Application of the Generalized Normal Distribution Optimization Algorithm to the Optimal Selection of Conductors in Three-Phase Asymmetric Distribution Networks

This article addresses the problem of the optimal selection of conductors in asymmetric three-phase distribution networks from a combinatorial optimization perspective, where the problem is represented by a mixed-integer nonlinear programming (MINLP) model that is solved using a master-slave (MS) op...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energies (Basel) Ročník 16; číslo 3; s. 1311
Hlavní autoři: Vega-Forero, Julián Alejandro, Ramos-Castellanos, Jairo Stiven, Montoya, Oscar Danilo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.01.2023
Témata:
ISSN:1996-1073, 1996-1073
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article addresses the problem of the optimal selection of conductors in asymmetric three-phase distribution networks from a combinatorial optimization perspective, where the problem is represented by a mixed-integer nonlinear programming (MINLP) model that is solved using a master-slave (MS) optimization strategy. In the master stage, an optimization model known as the generalized normal distribution optimization (GNDO) algorithm is proposed with an improvement stage based on the vortex search algorithm (VSA). Both algorithms work with discrete-continuous coding that allows us to represent the locations and gauges of the different conductors in the electrical distribution system. For the slave stage, the backward/forward sweep (BFS) algorithm is adopted. The numerical results obtained in the IEEE 8- and 27-bus systems demonstrate the applicability, efficiency, and robustness of this optimization methodology, which, in comparison with current methodologies such as the Newton metaheuristic algorithm, shows significant improvements in the values of the objective function regarding the balanced demand scenario for the 8- and 27-bus test systems (i.e., 10.30% and 1.40% respectively). On the other hand, for the unbalanced demand scenario, a reduction of 1.43% was obtained in the 27-bus system, whereas no improvement was obtained in the 8-bus grid. An additional simulation scenario associated with the three-phase version of the IEEE33-bus grid under unbalanced operating conditions is analyzed considering three possible load profiles. The first load profile corresponds to the yearly operation under the peak load conduction, the second case is associated with a daily demand profile, and the third operation case discretizes the demand profile in three periods with lengths of 1000 h, 6760 h, and 1000 h with demands of 100%, 60% and 30% of the peak load case. Numerical results show the strong influence of the expected demand behavior on the plan’s total costs, with variations upper than USD/year 260,000.00 between different cases of analysis. All implementations were developed in the MATLAB® programming environment.
AbstractList This article addresses the problem of the optimal selection of conductors in asymmetric three-phase distribution networks from a combinatorial optimization perspective, where the problem is represented by a mixed-integer nonlinear programming (MINLP) model that is solved using a master-slave (MS) optimization strategy. In the master stage, an optimization model known as the generalized normal distribution optimization (GNDO) algorithm is proposed with an improvement stage based on the vortex search algorithm (VSA). Both algorithms work with discrete-continuous coding that allows us to represent the locations and gauges of the different conductors in the electrical distribution system. For the slave stage, the backward/forward sweep (BFS) algorithm is adopted. The numerical results obtained in the IEEE 8- and 27-bus systems demonstrate the applicability, efficiency, and robustness of this optimization methodology, which, in comparison with current methodologies such as the Newton metaheuristic algorithm, shows significant improvements in the values of the objective function regarding the balanced demand scenario for the 8- and 27-bus test systems (i.e., 10.30% and 1.40% respectively). On the other hand, for the unbalanced demand scenario, a reduction of 1.43% was obtained in the 27-bus system, whereas no improvement was obtained in the 8-bus grid. An additional simulation scenario associated with the three-phase version of the IEEE33-bus grid under unbalanced operating conditions is analyzed considering three possible load profiles. The first load profile corresponds to the yearly operation under the peak load conduction, the second case is associated with a daily demand profile, and the third operation case discretizes the demand profile in three periods with lengths of 1000 h, 6760 h, and 1000 h with demands of 100%, 60% and 30% of the peak load case. Numerical results show the strong influence of the expected demand behavior on the plan’s total costs, with variations upper than USD/year 260,000.00 between different cases of analysis. All implementations were developed in the MATLAB® programming environment.
This article addresses the problem of the optimal selection of conductors in asymmetric three-phase distribution networks from a combinatorial optimization perspective, where the problem is represented by a mixed-integer nonlinear programming (MINLP) model that is solved using a master-slave (MS) optimization strategy. In the master stage, an optimization model known as the generalized normal distribution optimization (GNDO) algorithm is proposed with an improvement stage based on the vortex search algorithm (VSA). Both algorithms work with discrete-continuous coding that allows us to represent the locations and gauges of the different conductors in the electrical distribution system. For the slave stage, the backward/forward sweep (BFS) algorithm is adopted. The numerical results obtained in the IEEE 8- and 27-bus systems demonstrate the applicability, efficiency, and robustness of this optimization methodology, which, in comparison with current methodologies such as the Newton metaheuristic algorithm, shows significant improvements in the values of the objective function regarding the balanced demand scenario for the 8- and 27-bus test systems (i.e., 10.30% and 1.40% respectively). On the other hand, for the unbalanced demand scenario, a reduction of 1.43% was obtained in the 27-bus system, whereas no improvement was obtained in the 8-bus grid. An additional simulation scenario associated with the three-phase version of the IEEE33-bus grid under unbalanced operating conditions is analyzed considering three possible load profiles. The first load profile corresponds to the yearly operation under the peak load conduction, the second case is associated with a daily demand profile, and the third operation case discretizes the demand profile in three periods with lengths of 1000 h, 6760 h, and 1000 h with demands of 100%, 60% and 30% of the peak load case. Numerical results show the strong influence of the expected demand behavior on the plan’s total costs, with variations upper than USD/year 260,000.00 between different cases of analysis. All implementations were developed in the MATLAB[sup.®] programming environment.
Audience Academic
Author Montoya, Oscar Danilo
Ramos-Castellanos, Jairo Stiven
Vega-Forero, Julián Alejandro
Author_xml – sequence: 1
  givenname: Julián Alejandro
  orcidid: 0000-0003-4414-4471
  surname: Vega-Forero
  fullname: Vega-Forero, Julián Alejandro
– sequence: 2
  givenname: Jairo Stiven
  orcidid: 0000-0002-6388-2456
  surname: Ramos-Castellanos
  fullname: Ramos-Castellanos, Jairo Stiven
– sequence: 3
  givenname: Oscar Danilo
  orcidid: 0000-0001-6051-4925
  surname: Montoya
  fullname: Montoya, Oscar Danilo
BookMark eNptUs1u1DAQtlCRKKUXnsASN6QUO3Zs5xgtUCpVLRLlHHmd8a6XxA62V6h9Gh4Vk_Av7INH4-9nRjNP0YkPHhB6TskFYy15BZ4Kwiij9BE6pW0rKkokO_kjfoLOUzqQcljBMXaKvnbzPDqjswseB4vzHvAleIh6dA8w4JsQJz3i1y7l6LbHBXY7Zze5h5XTjbsQXd5POIeFvfwWygcYwfyU3QQ_HE0OMWHn8d0-AlTv9zoB7tL9NEERN3-b3ED-EuKn9Aw9tnpMcP7jPUMf376527yrrm8vrzbddWU4IbkaqBWNVY3SVmppqWiJbDjfCmWZpUxJIYjVSkk5NLKtFak1MaypFZdCDnLLztDVqjsEfejnWHqI933Qrl8SIe56HbMzI_SWcslF05KWGW50uy3mqmZDA1IzA1C0Xqxacwyfj5ByfwjH6Ev5fS0lV23NFC-oixW100XUeRty1KbcASZnymitK_lOckZ56YAWwsuVYGJIKYL9VSYl_fcN6H9vQAGTf8DG5WVkxcWN_6N8A3STtjU
CitedBy_id crossref_primary_10_1016_j_rico_2025_100578
crossref_primary_10_3390_en16083532
crossref_primary_10_1016_j_rineng_2024_102446
crossref_primary_10_1016_j_rineng_2025_104311
crossref_primary_10_1016_j_rineng_2024_102764
crossref_primary_10_3390_bioengineering10070825
crossref_primary_10_1002_ima_23001
crossref_primary_10_1016_j_rineng_2024_101760
crossref_primary_10_1016_j_rico_2025_100596
crossref_primary_10_1016_j_rineng_2024_103416
crossref_primary_10_3390_su152115671
Cites_doi 10.1109/TDC.1999.756162
10.1109/TPAS.1982.317227
10.1109/RDCAPE.2017.8358279
10.1109/IAEAC.2018.8577733
10.5121/csit.2016.60610
10.1109/MEPCON.2017.8301170
10.3390/app11114837
10.1049/cp:20051351
10.1109/ACCESS.2018.2835165
10.1109/TDCLA.2006.311451
10.14483/23448393.19303
10.1007/s40866-019-0060-6
10.1080/15325008.2011.621922
10.1109/TPAS.1981.316370
10.1109/TPWRD.1987.4308237
10.1109/NPSC.2016.7858853
10.37917/ijeee.9.1.3
10.1109/EE.1955.6439555
10.1016/j.apenergy.2020.116057
10.3390/computation9070080
10.3390/en14051282
10.1049/piee.1974.0024
10.3390/en12163052
10.1016/j.enconman.2020.113301
10.3390/en10040501
10.1109/ICEES.2016.7510623
10.1109/GUCON.2018.8675051
10.1016/j.epsr.2016.06.023
10.14483/23448393.19310
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en16031311
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_f1474659093c4ca9bd1f823d5e7a3cee
A743141381
10_3390_en16031311
GeographicLocations Colombia
GeographicLocations_xml – name: Colombia
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c400t-d1f65f858af7a7f16907544b68f3f1387660fa8877d5792802a0c35284767d7b3
IEDL.DBID DOA
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000931080100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Tue Oct 14 19:05:42 EDT 2025
Tue Aug 12 12:11:57 EDT 2025
Tue Nov 04 18:13:22 EST 2025
Sat Nov 29 07:18:01 EST 2025
Tue Nov 18 21:49:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-d1f65f858af7a7f16907544b68f3f1387660fa8877d5792802a0c35284767d7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6051-4925
0000-0003-4414-4471
0000-0002-6388-2456
OpenAccessLink https://doaj.org/article/f1474659093c4ca9bd1f823d5e7a3cee
PQID 2774892384
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_f1474659093c4ca9bd1f823d5e7a3cee
proquest_journals_2774892384
gale_infotracacademiconefile_A743141381
crossref_primary_10_3390_en16031311
crossref_citationtrail_10_3390_en16031311
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Denton (ref_2) 1955; 74
Agarwal (ref_3) 2019; 4
Zhang (ref_32) 2020; 224
ref_14
ref_36
ref_35
ref_12
ref_34
ref_11
ref_33
ref_10
Adams (ref_9) 1974; 121
Rao (ref_16) 2011; 40
Ponnavaikko (ref_7) 1981; 6
ref_18
(ref_29) 2016; 140
Ponnavaikko (ref_13) 1982; 6
Legha (ref_15) 2013; 9
Momoh (ref_17) 2019; 7
Koziel (ref_4) 2021; 281
ref_25
Ismael (ref_22) 2018; 6
ref_23
Abdelaziz (ref_20) 2017; 20
ref_21
Thenepalle (ref_27) 2011; 17
Montoya (ref_30) 2022; 27
ref_1
Ponnavaikko (ref_8) 1987; 2
ref_28
Montoya (ref_31) 2022; 27
ref_26
ref_5
Kalesa (ref_19) 2014; 10
Ismael (ref_24) 2019; 14
ref_6
References_xml – ident: ref_10
  doi: 10.1109/TDC.1999.756162
– volume: 6
  start-page: 1735
  year: 1982
  ident: ref_13
  article-title: An approach to optimal distribution system planning through conductor gradation
  publication-title: IEEE Trans. Power Appar. Syst.
  doi: 10.1109/TPAS.1982.317227
– ident: ref_11
  doi: 10.1109/RDCAPE.2017.8358279
– volume: 20
  start-page: 391
  year: 2017
  ident: ref_20
  article-title: A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks
  publication-title: Eng. Sci. Technol. Int. J.
– ident: ref_35
  doi: 10.1109/IAEAC.2018.8577733
– ident: ref_36
  doi: 10.5121/csit.2016.60610
– ident: ref_21
  doi: 10.1109/MEPCON.2017.8301170
– ident: ref_34
  doi: 10.3390/app11114837
– ident: ref_1
– ident: ref_12
  doi: 10.1049/cp:20051351
– volume: 6
  start-page: 27268
  year: 2018
  ident: ref_22
  article-title: Practical considerations for optimal conductor reinforcement and hosting capacity enhancement in radial distribution systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2835165
– volume: 17
  start-page: 6
  year: 2011
  ident: ref_27
  article-title: A comparative study on optimal conductor selection for radial distribution network using conventional and genetic algorithm approach
  publication-title: Int. J. Comput. Appl.
– ident: ref_14
  doi: 10.1109/TDCLA.2006.311451
– volume: 27
  start-page: e19303
  year: 2022
  ident: ref_30
  article-title: Selección óptima de conductores en redes de distribución trifásicas utilizando el algoritmo metaheurístico de Newton
  publication-title: Ingeniería
  doi: 10.14483/23448393.19303
– volume: 4
  start-page: 1
  year: 2019
  ident: ref_3
  article-title: Distributed energy resources and supportive methodologies for their optimal planning under modern distribution network: A review
  publication-title: Technol. Econ. Smart Grids Sustain. Energy
  doi: 10.1007/s40866-019-0060-6
– volume: 40
  start-page: 41
  year: 2011
  ident: ref_16
  article-title: Optimal conductor size selection in distribution systems using the harmony search algorithm with a differential operator
  publication-title: Electr. Power Components Syst.
  doi: 10.1080/15325008.2011.621922
– volume: 6
  start-page: 2969
  year: 1981
  ident: ref_7
  article-title: Optimal distribution system planning
  publication-title: IEEE Trans. Power Appar. Syst.
  doi: 10.1109/TPAS.1981.316370
– ident: ref_25
– volume: 2
  start-page: 1157
  year: 1987
  ident: ref_8
  article-title: Distribution system planning through a quadratic mixed integer programming approach
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.1987.4308237
– ident: ref_28
  doi: 10.1109/NPSC.2016.7858853
– volume: 9
  start-page: 29
  year: 2013
  ident: ref_15
  article-title: Optimal Conductor Selection in Radial Distribution Systems for Productivity Improvement Using Genetic Algorithm
  publication-title: Iraqi J. Electr. Electron. Eng.
  doi: 10.37917/ijeee.9.1.3
– volume: 74
  start-page: 804
  year: 1955
  ident: ref_2
  article-title: Distribution-substation and primary-feeder planning
  publication-title: Electr. Eng.
  doi: 10.1109/EE.1955.6439555
– volume: 281
  start-page: 116057
  year: 2021
  ident: ref_4
  article-title: Investments in data quality: Evaluating impacts of faulty data on asset management in power systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.116057
– volume: 14
  start-page: 87
  year: 2019
  ident: ref_24
  article-title: Optimal conductor selection in radial distribution systems using whale optimization algorithm
  publication-title: J. Eng. Sci. Technol.
– volume: 10
  start-page: 175
  year: 2014
  ident: ref_19
  article-title: Conductor selection optimization in radial distribution system considering load growth using MDE algorithm
  publication-title: World J. Model. D Simul.
– ident: ref_26
  doi: 10.3390/computation9070080
– ident: ref_33
  doi: 10.3390/en14051282
– volume: 121
  start-page: 139
  year: 1974
  ident: ref_9
  article-title: Optimal planning of power networks using mixed-integer programming. Part 1: Static and time-phased network synthesis
  publication-title: Proc. Inst. Electr. Eng. IET
  doi: 10.1049/piee.1974.0024
– ident: ref_5
  doi: 10.3390/en12163052
– volume: 224
  start-page: 113301
  year: 2020
  ident: ref_32
  article-title: Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.113301
– ident: ref_6
  doi: 10.3390/en10040501
– ident: ref_18
  doi: 10.1109/ICEES.2016.7510623
– ident: ref_23
  doi: 10.1109/GUCON.2018.8675051
– volume: 140
  start-page: 184
  year: 2016
  ident: ref_29
  article-title: Multi-conductor feeder design for radial distribution networks
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2016.06.023
– volume: 7
  start-page: 286
  year: 2019
  ident: ref_17
  article-title: Effect of an optimal conductor size selection scheme for single wire earth return power distribution networks for rural electrification
  publication-title: ATBU J. Sci. Technol. Educ.
– volume: 27
  start-page: e19310
  year: 2022
  ident: ref_31
  article-title: Notes on the Dimension of the Solution Space in Typical Electrical Engineering Optimization Problems
  publication-title: Ingeniería
  doi: 10.14483/23448393.19310
SSID ssj0000331333
Score 2.3817518
Snippet This article addresses the problem of the optimal selection of conductors in asymmetric three-phase distribution networks from a combinatorial optimization...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1311
SubjectTerms Algorithms
Colombia
combinatorial optimization
conductor selection
Cost control
distribution systems
Electric conductors
Electric power distribution
Electric power systems
Electricity distribution
Energy
energy losses
Expansion
Heuristic
Integer programming
Literature reviews
Mathematical optimization
Normal distribution
Optimization algorithms
Optimization techniques
Payback periods
Planning
power flow
Test systems
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgy4EeeCO2LcgSSIhDtE6cxMkJhUIFEiwrUaRyshw_2pV2k3aTIsGv4ad2xvHuUgk4cY2d2JHH38z48X2EvAAf4RJXZlGWWQMJCpixYo5FmjNTx5bpdCBJ-iim0-LkpJyF69FdOFa5xkQP1APbM57bBhCemFbjivkkEciaAu4mfX1-EaGGFO61BkGNm2QHibfYiOzMPnyafdusuTDOISXjA0sph2x_Yhsvs8zj-Jpf8vT9fwNp73mO7v7fPt8jd0IESqvBZO6TG7Z5QHZ_4yV8SH5V221t2joKQSIN_NTzn9bQKQa6C_oWSXeDXhb9DNizDJc6abU4hZb7syXtW_-2L4VXvnjZnfDZw7ZBttl21dF5Q4_Bqmw0OwO3Sqvux3KJWl_6eiPT4dB694h8PXp3fPg-ClIOkQaQ6CMTuzxzRVYoJ5RwuDeHzHt1XjjuYg6QnDOnAPCEyUSZFCxRTCPxTCpyYUTNH5NR0zb2CaHKWLCuWuGOJESbWpWQo3qxCse4yssxebUeSKkDzznKbSwk5Ds46HI76GPyfFP3fGD3-GOtN2gPmxrIyO0ftKtTGSa4dHEq0jwrWcl1Cp2q4ZeLhJvMCsUhEhmTl2hNEnEDuqNVuP4AP4UMXLLCUA4iigKaO1hbkwyA0smt8ez9u3if3E4gDhtWiQ7IqF9d2qfklv7ez7vVszAjrgCDHx61
  priority: 102
  providerName: ProQuest
Title Application of the Generalized Normal Distribution Optimization Algorithm to the Optimal Selection of Conductors in Three-Phase Asymmetric Distribution Networks
URI https://www.proquest.com/docview/2774892384
https://doaj.org/article/f1474659093c4ca9bd1f823d5e7a3cee
Volume 16
WOSCitedRecordID wos000931080100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9UwFG4I8KAPRlDjVSRNIDE-LHTrtm6PAy_BROaimOBT03Wt3OTezdxNE33gb-FP5ZyuwCXR-MLLHrp263pOz4-1_T5C9sFH2MjmSZAkpoEEBdRYMcsCzVlTh4bpeARJ-ijKMjs_z6sVqi_cEzbCA48Dd2DDWMRpkkPmrWOt8roJbRbxJjFCcbDwaH2ZyFeSKWeDOYfki494pBzy-gPTOkJlHob3PJAD6v-XOXY-5vgpeeKDQ1qMndoia6bdJo9XIAOfkavibsWZdpZC_EY9dPTsj2loiTHonL5HPFxPZUU_gVlY-POWtJh_75az4WJBh861dnehyRfHiOMfe9S1CATbLXs6a-kZCNwE1QV4PFr0vxcLpOHS919SjvvJ--fk6_H07Ogk8CwLgYb5OwQwnmlisyRTVihhcdkMQfHqNLPchhysZcqsAlskmkTkUcYixTRiwsQiFY2o-Quy3nateUmoagwIvla4WAiBIEgL0kfHI2EZV2k-Ie9uRl5qD0GOTBhzCakISkneSWlC9m7r_hiBN_5a6xAFeFsDwbJdAaiQ9Cok_6dCE_IWxS9xSkN3tPInE-CjEBxLFhhlgbPP4HU7Nxoi_VzvZSQQwQdCn_jVQ_TmNXmElPbjb54dsj4sf5o3ZFP_Gmb9cpdsHE7L6vOuU3e4nl5Ooaz6cFp9uwaNKAia
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLVGhwQ88I0oDLAECPEQzYmTOHlAKGxMq9aFShRpPAXHsbdKbTKaABq_hl_Ab-TexGmZBLztgdfG-XB6fO-5dnwOIc8gRxjPxIETBLqAAgVgLJlhjuKsyF3NlN-JJI1FmkZHR_Fkg_zs98LgZ5V9TGwDdVEpnCPf9gTqpECC8V-ffnbQNQpXV3sLjQ4WB_rsG5Rs9avRLvy_zz1v7-10Z9-xrgKOArw2TuGaMDBREEkjpDC4TIQicHkYGW5cDtEhZEbC2BNFIGIvYp5kCjVQfBGKQuQcrnuJbPoAdjYgm5PR4eTjalaHcQ5FH-90UDmP2bYuWyNn7rrnMl9rEPC3NNDmtr0b_9tbuUmuWxZNkw72t8iGLm-Ta79pK94hP5L10jytDAWiS63G9uy7LmiKZH1Od1E42Hp-0XcQPxd2YypN5sfQ0-ZkQZuqPbs9Cqe8b62D7GV3qhIVc6tlTWclncLI0M7kBKgBTeqzxQL9ytT5m6Tdh_f1XfLhQl7RPTIoq1LfJ1QWGkZILnFVFRizkjHU2a3hhmFchvGQvOyhkimr1Y6WIfMMajaEVbaG1ZA8XbU97RRK_tjqDSJu1QJVxdsfquVxZoNUZlxf-GEQs5grHx4qhy5HHi8CLSQHNjUkLxCvGcY-eBwl7RYO6BSqiGUJ0lFgRRHcbqvHa2aDYp2twfrg34efkCv708NxNh6lBw_JVQ94ZTfrtUUGzfKLfkQuq6_NrF4-tuOPkk8XDe5fm55sZQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXKFCFY8EYMFLAECLGIxomTOFkglHY6omoVRlCk7lLHsduRZpIyCaDyNXwHX8e9iTNDJWDXBdvEeTg59-XHOYS8gBhhPBMHThDoAgoUgLFkhjmKsyJ3NVN-R5J0INI0OjqKpxvkZ78XBpdV9j6xddRFpXCMfOQJ5EmBAOOPjF0WMR1P3p59dlBBCmdaezmNDiL7-vwblG_1m70x_OuXnjfZPdx551iFAUcBdhuncE0YmCiIpBFSGJwyQkK4PIwMNy4HTxEyI8EORRGI2IuYJ5lCPhRfhKIQOYf7XiGbgkPRMyCb27vp9MNqhIdxDgUg7zhROY_ZSJetqDN33QtRsBUL-FtIaOPc5Nb__IVuk5s2u6ZJZw53yIYu75Ibv3Eu3iM_kvWUPa0MhQSYWu7t2Xdd0BST-DkdI6Gw1QKj78GvLuyGVZrMT6CnzemCNlV7dXsWLvnYSgrZ2-5UJTLpVsuazkp6CBajnekppAw0qc8XC9QxUxcfknYL8uv75NOlfKIHZFBWpX5IqCw0WE4ucbYVMmklY6i_WyEOw7gM4yF53cMmU5bDHaVE5hnUcgixbA2xIXm-anvWMZf8sdU2om_VAtnG2wPV8iSzziszri_8MIhZzJUPL5VDlyOPF4EWkkOWNSSvELsZ-kR4HSXt1g7oFLKLZQmmqZAtRfC4rR67mXWWdbYG7qN_n35GrgGis4O9dP8xue5ButkNhm2RQbP8op-Qq-prM6uXT60pUnJ82dj-BReedP8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+the+Generalized+Normal+Distribution+Optimization+Algorithm+to+the+Optimal+Selection+of+Conductors+in+Three-Phase+Asymmetric+Distribution+Networks&rft.jtitle=Energies+%28Basel%29&rft.au=Vega-Forero%2C+Juli%C3%A1n+Alejandro&rft.au=Ramos-Castellanos%2C+Jairo+Stiven&rft.au=Montoya%2C+Oscar+Danilo&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=3&rft_id=info:doi/10.3390%2Fen16031311&rft.externalDocID=A743141381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon