Foraging with MUSHROOMS: A Mixed-integer Linear Programming Scheduler for Multimessenger Target of Opportunity Searches with the Zwicky Transient Facility

Electromagnetic follow-up of gravitational-wave detections is very resource intensive, taking up hours of limited observation time on dozens of telescopes. Creating more efficient schedules for follow-up will lead to a commensurate increase in counterpart location efficiency without using more teles...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Astrophysical journal Ročník 935; číslo 2; s. 87 - 94
Hlavní autori: Parazin, B., Coughlin, Michael W., Singer, Leo P., Gupta, Vaidehi, Anand, Shreya
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Goddard Space Flight Center The American Astronomical Society 01.08.2022
IOP Publishing
Predmet:
ISSN:0004-637X, 1538-4357
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Electromagnetic follow-up of gravitational-wave detections is very resource intensive, taking up hours of limited observation time on dozens of telescopes. Creating more efficient schedules for follow-up will lead to a commensurate increase in counterpart location efficiency without using more telescope time. Widely used in operations research and telescope scheduling, mixed-integer linear programming is a strong candidate to produce these higher-efficiency schedules, as it can make use of powerful commercial solvers that find globally optimal solutions to provided problems. We detail a new target-of-opportunity scheduling algorithm designed with Zwicky Transient Facility in mind that uses mixed-integer linear programming. We compare its performance to gwemopt, the tuned heuristic scheduler used by the Zwicky Transient Facility and other facilities during the third LIGO–Virgo gravitational-wave observing run. This new algorithm uses variable-length observing blocks to enforce cadence requirements and to ensure field observability, along with having a secondary optimization step to minimize slew time. We show that by employing a hybrid method utilizing both this scheduler and gwemopt, the previous scheduler used, in concert, we can achieve an average improvement in detection efficiency of 3%–11% over gwemopt alone for a simulated binary neutron star merger data set consistent with LIGO–Virgo's third observing run, highlighting the potential of mixed-integer target of opportunity schedulers for future multimessenger follow-up surveys.
Bibliografia:AAS38416
High-Energy Phenomena and Fundamental Physics
GSFC
Goddard Space Flight Center
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ac7fa2