Electric fish optimization: a new heuristic algorithm inspired by electrolocation

Swarm behaviors in nature have inspired the emergence of many heuristic optimization algorithms. They have attracted much attention, particularly for complex problems, owing to their characteristics of high dimensionality, nondifferentiability, and the like. A new heuristic algorithm is proposed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 32; H. 15; S. 11543 - 11578
Hauptverfasser: Yilmaz, Selim, Sen, Sevil
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.08.2020
Springer Nature B.V
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Swarm behaviors in nature have inspired the emergence of many heuristic optimization algorithms. They have attracted much attention, particularly for complex problems, owing to their characteristics of high dimensionality, nondifferentiability, and the like. A new heuristic algorithm is proposed in this study inspired by the prey location and communication behaviors of electric fish. Nocturnal electric fish have very poor eyesight and live in muddy, murky water, where visual senses are very limited. Therefore, they rely on their species-specific ability called electrolocation to perceive their environment. The active and passive electrolocation capability of such fish is believed to be a good candidate for balancing local and global search, and hence it is modeled in this study. A new heuristic called electric fish optimization (EFO) is introduced and compared with six well-known heuristics (simulated annealing, SA; vortex search, VS; genetic algorithm, GA; differential evolution, DE; particle swarm optimization, PSO; and artificial bee colony, ABC). In the experiments, 50 basic and 30 complex mathematical functions, 13 clustering problems, and five real-world design problems are used as the benchmark sets. The simulation results indicate that EFO is better than or very competitive with its competitors.
AbstractList Swarm behaviors in nature have inspired the emergence of many heuristic optimization algorithms. They have attracted much attention, particularly for complex problems, owing to their characteristics of high dimensionality, nondifferentiability, and the like. A new heuristic algorithm is proposed in this study inspired by the prey location and communication behaviors of electric fish. Nocturnal electric fish have very poor eyesight and live in muddy, murky water, where visual senses are very limited. Therefore, they rely on their species-specific ability called electrolocation to perceive their environment. The active and passive electrolocation capability of such fish is believed to be a good candidate for balancing local and global search, and hence it is modeled in this study. A new heuristic called electric fish optimization (EFO) is introduced and compared with six well-known heuristics (simulated annealing, SA; vortex search, VS; genetic algorithm, GA; differential evolution, DE; particle swarm optimization, PSO; and artificial bee colony, ABC). In the experiments, 50 basic and 30 complex mathematical functions, 13 clustering problems, and five real-world design problems are used as the benchmark sets. The simulation results indicate that EFO is better than or very competitive with its competitors.
Author Sen, Sevil
Yilmaz, Selim
Author_xml – sequence: 1
  givenname: Selim
  orcidid: 0000-0002-9516-6892
  surname: Yilmaz
  fullname: Yilmaz, Selim
  email: selimy@cs.hacettepe.edu.tr
  organization: WISE Lab, Hacettepe University
– sequence: 2
  givenname: Sevil
  orcidid: 0000-0001-5814-9973
  surname: Sen
  fullname: Sen, Sevil
  organization: WISE Lab, Hacettepe University
BookMark eNp9kMtKAzEUhoMo2FZfwNWA69GT20zGnZR6gYIIug5p5kybMp3UJEXq0zt2BMFFVwcO33cu_5icdr5DQq4o3FCA8jYCSEZzoFUOohA0VydkRAXnOQepTskIqr4JheDnZBzjGqDHlByR11mLNgVns8bFVea3yW3cl0nOd3eZyTr8zFa4Cy6mHjHt0geXVpvMdXHrAtbZYp_hYYJvvT1oF-SsMW3Ey986Ie8Ps7fpUz5_eXye3s9zKwBSXjOBUgBDKhAXhmFRGL7AUlYoKiWrWlha1ihZg6YWZW0RmsYWUCGzSgHwCbke5m6D_9hhTHrtd6HrV2rOqJKipKo8RjHBhCw447yn1EDZ4GMM2Gjr0uGbFIxrNQX9E7MeYtZ9zPoQs1a9yv6p2-A2JuyPS3yQYg93Swx_Vx2xvgH_35IL
CitedBy_id crossref_primary_10_1002_cpe_7388
crossref_primary_10_1007_s12065_023_00834_2
crossref_primary_10_1002_cpe_7547
crossref_primary_10_1109_ACCESS_2020_3036990
crossref_primary_10_1016_j_asoc_2025_113872
crossref_primary_10_3233_JIFS_221262
crossref_primary_10_1007_s12083_022_01336_1
crossref_primary_10_3390_e23091189
crossref_primary_10_3390_infrastructures10090252
crossref_primary_10_1142_S0219649222500423
crossref_primary_10_1088_1402_4896_ade378
crossref_primary_10_1016_j_eswa_2025_129670
crossref_primary_10_1002_ett_4937
crossref_primary_10_1007_s11042_021_11469_9
crossref_primary_10_1016_j_eswa_2023_122200
crossref_primary_10_1016_j_foodchem_2025_144783
crossref_primary_10_1155_2022_4875399
crossref_primary_10_1016_j_cma_2022_114901
crossref_primary_10_3390_math10234565
crossref_primary_10_1007_s00521_024_09889_3
crossref_primary_10_1007_s12083_025_02065_x
crossref_primary_10_1007_s00500_023_07930_6
crossref_primary_10_3390_drones7070427
crossref_primary_10_3390_electronics11213463
crossref_primary_10_1007_s11760_024_03617_z
crossref_primary_10_1007_s12065_024_00955_2
crossref_primary_10_1007_s12065_022_00742_x
crossref_primary_10_1080_0954898X_2024_2349275
crossref_primary_10_3389_fenrg_2022_1011887
crossref_primary_10_1016_j_jnca_2022_103385
crossref_primary_10_1080_10255842_2023_2187662
crossref_primary_10_1007_s10115_023_01865_y
crossref_primary_10_1007_s11277_023_10781_x
crossref_primary_10_1002_ett_4640
crossref_primary_10_1007_s11227_022_04886_6
crossref_primary_10_1080_01969722_2022_2145661
crossref_primary_10_1016_j_bspc_2023_104971
crossref_primary_10_1142_S0219649222500642
crossref_primary_10_1007_s11042_023_17351_0
crossref_primary_10_1080_17508975_2025_2478061
crossref_primary_10_3390_s23052445
crossref_primary_10_1007_s11276_022_03022_9
crossref_primary_10_1007_s13042_024_02197_1
crossref_primary_10_3390_math11041032
crossref_primary_10_1109_ACCESS_2025_3527031
crossref_primary_10_1016_j_bspc_2023_104809
crossref_primary_10_3233_IDT_220201
crossref_primary_10_1007_s40998_023_00664_z
crossref_primary_10_1007_s12652_022_03783_3
crossref_primary_10_1016_j_engappai_2022_105521
crossref_primary_10_1007_s00366_021_01431_6
crossref_primary_10_1007_s12083_024_01666_2
crossref_primary_10_1016_j_engappai_2023_106112
crossref_primary_10_3390_biomimetics9110677
crossref_primary_10_1016_j_eswa_2021_115436
crossref_primary_10_1016_j_asoc_2024_112271
crossref_primary_10_1007_s11277_021_08544_7
crossref_primary_10_1007_s11042_022_12874_4
crossref_primary_10_1109_ACCESS_2022_3152160
crossref_primary_10_1007_s12046_023_02092_5
crossref_primary_10_1080_01969722_2022_2151173
crossref_primary_10_3233_IDT_210182
crossref_primary_10_1007_s11760_025_04501_0
crossref_primary_10_3390_app13158960
crossref_primary_10_1016_j_bspc_2021_102935
crossref_primary_10_1038_s41598_022_15170_1
crossref_primary_10_1109_ACCESS_2024_3476157
crossref_primary_10_1016_j_eswa_2023_122873
crossref_primary_10_1002_ett_4723
crossref_primary_10_1007_s11831_022_09711_0
crossref_primary_10_3389_fenrg_2022_946864
crossref_primary_10_1080_10106049_2022_2138567
Cites_doi 10.1007/s10898-007-9149-x
10.1007/s00521-017-3329-5
10.1109/joe.2004.833210
10.1016/j.amc.2009.03.090
10.1007/s10462-009-9127-4
10.1002/9780470496916
10.1016/j.media.2017.07.005
10.1016/j.cad.2010.12.015
10.1016/S0031-3203(01)00108-X
10.1093/oso/9780195131581.001.0001
10.1002/ett.1062
10.1023/a:1012443124333
10.1007/BF02430363
10.1109/ICNN.1995.488968
10.1016/0022-2569(70)90064-9
10.1002/nme.2904
10.1016/j.comnet.2011.07.001
10.1242/jeb.082743
10.1145/1276958.1276994
10.1016/j.ins.2009.03.004
10.1109/iros.2010.5648929
10.1016/j.neucom.2019.02.056
10.1016/j.asoc.2005.09.004
10.1007/s10845-010-0393-4
10.1016/j.asoc.2009.08.031
10.1109/MCS.2002.1004010
10.1126/science.220.4598.671
10.1109/ROBOT.2007.364231
10.1016/j.asoc.2016.08.056
10.1016/j.ejor.2008.07.025
10.1007/s00500-016-2389-2
10.1504/IJBIC.2010.032124
10.1016/j.amc.2013.02.017
10.1109/CEC.2007.4424532
10.1016/j.compstruc.2016.03.001
10.1145/2576768.2598262
10.1016/j.eswa.2009.06.044
10.1016/j.isatra.2014.03.018
10.1049/el:19980096
10.1016/j.compag.2018.02.016
10.1109/CEC.2008.4630985
10.1016/j.ins.2013.02.041
10.1007/s00500-016-2033-1
10.1007/s12555-016-0338-6
10.1007/s00500-005-0511-y
10.1115/1.2912596
10.1016/j.inffus.2017.10.006
10.1109/TAI.2003.1250183
10.1016/j.parco.2003.12.015
10.1109/NABIC.2009.5393690
10.1080/0305215X.2013.836640
10.1016/j.ins.2012.08.023
10.1016/j.asoc.2007.10.013
10.1007/s10845-017-1294-6
10.1016/j.asoc.2009.12.025
10.1016/j.asoc.2011.01.034
10.1016/j.swevo.2011.02.002
10.1016/j.neucom.2017.09.065
10.1016/j.apm.2017.08.013
10.7551/mitpress/1090.001.0001
10.1007/s12293-016-0198-x
10.1016/j.knosys.2011.07.001
10.1016/j.ins.2008.02.014
10.1007/978-3-662-05094-1
10.1109/4235.585893
10.1016/j.amc.2009.01.048
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright Springer Nature B.V. Aug 2020
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
– notice: Copyright Springer Nature B.V. Aug 2020
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-019-04641-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: ProQuest advanced technologies & aerospace journals
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 11578
ExternalDocumentID 10_1007_s00521_019_04641_8
GrantInformation_xml – fundername: Türkiye Bilimsel ve Teknolojik Arastirma Kurumu
  grantid: 2228
  funderid: http://dx.doi.org/10.13039/501100004410
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
AFFHD
CITATION
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c400t-d24e5402e14eeba2e66a3be759e49859d4c17de52fead47dce0ffc609e2c88003
IEDL.DBID RSV
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000500866600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 09:30:56 EST 2025
Tue Nov 04 23:02:56 EST 2025
Sat Nov 29 07:45:37 EST 2025
Tue Nov 18 22:08:47 EST 2025
Mon Jul 21 06:07:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Real-world applications
Heuristics
Single-solution algorithms
Swarm intelligence
Nature-inspired algorithm
Real parameter optimization
Population-based algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-d24e5402e14eeba2e66a3be759e49859d4c17de52fead47dce0ffc609e2c88003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5814-9973
0000-0002-9516-6892
PQID 2424563233
PQPubID 2043988
PageCount 36
ParticipantIDs proquest_journals_3218547187
proquest_journals_2424563233
crossref_citationtrail_10_1007_s00521_019_04641_8
crossref_primary_10_1007_s00521_019_04641_8
springer_journals_10_1007_s00521_019_04641_8
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References D Karaboga (4641_CR35) 2009; 214
4641_CR8
M Zhang (4641_CR83) 2008; 178
4641_CR9
G Di Caro (4641_CR18) 2005; 16
D Karaboga (4641_CR36) 2009; 31
4641_CR61
XS Yang (4641_CR80) 2013
4641_CR20
4641_CR64
4641_CR5
D Datta (4641_CR16) 2011; 11
4641_CR66
AH Gandomi (4641_CR25) 2011
SS Rao (4641_CR59) 1996
4641_CR65
RS Barr (4641_CR7) 1995; 1
4641_CR26
4641_CR27
P Moller (4641_CR52) 1995
B Akay (4641_CR1) 2012; 23
K Tan (4641_CR70) 2009; 197
J Derrac (4641_CR17) 2011; 1
G Kanagaraj (4641_CR33) 2014; 46
ID Falco (4641_CR22) 2008; 8
P Civicioglu (4641_CR13) 2013; 219
D Karaboga (4641_CR37) 2007; 39
M MacIver (4641_CR45) 2004; 29
JS Arora (4641_CR3) 1967
4641_CR50
E Rashedi (4641_CR60) 2009; 179
S Opricovic (4641_CR55) 1998; 2
4641_CR58
P Civicioglu (4641_CR14) 2013; 219
AH Gandomi (4641_CR24) 2014; 53
CL dos Santos (4641_CR63) 2010; 37
V Aragon (4641_CR2) 2010; 84
H Nezamabadi-pour (4641_CR54) 2006; 10
A Askarzadeh (4641_CR4) 2016; 169
MA Maciver (4641_CR46) 2001; 11
I Boussaïd (4641_CR12) 2013; 237
N Zhang (4641_CR84) 2017; 9
D Karaboga (4641_CR38) 2011; 11
4641_CR81
4641_CR40
XS Yang (4641_CR77) 2010; 2
4641_CR42
4641_CR44
4641_CR43
4641_CR87
4641_CR48
(4641_CR15) 1999
4641_CR47
4641_CR49
S Bandyopadhyay (4641_CR6) 2002; 35
S Fan (4641_CR23) 2018; 22
CL Hwang (4641_CR31) 2012
XS Yang (4641_CR78) 2010
ID Falco (4641_CR21) 2007; 7
KM Passino (4641_CR57) 2002; 22
X Yang (4641_CR76) 2012
J Zhang (4641_CR82) 2009; 211
J Han (4641_CR28) 2018; 16
B Kramer (4641_CR41) 1996
EG Talbi (4641_CR69) 2009
N Zhang (4641_CR85) 2017; 52
4641_CR71
XS Yang (4641_CR79) 2013
A Hatamlou (4641_CR29) 2013; 222
4641_CR73
E Bonabeau (4641_CR11) 1999
T Sousa (4641_CR67) 2004; 30
4641_CR72
4641_CR75
4641_CR32
4641_CR34
TS Du (4641_CR19) 2018; 55
WT Pan (4641_CR56) 2012; 26
4641_CR39
ID Neveln (4641_CR53) 2013; 216
N Zhang (4641_CR86) 2018; 275
JH Holland (4641_CR30) 1992
AW Mohamed (4641_CR51) 2018; 29
E Sandgren (4641_CR62) 1990; 112
C Blake (4641_CR10) 1998
F Sun (4641_CR68) 1998; 34
DH Wolpert (4641_CR74) 1997; 1
References_xml – volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 4641_CR37
  publication-title: J Global Optim
  doi: 10.1007/s10898-007-9149-x
– ident: 4641_CR71
  doi: 10.1007/s00521-017-3329-5
– volume: 29
  start-page: 651
  issue: 3
  year: 2004
  ident: 4641_CR45
  publication-title: IEEE J Oceanic Eng
  doi: 10.1109/joe.2004.833210
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  ident: 4641_CR35
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2009.03.090
– volume: 31
  start-page: 61
  issue: 1
  year: 2009
  ident: 4641_CR36
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-009-9127-4
– ident: 4641_CR64
– volume-title: Metaheuristics in water, geotechnical and transport engineering
  year: 2012
  ident: 4641_CR76
– volume-title: Metaheuristics: from design to implementation
  year: 2009
  ident: 4641_CR69
  doi: 10.1002/9780470496916
– ident: 4641_CR43
  doi: 10.1016/j.media.2017.07.005
– ident: 4641_CR58
  doi: 10.1016/j.cad.2010.12.015
– volume: 35
  start-page: 1197
  issue: 6
  year: 2002
  ident: 4641_CR6
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(01)00108-X
– volume-title: Swarm intelligence: from natural to artificial systems
  year: 1999
  ident: 4641_CR11
  doi: 10.1093/oso/9780195131581.001.0001
– volume: 16
  start-page: 443
  issue: 5
  year: 2005
  ident: 4641_CR18
  publication-title: Eur Trans Telecommun
  doi: 10.1002/ett.1062
– volume-title: Electric fishes: history and behavior. Chapman and Hall fish and fisheries series
  year: 1995
  ident: 4641_CR52
– volume-title: Swarm intelligence and bio-inspired computation: theory and applications
  year: 2013
  ident: 4641_CR80
– volume: 11
  start-page: 263
  issue: 3
  year: 2001
  ident: 4641_CR46
  publication-title: Auton Robot
  doi: 10.1023/a:1012443124333
– volume: 1
  start-page: 9
  issue: 1
  year: 1995
  ident: 4641_CR7
  publication-title: J Heuristics
  doi: 10.1007/BF02430363
– ident: 4641_CR5
– ident: 4641_CR39
  doi: 10.1109/ICNN.1995.488968
– ident: 4641_CR26
  doi: 10.1016/0022-2569(70)90064-9
– start-page: 1
  volume-title: Metaheuristics in water, geotechnical and transport engineering
  year: 2013
  ident: 4641_CR79
– volume: 84
  start-page: 351
  issue: 3
  year: 2010
  ident: 4641_CR2
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.2904
– ident: 4641_CR65
  doi: 10.1016/j.comnet.2011.07.001
– ident: 4641_CR34
– volume: 216
  start-page: 2501
  issue: 13
  year: 2013
  ident: 4641_CR53
  publication-title: J Exp Biol
  doi: 10.1242/jeb.082743
– ident: 4641_CR61
  doi: 10.1145/1276958.1276994
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 4641_CR60
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.03.004
– ident: 4641_CR42
  doi: 10.1109/iros.2010.5648929
– ident: 4641_CR47
  doi: 10.1016/j.neucom.2019.02.056
– volume: 7
  start-page: 652
  issue: 3
  year: 2007
  ident: 4641_CR21
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2005.09.004
– volume: 23
  start-page: 1001
  issue: 4
  year: 2012
  ident: 4641_CR1
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-010-0393-4
– ident: 4641_CR44
  doi: 10.1016/j.asoc.2009.08.031
– volume-title: Introduction to optimum design, 1989
  year: 1967
  ident: 4641_CR3
– volume: 22
  start-page: 52
  issue: 3
  year: 2002
  ident: 4641_CR57
  publication-title: IEEE Control Syst Mag
  doi: 10.1109/MCS.2002.1004010
– ident: 4641_CR40
  doi: 10.1126/science.220.4598.671
– ident: 4641_CR66
  doi: 10.1109/ROBOT.2007.364231
– volume: 52
  start-page: 1210
  year: 2017
  ident: 4641_CR85
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.08.056
– ident: 4641_CR48
– volume-title: New ideas in optimization
  year: 1999
  ident: 4641_CR15
– volume: 197
  start-page: 701
  issue: 2
  year: 2009
  ident: 4641_CR70
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2008.07.025
– volume: 22
  start-page: 861
  issue: 3
  year: 2018
  ident: 4641_CR23
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2389-2
– ident: 4641_CR50
– volume-title: University of california at Irvine repository of machine learning databases
  year: 1998
  ident: 4641_CR10
– volume: 2
  start-page: 78
  issue: 2
  year: 2010
  ident: 4641_CR77
  publication-title: Int J Bio-Inspir Comput
  doi: 10.1504/IJBIC.2010.032124
– volume: 219
  start-page: 8121
  issue: 15
  year: 2013
  ident: 4641_CR14
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2013.02.017
– ident: 4641_CR8
  doi: 10.1109/CEC.2007.4424532
– volume-title: Engineering optimization: theory and practice
  year: 1996
  ident: 4641_CR59
– volume-title: Electroreception and communication in fishes
  year: 1996
  ident: 4641_CR41
– volume: 169
  start-page: 1
  year: 2016
  ident: 4641_CR4
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2016.03.001
– ident: 4641_CR81
  doi: 10.1145/2576768.2598262
– volume: 37
  start-page: 1676
  issue: 2
  year: 2010
  ident: 4641_CR63
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.06.044
– volume: 53
  start-page: 1168
  issue: 4
  year: 2014
  ident: 4641_CR24
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2014.03.018
– volume: 34
  start-page: 1563
  issue: 16
  year: 1998
  ident: 4641_CR68
  publication-title: Electron Lett
  doi: 10.1049/el:19980096
– ident: 4641_CR32
  doi: 10.1016/j.compag.2018.02.016
– ident: 4641_CR9
  doi: 10.1109/CEC.2008.4630985
– volume: 237
  start-page: 82
  year: 2013
  ident: 4641_CR12
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.02.041
– ident: 4641_CR27
  doi: 10.1007/s00500-016-2033-1
– ident: 4641_CR72
– start-page: 259
  volume-title: Benchmark problems in structural optimization
  year: 2011
  ident: 4641_CR25
– volume: 16
  start-page: 522
  issue: 2
  year: 2018
  ident: 4641_CR28
  publication-title: Int J Control Autom Syst
  doi: 10.1007/s12555-016-0338-6
– volume: 10
  start-page: 623
  issue: 7
  year: 2006
  ident: 4641_CR54
  publication-title: Soft Comput
  doi: 10.1007/s00500-005-0511-y
– volume: 112
  start-page: 223
  issue: 2
  year: 1990
  ident: 4641_CR62
  publication-title: J Mech Des
  doi: 10.1115/1.2912596
– volume: 219
  start-page: 8121
  issue: 15
  year: 2013
  ident: 4641_CR13
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2013.02.017
– ident: 4641_CR87
  doi: 10.1016/j.inffus.2017.10.006
– volume-title: Multiple attribute decision making: methods and applications a state-of-the-art survey
  year: 2012
  ident: 4641_CR31
– ident: 4641_CR49
  doi: 10.1109/TAI.2003.1250183
– volume: 30
  start-page: 767
  issue: 5–6
  year: 2004
  ident: 4641_CR67
  publication-title: Parallel Comput
  doi: 10.1016/j.parco.2003.12.015
– ident: 4641_CR75
  doi: 10.1109/NABIC.2009.5393690
– volume: 46
  start-page: 1331
  issue: 10
  year: 2014
  ident: 4641_CR33
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2013.836640
– volume: 222
  start-page: 175
  issue: Supple c
  year: 2013
  ident: 4641_CR29
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.08.023
– volume: 2
  start-page: 5
  issue: 1
  year: 1998
  ident: 4641_CR55
  publication-title: Fac Civil Eng Belgrade
– volume: 8
  start-page: 1453
  issue: 4
  year: 2008
  ident: 4641_CR22
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.10.013
– volume: 29
  start-page: 659
  issue: 3
  year: 2018
  ident: 4641_CR51
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-017-1294-6
– volume: 11
  start-page: 652
  issue: 1
  year: 2011
  ident: 4641_CR38
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.12.025
– volume: 11
  start-page: 3625
  issue: 4
  year: 2011
  ident: 4641_CR16
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.01.034
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 4641_CR17
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2011.02.002
– ident: 4641_CR73
– volume: 275
  start-page: 1186
  year: 2018
  ident: 4641_CR86
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.065
– volume-title: Nature-inspired metaheuristic algorithms
  year: 2010
  ident: 4641_CR78
– volume: 55
  start-page: 314
  year: 2018
  ident: 4641_CR19
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2017.08.013
– volume-title: Adaptation in natural and artificial systems
  year: 1992
  ident: 4641_CR30
  doi: 10.7551/mitpress/1090.001.0001
– volume: 9
  start-page: 129
  issue: 2
  year: 2017
  ident: 4641_CR84
  publication-title: Memet Comput
  doi: 10.1007/s12293-016-0198-x
– volume: 26
  start-page: 69
  year: 2012
  ident: 4641_CR56
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2011.07.001
– volume: 178
  start-page: 3043
  issue: 15
  year: 2008
  ident: 4641_CR83
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2008.02.014
– ident: 4641_CR20
  doi: 10.1007/978-3-662-05094-1
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 4641_CR74
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 211
  start-page: 392
  issue: 2
  year: 2009
  ident: 4641_CR82
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2009.01.048
SSID ssj0004685
Score 2.5220995
Snippet Swarm behaviors in nature have inspired the emergence of many heuristic optimization algorithms. They have attracted much attention, particularly for complex...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11543
SubjectTerms Algorithms
Artificial Intelligence
Clustering
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer simulation
Data Mining and Knowledge Discovery
Evolutionary algorithms
Evolutionary computation
Fish
Functions (mathematics)
Genetic algorithms
Heuristic
Heuristic methods
Image Processing and Computer Vision
Mathematical functions
Optimization
Original Article
Particle swarm optimization
Probability and Statistics in Computer Science
Simulated annealing
Swarm intelligence
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aPXixPrFaJQdvuthNsrtZLyJS8VQqKBQvSzaZ2EJfdlvBf2-SZlsV7cXzbEjYmcwj8_gQOqdKJEIlLNAxgYAp48PlgoqA61hEWkotcu7AJpJWi3c6ads_uBW-rLLUiU5Rq5G0b-RXxKXoKKH0ZvwWWNQom131EBrraMNOSbDQDe3o5UtfpIPkNBGMre5h1DfNuNY5-x5qA2mbGogNnX83TEtv80eC1Nmd--p_T7yDtr3HiW_nIrKL1mC4h6olmgP2l3sfPTYdIk5PYt0runhkdMnAN2leY4GN-427MJsPdsai_2q2mnYHuDe0uXpQOP_AHlPH2ke77AA93zef7h4CD7gQSHOVp4EiDIwHRyBkALkgEMeC5pBEKbCUR6liMkwUREQb-WOJktDQWsaNFIg0eqBBD1FlOBrCEcImkEqUokrKPGV5SDmXMk6VnX6WQsx1DYXl386kn0ZuQTH62WKOsuNQZjiUOQ5lvIYuFmvG81kcK7-ul2zJ_L0ssiVPfiVT4_BE1lwnNXRZ8n1J_nuz49WbnaAtYuN0VzhYR5XpZAanaFO-T3vF5MwJ7SfGK_Lw
  priority: 102
  providerName: ProQuest
Title Electric fish optimization: a new heuristic algorithm inspired by electrolocation
URI https://link.springer.com/article/10.1007/s00521-019-04641-8
https://www.proquest.com/docview/2424563233
https://www.proquest.com/docview/3218547187
Volume 32
WOSCitedRecordID wos000500866600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB41gQMX0vIQoTTygRuslLW9u97eCgrqKUpTQBGXldcek5VCgpKAxL-v7XiTUkGl9uzHrsYznhnP4wM4ZVpmUmc8MinFiGtrw5WSyUiYVCZGKSNL4cEmsn5fjEb5IBSFLeps9zok6W_qdbGbe8F0rq97zE95HIkGbFl1Jxxgw_Dn7W_VkB6I0_otLqeHs1Aq8_Yer9XRxsb8Iyzqtc1V6__-8yPsBuuSfFuxwyf4gNM9aNXIDSQI8j786Hn0m0oRUy3GZGbvjYdQkPmVSGJNbTLGp1UTZyIn97N5tRw_kGrq4vKoSflCAn6O04Vu2QHcXPWuL79HAVwhUlZsl5GmHK21RjHmiKWkmKaSlZglOfJcJLnmKs40JtRYXuOZVtg1RqXdHKmyMt9lh9CczqZ4BMQ6TZnWTCtV5ryMmRBKpbl2nc5yTIVpQ1zTuFCh87gDwJgU657JnmaFpVnhaVaINpyt1zyu-m78dfZJfXRFkMFFQX1Ql1HG3hxm1rhJnGrO2nBen-Rm-P2PHf_b9M-wQ52P7pMGT6C5nD_hF9hWz8tqMe_A1kWvPxh2oDFI7jqekX8B9fzrgA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bLwQxFD5xS3hxF-vaB56Y2G07Mx2JiLiEYENCIl5Gpz21m7CLXcSf8hu13RmL4M2D506nafv19JyeywewxLSMpY55YCKKAddWh8skk4EwkQyNUkZmwpNNxNWquLhITnrgtciFcWGVhUz0glo3lXsjX6PeRccoY5t394FjjXLe1YJCowOLQ3x5tiZba-Ngx-7vMqV7u2fb-0HOKhAoi9d2oClHq6ZQrHDETFKMIskyjMMEeSLCRHNViTWG1NhF5rFWWDZGReUEqbJgLzP7317o55yW3Sk6CS8_5GF6ClBrMbloIs7yJB2fqufeX53h7lwRkW0Xny_Crnb7xSHr77m9kf-2QqMwnGvUZKtzBMagBxvjMFKwVZBceE3A6a5n_KkrYuqtGmlaWXmbJ6GuE0mseUFq-NgpXE3kzbWdWrt2S-oNF4uAmmQvJOcMcve_6zYJ538ysSnoazQbOA3EGoqx1kwrlSU8qzAhlIoS7aq7JRgJU4JKsbupyqutO9KPm_S9TrRHRGoRkXpEpKIEK-997jq1Rn79eq6AQZrLnVbaxcC3zcwqdKFTR-ISrBY46zb_PNjM74MtwuD-2fFRenRQPZyFIereJHyQ5Bz0tR8ecR4G1FO73npY8AeGwNVf4-8NFelR5Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xMk28UPaBKBTmh71tEY3tJA5vCFqBNlVM-1DfIsc-00iQojZF4r_HdpPSoTJp2rM_Ep3vfHe-jx_AJ6ZlInXCAxNTDLi2NlwumQyEiWVklDIyFx5sIhkOxWiUXq1U8fts9yYkuahpcF2ayur4TpvjZeGbe810brB72I95GIhXsMldIr3z13_8XqmM9KCc1odx-T2c1WUz6_f4UzU92ZvPQqRe8wza___PO7BdW53kdMEmb2EDy3fQbhAdSC3g7-F736PiFIqYYjYmE3uf3NaFmidEEmuCkzHOF82diby5nkyLanxLitLF61GT_IHUuDpOR7plH-DXoP_z7CKoQRcCZcW5CjTlaK04iiFHzCXFOJYsxyRKkaciSjVXYaIxosbyIE-0wp4xKu6lSJW9C3psF1rlpMQ9INaZSrRmWqk85XnIhFAqTrXrgJZiLEwHwobemao7kjtgjJts2UvZ0yyzNMs8zTLRgc_LNXeLfhx_nd1tjjGrZXOWUR_sZZSxtcPMGj2RU9lJB740p_o0_PLH9v9t-kd4c3U-yL5dDr8ewBZ1brzPK-xCq5rO8RBeq_uqmE2PPEc_Arth9K4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electric+fish+optimization%3A+a+new+heuristic+algorithm+inspired+by+electrolocation&rft.jtitle=Neural+computing+%26+applications&rft.au=Yilmaz%2C+Selim&rft.au=Sen%2C+Sevil&rft.date=2020-08-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=15&rft.spage=11543&rft.epage=11578&rft_id=info:doi/10.1007%2Fs00521-019-04641-8&rft.externalDocID=10_1007_s00521_019_04641_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon