Foraging with MUSHROOMS: A Mixed-integer Linear Programming Scheduler for Multimessenger Target of Opportunity Searches with the Zwicky Transient Facility
Electromagnetic follow-up of gravitational-wave detections is very resource intensive, taking up hours of limited observation time on dozens of telescopes. Creating more efficient schedules for follow-up will lead to a commensurate increase in counterpart location efficiency without using more teles...
Saved in:
| Published in: | The Astrophysical journal Vol. 935; no. 2; pp. 87 - 94 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Goddard Space Flight Center
The American Astronomical Society
01.08.2022
IOP Publishing |
| Subjects: | |
| ISSN: | 0004-637X, 1538-4357 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Electromagnetic follow-up of gravitational-wave detections is very resource intensive, taking up hours of limited observation time on dozens of telescopes. Creating more efficient schedules for follow-up will lead to a commensurate increase in counterpart location efficiency without using more telescope time. Widely used in operations research and telescope scheduling, mixed-integer linear programming is a strong candidate to produce these higher-efficiency schedules, as it can make use of powerful commercial solvers that find globally optimal solutions to provided problems. We detail a new target-of-opportunity scheduling algorithm designed with Zwicky Transient Facility in mind that uses mixed-integer linear programming. We compare its performance to gwemopt, the tuned heuristic scheduler used by the Zwicky Transient Facility and other facilities during the third LIGO–Virgo gravitational-wave observing run. This new algorithm uses variable-length observing blocks to enforce cadence requirements and to ensure field observability, along with having a secondary optimization step to minimize slew time. We show that by employing a hybrid method utilizing both this scheduler and gwemopt, the previous scheduler used, in concert, we can achieve an average improvement in detection efficiency of 3%–11% over gwemopt alone for a simulated binary neutron star merger data set consistent with LIGO–Virgo's third observing run, highlighting the potential of mixed-integer target of opportunity schedulers for future multimessenger follow-up surveys. |
|---|---|
| AbstractList | Electromagnetic follow-up of gravitational-wave detections is very resource intensive, taking up hours of limited observation time on dozens of telescopes. Creating more efficient schedules for follow-up will lead to a commensurate increase in counterpart location efficiency without using more telescope time. Widely used in operations research and telescope scheduling, mixed-integer linear programming is a strong candidate to produce these higher-efficiency schedules, as it can make use of powerful commercial solvers that find globally optimal solutions to provided problems. We detail a new target-of-opportunity scheduling algorithm designed with Zwicky Transient Facility in mind that uses mixed-integer linear programming. We compare its performance to gwemopt, the tuned heuristic scheduler used by the Zwicky Transient Facility and other facilities during the third LIGO–Virgo gravitational-wave observing run. This new algorithm uses variable-length observing blocks to enforce cadence requirements and to ensure field observability, along with having a secondary optimization step to minimize slew time. We show that by employing a hybrid method utilizing both this scheduler and gwemopt, the previous scheduler used, in concert, we can achieve an average improvement in detection efficiency of 3%–11% over gwemopt alone for a simulated binary neutron star merger data set consistent with LIGO–Virgo's third observing run, highlighting the potential of mixed-integer target of opportunity schedulers for future multimessenger follow-up surveys. Electromagnetic follow-up of gravitational-wave detections is very resource intensive, taking up hours of limited observation time on dozens of telescopes. Creating more efficient schedules for follow-up will lead to a commensurate increase in counterpart location efficiency without using more telescope time. Widely used in operations research and telescope scheduling, mixed-integer linear programming is a strong candidate to produce these higher-efficiency schedules, as it can make use of powerful commercial solvers that find globally optimal solutions to provided problems. We detail a new target-of-opportunity scheduling algorithm designed with Zwicky Transient Facility in mind that uses mixed-integer linear programming. We compare its performance to gwemopt , the tuned heuristic scheduler used by the Zwicky Transient Facility and other facilities during the third LIGO–Virgo gravitational-wave observing run. This new algorithm uses variable-length observing blocks to enforce cadence requirements and to ensure field observability, along with having a secondary optimization step to minimize slew time. We show that by employing a hybrid method utilizing both this scheduler and gwemopt , the previous scheduler used, in concert, we can achieve an average improvement in detection efficiency of 3%–11% over gwemopt alone for a simulated binary neutron star merger data set consistent with LIGO–Virgo’s third observing run, highlighting the potential of mixed-integer target of opportunity schedulers for future multimessenger follow-up surveys. |
| Audience | PUBLIC |
| Author | Parazin, B. Coughlin, Michael W. Anand, Shreya Gupta, Vaidehi Singer, Leo P. |
| Author_xml | – sequence: 1 givenname: B. orcidid: 0000-0002-3155-0385 surname: Parazin fullname: Parazin, B. organization: University of Minnesota School of Physics and Astronomy, Minneapolis, MN 55455, USA – sequence: 2 givenname: Michael W. orcidid: 0000-0002-8262-2924 surname: Coughlin fullname: Coughlin, Michael W. organization: University of Minnesota School of Physics and Astronomy, Minneapolis, MN 55455, USA – sequence: 3 givenname: Leo P. orcidid: 0000-0001-9898-5597 surname: Singer fullname: Singer, Leo P. organization: University of Maryland Joint Space-Science Institute, College Park, MD 20742, USA – sequence: 4 givenname: Vaidehi orcidid: 0000-0002-7672-0480 surname: Gupta fullname: Gupta, Vaidehi organization: Indian Institute of Technology , Kharagpur, West Bengal, 721302, India – sequence: 5 givenname: Shreya orcidid: 0000-0003-3768-7515 surname: Anand fullname: Anand, Shreya organization: California Institute of Technology Division of Physics, Mathematics and Astronomy, Pasadena, CA 91125, USA |
| BookMark | eNp9UUGP1CAYJWZNnF29e_BAokfrUqCl9bbZOLsmMxnjzCbGC6EUOowdqECzzl_ZXyu1RhOjngi897738d45OLPOKgCe5-gNqSi7zAtSZZQU7FJIpgV-BBa_ns7AAiFEs5KwT0_AeQiH6YrregEels6LztgO3pu4h-u77e3HzWa9fQuv4Np8U21mbFSd8nBlrBIefvCu8-J4nCRbuVft2CdQOw_XYx_NUYWg7MTfCd-pCJ2Gm2FwPo7WxBPcphlJFWa7uFfw872RX05w54UNRtkIl0KaPnGfgsda9EE9-3legLvlu931bbba3Ly_vlplkiIUs5ZogpqiJYLhvGYVbUkly0bLomnLupG0IWWNNc6lIAoXqsUlyitGRZmrArWaXICX89zBu6-jCpEf3OhtsuSYIZqCohQlVjmzpHcheKW5NFFE42z0wvQ8R3zqgU-h8yl0PveQhOgP4eDNUfjT_yQvZokVQfBkkDZBmKTSSJWzBL-aYeOG37uK4cBrUnDMK8aHH_96_RfaP02_A56Rssw |
| CitedBy_id | crossref_primary_10_3847_1538_3881_ad1ff7 crossref_primary_10_1088_1674_4527_ad9429 crossref_primary_10_3847_1538_3881_ad77ab crossref_primary_10_1016_j_knosys_2023_110980 crossref_primary_10_3847_1538_4365_acdee1 crossref_primary_10_3847_1538_3881_ad0dfb crossref_primary_10_1088_1538_3873_adcfc6 |
| Cites_doi | 10.1126/science.aap9455 10.1093/mnras/sty1066 10.1126/science.aap9855 10.1038/s41550-019-0820-1 10.1038/nature24290 10.3847/2041-8213/aaa402 10.1088/1538-3873/aaecbe 10.1093/mnras/stz2485 10.1016/j.ascom.2016.02.005 10.3847/2041-8213/aa8fc7 10.1093/mnras/stz2495 10.1103/PhysRevLett.119.161101 10.1038/s41550-021-01428-7 10.1088/1538-3873/ab0c2a 10.1088/1538-3873/ab4ca2 10.3847/1538-4357/abc335 10.1126/science.abb4317 10.1126/science.aaq0186 10.1038/nature24303 10.1093/mnras/staa1925 10.1126/science.aaq0073 10.1007/bf01588971 10.1038/nature24298 10.3847/1538-3881/aaa47e 10.1103/PhysRevLett.121.161101 10.1038/s41550-020-1183-3 10.1088/1538-3873/aae8ac 10.1038/551425a 10.1093/mnrasl/slz133 10.3847/2041-8213/ab4ad8 10.1103/PhysRevX.11.021053 10.1093/mnras/stz3457 10.1126/science.aap9580 10.1093/mnras/staa1498 10.1103/PhysRevD.93.024013 10.1088/1538-3873/ab006c 10.1051/0004-6361/201322068 10.3847/2041-8213/aa905c 10.3847/2041-8213/aa8f41 10.1093/mnras/sty2174 10.1126/science.aap9811 10.1088/1538-3873/aaff99 10.5281/zenodo.6659827 10.3847/1538-4357/ac366d |
| ContentType | Journal Article |
| Copyright | 2022. The Author(s). Published by the American Astronomical Society. Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL 2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. The Author(s). Published by the American Astronomical Society. – notice: Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL – notice: 2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA CYE CYI AAYXX CITATION 7TG 8FD H8D KL. L7M |
| DOI | 10.3847/1538-4357/ac7fa2 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) NASA Scientific and Technical Information NASA Technical Reports Server CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | CrossRef Aerospace Database |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics Physics |
| EISSN | 1538-4357 |
| ExternalDocumentID | 10_3847_1538_4357_ac7fa2 20230003817 apjac7fa2 |
| GrantInformation | 981698 |
| GrantInformation_xml | – fundername: NASA GSFC Internal Research And Development (IRAD) grant grantid: Multi-Mission Multi-Messenger Observation Planning Toolkit (M4OPT) – fundername: NSF ∣ CISE ∣ Office of Advanced Cyberinfrastructure (OAC) grantid: 2117997 funderid: https://doi.org/10.13039/100000105 – fundername: NSF ∣ OD ∣ Office of International Science and Engineering (OISE) grantid: 1545949 funderid: https://doi.org/10.13039/100000089 – fundername: NSF ∣ MPS ∣ Division of Physics (PHY) grantid: 2010970 funderid: https://doi.org/10.13039/100000166 |
| GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AEINN CYE CYI AAYXX CITATION 7TG 8FD H8D KL. L7M |
| ID | FETCH-LOGICAL-c400t-d3f30b5d3a7219784d38c6bfc5bd69bc4b3692f21ca3e25ed2601874a61e50df3 |
| IEDL.DBID | O3W |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000841589500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0004-637X |
| IngestDate | Wed Aug 13 06:17:14 EDT 2025 Tue Nov 18 21:04:37 EST 2025 Sat Nov 29 05:43:46 EST 2025 Fri Nov 21 15:41:20 EST 2025 Tue Aug 23 23:25:22 EDT 2022 Wed Aug 21 03:33:31 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Creative Commons License: CCBY |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-d3f30b5d3a7219784d38c6bfc5bd69bc4b3692f21ca3e25ed2601874a61e50df3 |
| Notes | AAS38416 High-Energy Phenomena and Fundamental Physics GSFC Goddard Space Flight Center ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3155-0385 0000-0002-7672-0480 0000-0002-8262-2924 0000-0001-9898-5597 0000-0003-3768-7515 |
| OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/ac7fa2 |
| PQID | 2704042440 |
| PQPubID | 4562441 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_3847_1538_4357_ac7fa2 crossref_primary_10_3847_1538_4357_ac7fa2 nasa_ntrs_20230003817 proquest_journals_2704042440 iop_journals_10_3847_1538_4357_ac7fa2 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Goddard Space Flight Center |
| PublicationPlace_xml | – name: Goddard Space Flight Center – name: Philadelphia |
| PublicationTitle | The Astrophysical journal |
| PublicationTitleAbbrev | APJ |
| PublicationTitleAlternate | Astrophys. J |
| PublicationYear | 2022 |
| Publisher | The American Astronomical Society IOP Publishing |
| Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
| References | Bulla (apjac7fa2bib13) 2019; 489 Hotokezaka (apjac7fa2bib32) 2019; 3 Chornock (apjac7fa2bib14) 2017; 848 Morris (apjac7fa2bib38) 2018; 155 Coughlin (apjac7fa2bib20) 2018; 480 Dietrich (apjac7fa2bib27) 2020b; 370 Dekany (apjac7fa2bib25) 2020; 132 Nemhauser (apjac7fa2bib39) 1978; 14 Cowperthwaite (apjac7fa2bib24) 2017; 848 Coughlin (apjac7fa2bib22) 2018; 478 Kasliwal (apjac7fa2bib34) 2017; 358 Abbott (apjac7fa2bib1) 2017b; 551 Bellm (apjac7fa2bib12) 2019c; 131 Abbott (apjac7fa2bib3) 2018; 121 Masci (apjac7fa2bib37) 2018; 131 Petrov (apjac7fa2bib41) 2022; 924 Evans (apjac7fa2bib28) 2017; 358 Troja (apjac7fa2bib48) 2017; 551 Goldstein (apjac7fa2bib29) 2017; 848 Abbott (apjac7fa2bib4) 2021; 11 Singer (apjac7fa2bib45) 2016; 93 Kasliwal (apjac7fa2bib33) 2020; 905 Smartt (apjac7fa2bib46) 2017; 551 Radice (apjac7fa2bib43) 2018; 852 Astropy Collaboration (apjac7fa2bib9) 2013; 558 Hallinan (apjac7fa2bib31) 2017; 358 Coulter (apjac7fa2bib23) 2017; 358 Graham (apjac7fa2bib30) 2019; 131 Anand (apjac7fa2bib8) 2020; 5 Coughlin (apjac7fa2bib15) 2019a; 885 Kilpatrick (apjac7fa2bib35) 2017; 358 Coughlin (apjac7fa2bib21) 2019; 489 Dietrich (apjac7fa2bib26) 2020a; 370 Ahumada (apjac7fa2bib6) 2021; 5 Coughlin (apjac7fa2bib18) 2020; 492 Almualla (apjac7fa2bib7) 2020; 495 Abbott (apjac7fa2bib2) 2017a; 119 Solar (apjac7fa2bib47) 2016; 15 Shappee (apjac7fa2bib44) 2017; 358 Coughlin (apjac7fa2bib17) 2019c; 489 Parazin (apjac7fa2bib40) 2022 Pian (apjac7fa2bib42) 2017; 551 Coughlin (apjac7fa2bib16) 2019b; 131 Coughlin (apjac7fa2bib19) 2020; 497 Lampoudi (apjac7fa2bib36) 2015 Bellm (apjac7fa2bib11) 2019b; 131 Bellm (apjac7fa2bib10) 2019a; 51 |
| References_xml | – volume: 358 start-page: 1559 year: 2017 ident: apjac7fa2bib34 publication-title: Sci doi: 10.1126/science.aap9455 – volume: 478 start-page: 692 year: 2018 ident: apjac7fa2bib22 publication-title: MNRAS doi: 10.1093/mnras/sty1066 – volume: 358 start-page: 1579 year: 2017 ident: apjac7fa2bib31 publication-title: Sci doi: 10.1126/science.aap9855 – year: 2015 ident: apjac7fa2bib36 – volume: 3 start-page: 940 year: 2019 ident: apjac7fa2bib32 publication-title: NatAs doi: 10.1038/s41550-019-0820-1 – volume: 551 start-page: 71 year: 2017 ident: apjac7fa2bib48 publication-title: Natur doi: 10.1038/nature24290 – volume: 852 start-page: L29 year: 2018 ident: apjac7fa2bib43 publication-title: ApJL doi: 10.3847/2041-8213/aaa402 – volume: 131 year: 2019c ident: apjac7fa2bib12 publication-title: PASP doi: 10.1088/1538-3873/aaecbe – volume: 489 start-page: 5775 year: 2019c ident: apjac7fa2bib17 publication-title: MNRAS doi: 10.1093/mnras/stz2485 – volume: 15 start-page: 90 year: 2016 ident: apjac7fa2bib47 publication-title: A&C doi: 10.1016/j.ascom.2016.02.005 – volume: 848 start-page: L17 year: 2017 ident: apjac7fa2bib24 publication-title: ApJL doi: 10.3847/2041-8213/aa8fc7 – volume: 489 start-page: 5037 year: 2019 ident: apjac7fa2bib13 publication-title: MNRAS doi: 10.1093/mnras/stz2495 – volume: 119 year: 2017a ident: apjac7fa2bib2 publication-title: PhRvL doi: 10.1103/PhysRevLett.119.161101 – volume: 5 start-page: 917 year: 2021 ident: apjac7fa2bib6 publication-title: NatAs doi: 10.1038/s41550-021-01428-7 – volume: 131 year: 2019b ident: apjac7fa2bib11 publication-title: PASP doi: 10.1088/1538-3873/ab0c2a – volume: 132 year: 2020 ident: apjac7fa2bib25 publication-title: PASP doi: 10.1088/1538-3873/ab4ca2 – volume: 905 start-page: 145 year: 2020 ident: apjac7fa2bib33 publication-title: ApJ doi: 10.3847/1538-4357/abc335 – volume: 370 start-page: 1450 year: 2020b ident: apjac7fa2bib27 publication-title: Sci doi: 10.1126/science.abb4317 – volume: 358 start-page: 1574 year: 2017 ident: apjac7fa2bib44 publication-title: Sci doi: 10.1126/science.aaq0186 – volume: 551 start-page: 75 year: 2017 ident: apjac7fa2bib46 publication-title: Natur doi: 10.1038/nature24303 – volume: 497 start-page: 1181 year: 2020 ident: apjac7fa2bib19 publication-title: MNRAS doi: 10.1093/mnras/staa1925 – volume: 358 start-page: 1583 year: 2017 ident: apjac7fa2bib35 publication-title: Sci doi: 10.1126/science.aaq0073 – volume: 14 start-page: 265 year: 1978 ident: apjac7fa2bib39 publication-title: MatPr doi: 10.1007/bf01588971 – volume: 551 start-page: 67 year: 2017 ident: apjac7fa2bib42 publication-title: Natur doi: 10.1038/nature24298 – volume: 155 start-page: 128 year: 2018 ident: apjac7fa2bib38 publication-title: AJ doi: 10.3847/1538-3881/aaa47e – volume: 121 year: 2018 ident: apjac7fa2bib3 publication-title: PhRvL doi: 10.1103/PhysRevLett.121.161101 – volume: 370 start-page: 1450 year: 2020a ident: apjac7fa2bib26 publication-title: Sci doi: 10.1126/science.abb4317 – volume: 5 start-page: 46 year: 2020 ident: apjac7fa2bib8 publication-title: NatAs doi: 10.1038/s41550-020-1183-3 – volume: 131 year: 2018 ident: apjac7fa2bib37 publication-title: PASP doi: 10.1088/1538-3873/aae8ac – volume: 551 start-page: 85 year: 2017b ident: apjac7fa2bib1 publication-title: Natur doi: 10.1038/551425a – volume: 489 start-page: L91 year: 2019 ident: apjac7fa2bib21 publication-title: MNRAS doi: 10.1093/mnrasl/slz133 – volume: 885 start-page: L19 year: 2019a ident: apjac7fa2bib15 publication-title: ApJL doi: 10.3847/2041-8213/ab4ad8 – volume: 11 year: 2021 ident: apjac7fa2bib4 publication-title: PhRvX doi: 10.1103/PhysRevX.11.021053 – volume: 492 start-page: 863 year: 2020 ident: apjac7fa2bib18 publication-title: MNRAS doi: 10.1093/mnras/stz3457 – volume: 358 start-page: 1565 year: 2017 ident: apjac7fa2bib28 publication-title: Sci doi: 10.1126/science.aap9580 – volume: 495 start-page: 4366 year: 2020 ident: apjac7fa2bib7 publication-title: MNRAS doi: 10.1093/mnras/staa1498 – volume: 93 year: 2016 ident: apjac7fa2bib45 publication-title: PhRvD doi: 10.1103/PhysRevD.93.024013 – volume: 131 year: 2019 ident: apjac7fa2bib30 publication-title: PASP doi: 10.1088/1538-3873/ab006c – volume: 558 start-page: A33 year: 2013 ident: apjac7fa2bib9 publication-title: A&A doi: 10.1051/0004-6361/201322068 – volume: 51 start-page: 125 year: 2019a ident: apjac7fa2bib10 publication-title: BAAS – volume: 848 start-page: L19 year: 2017 ident: apjac7fa2bib14 publication-title: ApJL doi: 10.3847/2041-8213/aa905c – volume: 848 start-page: L14 year: 2017 ident: apjac7fa2bib29 publication-title: ApJL doi: 10.3847/2041-8213/aa8f41 – volume: 480 start-page: 3871 year: 2018 ident: apjac7fa2bib20 publication-title: MNRAS doi: 10.1093/mnras/sty2174 – volume: 358 start-page: 1556 year: 2017 ident: apjac7fa2bib23 publication-title: Sci doi: 10.1126/science.aap9811 – volume: 131 year: 2019b ident: apjac7fa2bib16 publication-title: PASP doi: 10.1088/1538-3873/aaff99 – year: 2022 ident: apjac7fa2bib40 doi: 10.5281/zenodo.6659827 – volume: 924 start-page: 54 year: 2022 ident: apjac7fa2bib41 publication-title: ApJ doi: 10.3847/1538-4357/ac366d |
| SSID | ssj0004299 |
| Score | 2.4538333 |
| Snippet | Electromagnetic follow-up of gravitational-wave detections is very resource intensive, taking up hours of limited observation time on dozens of telescopes.... |
| SourceID | proquest crossref nasa iop |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 87 |
| SubjectTerms | Algorithms Astronomical methods Astrophysics Binary stars Efficiency Gravitational wave astronomy Gravitational waves Integer programming Linear programming Mixed integer Neutron stars Operations research Optimization Schedules Scheduling Star mergers Telescopes Time domain astronomy Transient detection Transient sources |
| Title | Foraging with MUSHROOMS: A Mixed-integer Linear Programming Scheduler for Multimessenger Target of Opportunity Searches with the Zwicky Transient Facility |
| URI | https://iopscience.iop.org/article/10.3847/1538-4357/ac7fa2 https://ntrs.nasa.gov/citations/20230003817 https://www.proquest.com/docview/2704042440 |
| Volume | 935 |
| WOSCitedRecordID | wos000841589500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: O3W dateStart: 19950701 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: M~E dateStart: 18950101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9swVHRfsMu6dS3N1hYdtsEOXhLJtuz1FEpDD0sTlnYLuwh9QkeTmDgZy2U_ZL9270luS-kog12MwJIl9L6f3wchb5RLu9Yxm2gM9ktT1Ul019kkyy1IQ224DhlyXz6J09NiMilHG-TwOhdmXjWs_wMMY6HgeIVI3xx4aTvQKEh50VZGeAX89xEvQIwDMg_515ukSFY2um-a5FxM4j_Kv37hlkx6APsCf56pWt3hz0Ho9Df_67jPybNG16S9OPUF2XCzLbLbq9H7PZ-u6TsaxtG5UW-RJ6M4ekl-9wEzsH0RRT8tHZyPTz4Ph4PxR9qjg4ufcMuhzIRbULBlgVboKIZ5TXHJGPDAri7hJSjENGT4TrFCOfoP6VmIPKdzT4cVqv4rYClrGoOeXR23A52UfsMW72saRCmmbNK-MhjGu94m5_3js6OTpOnikBjgD8vEcs87OrNcgbEJNmtqeWFy7U2mbV5qk2qel8yzrlHcscxZLHJWiFTlXZd1rOc7AIz5zO0SangOGqIXznqRlhwukwllwa7OjCtA6LRI-wqO0jQlzrHTxqUEUweBIREYEoEhIzBa5P31iiqW97hn7luAsWxovL5n3v6tear6LkueSSYLISvrW2QbkUvC0WqJ3evj71rRIntX2HazmAngspiM2Hn1j9u_Jk8ZpmiEIMU98nC5WLl98tj8WF7Ui4Pgc4Dn4NfxQaCXP2GFFBU |
| linkProvider | IOP Publishing |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3bbtMw1GLctBcuY2iFDfwASDyEtnYSJ3urBtEQ60V0g4oXy_FF2rS2UdNO66_wtZxjZ0wTaELizVLs2PK5H58LIW-UjbvGMhOVGOwXx6oTlV1roiQ1IA1LzUufIfftSAwG2WSSj5o-pz4XZl41rP8DDEOh4HCFSN8ceGnb0yhIedFWWjjF2pVxG-Qe1ilBtB7y79eJkSxv9N84SrmYhHfKv_7lhlzagL2BR89Urf7g0V7wFI__-8hPyKNG56S9MP0puWNnW2SnV6MXfD5d03fUj4OTo94iD0Zh9Iz8LABDsI0RRX8t7Z-MD78Oh_3xPu3R_ukl3LYvN2EXFGxaoBk6CuFeU1wyBnwwq3P4CIox9Zm-U6xUjn5Eeuwj0Onc0WGFJsAKWMuahuBnW4ftQDelP7DV-5p6kYqpm7RQGsN519vkpPh0fHAYNd0cIg18YhkZ7ninTAxXYHSC7Robnum0dDopTZqXOi55mjPHulpxyxJrsNhZJmKVdm3SMY4_B4DMZ3aHUM1T0BSdsMaJOOdwoUwoA_Z1om0GwqdF2lewlLopdY4dN84lmDwIEIkAkQgQGQDSIu9_r6hCmY9b5r4FOMuG1utb5u3dmKeqM5nzRDKZCQkI0CLbiGASjlZL7GIfnm1Fi-xeYdz1YiaA22JSYufFP27_mjwcfSzk0efBl5dkk2HWho9b3CV3l4uV3SP39cXytF688iTzC00dF1c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Foraging+with+MUSHROOMS%3A+A+Mixed-integer+Linear+Programming+Scheduler+for+Multimessenger+Target+of+Opportunity+Searches+with+the+Zwicky+Transient+Facility&rft.jtitle=The+Astrophysical+journal&rft.au=Parazin%2C+B.&rft.au=Coughlin%2C+Michael+W.&rft.au=Singer%2C+Leo+P.&rft.au=Gupta%2C+Vaidehi&rft.date=2022-08-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=935&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Fac7fa2&rft.externalDocID=apjac7fa2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |