layer (UWL) by localized spectroscopy publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2019.04.005 – volume: 27 start-page: 80 year: 2006 ident: 10.1016/j.ejps.2019.105026_bb0095 article-title: Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2005.08.007 – volume: 53 start-page: 650 year: 1998 ident: 10.1016/j.ejps.2019.105026_bb0090 article-title: Phospholipid-detergent systems: effects of polysorbates on the release of liposomal caffeine publication-title: Farmaco doi: 10.1016/S0014-827X(98)00081-0 – volume: 4 start-page: S214 year: 2017 ident: 10.1016/j.ejps.2019.105026_bb0245 article-title: Challenges in the drug release testing of next-generation nanomedicines – what do we know? publication-title: Mater Today Proc doi: 10.1016/j.matpr.2017.09.189 – volume: 134 start-page: 107 year: 2019 ident: 10.1016/j.ejps.2019.105026_bb0235 article-title: Development of a flow-through USP 4 apparatus drug release assay for the evaluation of amphotericin B liposome publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2018.11.010 |
| SSID | ssj0006870 |
| Score | 2.6691124 |
| Snippet | The aim of this work was to clarify the dynamics behind the influence of ionic strength on the changes in drug release from large unilamellar vesicles (LUVs).... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 105026 |
| SubjectTerms | Cholesterol Cholesterol - metabolism Diffusion Drug Delivery Systems - methods Drug Liberation - physiology Drug release kinetics Kinetics Korsmeyer-Peppas model Large unilamellar vesicles Liposomes - chemistry Membranes - metabolism Osmotic stress Permepad Pharmaceutical Preparations - metabolism |
| Title | Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes |
| URI | https://dx.doi.org/10.1016/j.ejps.2019.105026 https://www.ncbi.nlm.nih.gov/pubmed/31374254 https://www.proquest.com/docview/2268312635 |
| Volume | 138 |
| WOSCitedRecordID | wos000485819800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0720 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006870 issn: 0928-0987 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgMviG_Kx2QktpcuKN9xeCvVEB9SVWmdKE-RmzgjXdZEaTtt_G38cdzZjss6NgESL1HrOnGa-9l3vtzvjpDXPgsxaYtvhRnMJrSgLR7mjpWxaS6EI6JcTGWxiWg4ZJNJPOp0frRcmLMyms_Z-Xlc_1dRQxsIG6mzfyFuc1FogM8gdDiC2OH4R4I3YYToBIDNvYWGJG96WbM6lvVQVugg62FoKLoDjpZFWXzHvp-rZnEqwAS3RqKuua6Sg8apzEGrLoA1VkDxKVpKWdTVomo5JL_z72tbt_52yXOu1a4x57-s5FKFnPKvQhLk1w7WUlq3h3LD0LbuDoLdvn3Cy5PKescXc_VCZYj_CH9xjKrJit4AQwkVKwmm_2mBbp2qN1LhZ62_w4lN5Jx2wl0h4ihvJibajrXuFmotZxHys1z70mKvcslcURzKhzF7I2Y1JnF3YiyAbLsbWbql3j_EwXAssH1tN0am-bYbBTGsqdv9jweTT8YSCJksVmhuTpO2VHzh5kjXGUbXbXykATS-R-7qnQvtK8TdJx0xf0D2RkqyF_t0vGbyLfbpHh2tk6JfPCTNr7Cka1hSRBU1sKQIy7fUgJJugpJKUNJlRSUo1ekalBRBSQ0oH5Gj9wfjwQdL1_uwUtAkS1gf2FSI3IHHljOWcjfIopgJ2xduFkcpE1M7cH1vGqbch-cm0iwXQZil0B3MMOF7j8kW3L94Sij3kWDtcc5Tx8_CgDMWxkEWY94HD751idM-7CTVyfCxJkuZtFGPswQFlKCAEiWgLumZc2qVCubG3kErw0TPKmWkJgC5G8971Qo8gZUeX9_xuahW0MkNmedg8qgueaKQYO7Dc7wItK__7B9HfU7urOfaC7K1bFbiJbmdni2LRbNDbkUTtqPR_RMDnt1X |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpreting+non-linear+drug+diffusion+data%3A+Utilizing+Korsmeyer-Peppas+model+to+study+drug+release+from+liposomes&rft.jtitle=European+journal+of+pharmaceutical+sciences&rft.au=Wu%2C+Iren+Yeeling&rft.au=Bala%2C+Sonali&rft.au=%C5%A0kalko-Basnet%2C+Nata%C5%A1a&rft.au=di+Cagno%2C+Massimiliano+Pio&rft.date=2019-10-01&rft.pub=Elsevier+B.V&rft.issn=0928-0987&rft.eissn=1879-0720&rft.volume=138&rft_id=info:doi/10.1016%2Fj.ejps.2019.105026&rft.externalDocID=S0928098719302908 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0987&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0987&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0987&client=summon |