Early Detection and Diagnosis of Wind Turbine Abnormal Conditions Using an Interpretable Supervised Variational Autoencoder Model
The operation and maintenance of wind turbines benefit from reliable information on the wind turbine condition. Data-driven models use data from the supervisory data acquisition system. In particular, great performance is reported for artificial intelligence models. However, the lack of interpretabi...
Gespeichert in:
| Veröffentlicht in: | Energies (Basel) Jg. 16; H. 12; S. 4544 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.06.2023
|
| Schlagworte: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The operation and maintenance of wind turbines benefit from reliable information on the wind turbine condition. Data-driven models use data from the supervisory data acquisition system. In particular, great performance is reported for artificial intelligence models. However, the lack of interpretability limits their effective industrial implementation. The present work introduces a new condition-monitoring approach for wind turbines featuring a built-in visualization tool that confers interpretability upon the model outcomes. The proposed approach is based on a supervised implementation of the variational autoencoder model, which allows the projection of the wind turbine system onto a low-dimensional representation space. Three outcomes follow from such representation: a health indicator for the early detection of abnormal conditions, a classifier providing the diagnosis status, and a visualization tool depicting the wind turbine condition as a trajectory in a 2D plot. The approach is implemented with a vast database. Two case studies demonstrate the potential of the proposed approach. The proposed health indicator detects the main bearing overtemperature 11 days before the control system alarm, one week earlier than a competing approach. Study cases illustrate that the built-in visualization tool enhances the interpretability and trust in the model outcomes, thus supporting wind turbine operation and maintenance. |
|---|---|
| AbstractList | The operation and maintenance of wind turbines benefit from reliable information on the wind turbine condition. Data-driven models use data from the supervisory data acquisition system. In particular, great performance is reported for artificial intelligence models. However, the lack of interpretability limits their effective industrial implementation. The present work introduces a new condition-monitoring approach for wind turbines featuring a built-in visualization tool that confers interpretability upon the model outcomes. The proposed approach is based on a supervised implementation of the variational autoencoder model, which allows the projection of the wind turbine system onto a low-dimensional representation space. Three outcomes follow from such representation: a health indicator for the early detection of abnormal conditions, a classifier providing the diagnosis status, and a visualization tool depicting the wind turbine condition as a trajectory in a 2D plot. The approach is implemented with a vast database. Two case studies demonstrate the potential of the proposed approach. The proposed health indicator detects the main bearing overtemperature 11 days before the control system alarm, one week earlier than a competing approach. Study cases illustrate that the built-in visualization tool enhances the interpretability and trust in the model outcomes, thus supporting wind turbine operation and maintenance. |
| Audience | Academic |
| Author | Tahan, Antoine Oliveira-Filho, Adaiton Cambron, Philippe Zemouri, Ryad |
| Author_xml | – sequence: 1 givenname: Adaiton orcidid: 0009-0005-2091-0647 surname: Oliveira-Filho fullname: Oliveira-Filho, Adaiton – sequence: 2 givenname: Ryad orcidid: 0000-0002-3283-9391 surname: Zemouri fullname: Zemouri, Ryad – sequence: 3 givenname: Philippe surname: Cambron fullname: Cambron, Philippe – sequence: 4 givenname: Antoine orcidid: 0000-0002-9228-5255 surname: Tahan fullname: Tahan, Antoine |
| BookMark | eNptkd9rFDEQx4NUsJ598S8I-CZcm2w2u5vH41rtQcUHW30Ms8nkyLGXnEm20Ef_c3M9RRETyI-Z72dg5vuanIUYkJC3nF0KodgVBt7xppVt-4Kcc6W6JWe9OPvr_Ypc5LxjdQnBhRDn5McNpOmJXmNBU3wMFIKl1x62IWafaXT0m6-R-zmNPiBdjSGmPUx0HYP1RyDTh-zDtnJ0EwqmQ8IC44T0y3zA9OgzWvoVkoejuIKruUQMJlpM9FM9pzfkpYMp48Wve0EePtzcr2-Xd58_btaru6VpGStL0_OG91yAGdzABtkoaRtpGhhBMqwZaTrXDU0HfGytHDo-cmYt9l3fDqNhYkE2p7o2wk4fkt9DetIRvH4OxLTVkIo3E-q2BWVAIgdwbT_Wj1MCO-YciF7VuS3Iu1OtQ4rfZ8xF7-KcantZN0OjeqUGeVRdnlRbqEV9cLEkMHVb3HtTvXO-xle9HCrEFa8AOwEmxZwTOm18eR5cBf2kOdNHo_Ufoyvy_h_kd2f_Ef8Eda6q5g |
| CitedBy_id | crossref_primary_10_1016_j_seta_2025_104398 crossref_primary_10_1016_j_aei_2024_102807 crossref_primary_10_1016_j_engappai_2023_107322 crossref_primary_10_3390_electronics12163509 crossref_primary_10_3390_s25072175 crossref_primary_10_1007_s42452_023_05485_7 crossref_primary_10_1109_ACCESS_2024_3370949 crossref_primary_10_3390_app14177458 crossref_primary_10_1109_JIOT_2025_3552774 crossref_primary_10_1016_j_asoc_2025_112785 crossref_primary_10_3390_en18010059 crossref_primary_10_1016_j_engappai_2025_111484 crossref_primary_10_1016_j_neucom_2025_129830 crossref_primary_10_1016_j_rser_2025_116098 crossref_primary_10_3390_s23135873 crossref_primary_10_1007_s10845_024_02395_2 crossref_primary_10_1016_j_eswa_2023_121982 |
| Cites_doi | 10.1108/JQME-06-2016-0028 10.1007/s00170-022-09054-x 10.21437/Interspeech.2019-1426 10.1080/01621459.1987.10478458 10.1002/9781119436805 10.1007/978-3-030-05971-2 10.3390/s21041512 10.1109/PHM2022-London52454.2022.00069 10.1016/j.renene.2018.05.024 10.1109/ACCESS.2020.2974942 10.1109/TPAMI.2022.3185773 10.1016/j.renene.2017.01.056 10.1109/PHM2022-London52454.2022.00055 10.1002/we.2404 10.17148/IARJSET.2015.2305 10.1016/j.rser.2018.09.012 10.1016/j.renene.2021.07.120 10.3390/en15145280 10.1145/3236386.3241340 10.1109/PHM2022-London52454.2022.00042 10.1109/ACCESS.2019.2962775 10.1038/s41524-021-00575-9 10.1007/s00170-020-06338-y 10.1016/j.renene.2018.10.047 10.3390/app11041386 10.1109/TSG.2016.2621135 10.1088/1748-9326/ac0278 10.3390/app11178065 10.1561/2200000056 10.1016/j.measurement.2021.109810 10.1109/DSAA.2018.00018 10.1109/TMECH.2017.2759301 10.1109/MSP.2012.2211477 10.1016/j.renene.2020.04.148 10.1109/JPROC.2022.3171691 10.2172/1812486 10.1016/j.renene.2018.10.031 10.1016/j.egyai.2021.100065 10.1016/j.envsoft.2018.05.002 10.1016/j.rser.2022.112723 10.1049/iet-rpg.2016.0248 10.1109/ACCESS.2019.2914731 10.1016/j.renene.2020.07.145 10.1080/00401706.1959.10489860 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en16124544 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_44a9ca5e1aaf47ba9cf93e60ffa37933 A758282191 10_3390_en16124544 |
| GeographicLocations | Canada |
| GeographicLocations_xml | – name: Canada |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c400t-c7121713ac8f8085295d25c2aba50e1715c6f6826a1b4d5861b10dde76748bc03 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001014222800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Tue Oct 14 18:56:40 EDT 2025 Mon Jun 30 07:31:05 EDT 2025 Tue Nov 04 18:38:54 EST 2025 Sat Nov 29 07:10:01 EST 2025 Tue Nov 18 19:47:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-c7121713ac8f8085295d25c2aba50e1715c6f6826a1b4d5861b10dde76748bc03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0005-2091-0647 0000-0002-3283-9391 0000-0002-9228-5255 |
| OpenAccessLink | https://doaj.org/article/44a9ca5e1aaf47ba9cf93e60ffa37933 |
| PQID | 2829799853 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_44a9ca5e1aaf47ba9cf93e60ffa37933 proquest_journals_2829799853 gale_infotracacademiconefile_A758282191 crossref_citationtrail_10_3390_en16124544 crossref_primary_10_3390_en16124544 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Wang (ref_16) 2018; 9 Badihi (ref_7) 2022; 110 ref_57 ref_11 ref_54 ref_53 Dao (ref_1) 2019; 22 Hemmer (ref_18) 2020; 8 ref_17 Zhao (ref_15) 2018; 127 Cheng (ref_14) 2022; 120 Deng (ref_43) 2012; 29 Guo (ref_35) 2021; 179 Chadebec (ref_52) 2022; 45 Wu (ref_20) 2019; 7 Farnham (ref_56) 2021; 16 Roelofs (ref_23) 2021; 4 ref_29 ref_26 Watson (ref_4) 2017; 11 Kingma (ref_39) 2019; 12 Banko (ref_13) 2021; 7 Hochart (ref_32) 2008; 11 Kaewniam (ref_59) 2022; 167 ref_36 Lipton (ref_10) 2018; 16 ref_33 Proteau (ref_12) 2020; 111 ref_31 Jiang (ref_19) 2017; 23 ref_37 (ref_38) 2018; 110 Bangalore (ref_21) 2020; 157 Cambron (ref_55) 2017; 23 Peeters (ref_25) 2018; 116 Roberts (ref_30) 1959; 1 Liu (ref_28) 2021; 183 Zemouri (ref_8) 2019; 8 Lei (ref_22) 2019; 133 ref_47 ref_46 Tanner (ref_51) 1987; 82 ref_45 ref_44 Zhang (ref_27) 2022; 71 ref_42 Stetco (ref_24) 2019; 133 ref_41 ref_40 Helbing (ref_6) 2018; 98 ref_3 ref_2 Pandit (ref_34) 2022; 1 ref_49 ref_48 ref_9 (ref_58) 2020; 161 ref_5 |
| References_xml | – volume: 23 start-page: 479 year: 2017 ident: ref_55 article-title: Bearing temperature monitoring of a wind turbine using physics-based model publication-title: J. Qual. Maint. Eng. doi: 10.1108/JQME-06-2016-0028 – volume: 120 start-page: 4803 year: 2022 ident: ref_14 article-title: Ball bearing multiple failure diagnosis using feature-selected autoencoder model publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-022-09054-x – ident: ref_5 – ident: ref_11 doi: 10.21437/Interspeech.2019-1426 – volume: 82 start-page: 528 year: 1987 ident: ref_51 article-title: The calculation of posterior distributions by data augmentation publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1987.10478458 – ident: ref_3 doi: 10.1002/9781119436805 – ident: ref_26 doi: 10.1007/978-3-030-05971-2 – ident: ref_31 doi: 10.3390/s21041512 – ident: ref_29 doi: 10.1109/PHM2022-London52454.2022.00069 – volume: 11 start-page: 319 year: 2008 ident: ref_32 article-title: Wind turbine performance under icing conditions publication-title: Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol. – volume: 127 start-page: 825 year: 2018 ident: ref_15 article-title: Anomaly detection and fault analysis of wind turbine components based on deep learning network publication-title: Renew. Energy doi: 10.1016/j.renene.2018.05.024 – volume: 8 start-page: 35842 year: 2020 ident: ref_18 article-title: Health indicator for low-speed axial bearings using variational autoencoders publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2974942 – volume: 45 start-page: 2879 year: 2022 ident: ref_52 article-title: Data augmentation in high dimensional low sample size setting using a geometry-based variational autoencoder publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3185773 – ident: ref_48 – volume: 116 start-page: 74 year: 2018 ident: ref_25 article-title: Vibration-based bearing fault detection for operations and maintenance cost reduction in wind energy publication-title: Renew. Energy doi: 10.1016/j.renene.2017.01.056 – ident: ref_49 doi: 10.1109/PHM2022-London52454.2022.00055 – volume: 22 start-page: 1848 year: 2019 ident: ref_1 article-title: Wind turbine reliability data review and impacts on levelised cost of energy publication-title: Wind Energy doi: 10.1002/we.2404 – ident: ref_41 – ident: ref_50 doi: 10.17148/IARJSET.2015.2305 – ident: ref_17 – ident: ref_45 – volume: 98 start-page: 189 year: 2018 ident: ref_6 article-title: Deep Learning for fault detection in wind turbines publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.09.012 – volume: 179 start-page: 1098 year: 2021 ident: ref_35 article-title: Wind turbine blade icing detection with multi-model collaborative monitoring method publication-title: Renew. Energy doi: 10.1016/j.renene.2021.07.120 – ident: ref_36 doi: 10.3390/en15145280 – volume: 16 start-page: 31 year: 2018 ident: ref_10 article-title: The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery publication-title: Queue doi: 10.1145/3236386.3241340 – ident: ref_42 doi: 10.1109/PHM2022-London52454.2022.00042 – ident: ref_53 – volume: 8 start-page: 5438 year: 2019 ident: ref_8 article-title: Deep convolutional variational autoencoder as a 2D-visualization tool for partial discharge source classification in hydrogenerators publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962775 – volume: 7 start-page: 1 year: 2021 ident: ref_13 article-title: Deep learning for visualization and novelty detection in large X-ray diffraction datasets publication-title: Npj Comput. Mater. doi: 10.1038/s41524-021-00575-9 – volume: 111 start-page: 3597 year: 2020 ident: ref_12 article-title: Dimension reduction and 2D-visualization for early change of state detection in a machining process with a variational autoencoder approach publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-020-06338-y – volume: 133 start-page: 620 year: 2019 ident: ref_24 article-title: Machine learning methods for wind turbine condition monitoring: A review publication-title: Renew. Energy doi: 10.1016/j.renene.2018.10.047 – ident: ref_2 doi: 10.3390/app11041386 – ident: ref_47 – volume: 9 start-page: 2824 year: 2018 ident: ref_16 article-title: Wind Turbine Blade Breakage Monitoring with Deep Autoencoders publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2621135 – volume: 16 start-page: 064056 year: 2021 ident: ref_56 article-title: How unprecedented was the February 2021 Texas cold snap? publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac0278 – ident: ref_37 doi: 10.3390/app11178065 – ident: ref_40 – volume: 12 start-page: 307 year: 2019 ident: ref_39 article-title: An introduction to variational autoencoders publication-title: Found. Trends® Mach. Learn. doi: 10.1561/2200000056 – volume: 183 start-page: 109810 year: 2021 ident: ref_28 article-title: Sparse dictionary learning based adversarial variational auto-encoders for fault identification of wind turbines publication-title: Measurement doi: 10.1016/j.measurement.2021.109810 – ident: ref_9 doi: 10.1109/DSAA.2018.00018 – volume: 71 start-page: 1 year: 2022 ident: ref_27 article-title: The multiclass fault diagnosis of wind turbine bearing based on multisource signal fusion and deep learning generative model publication-title: IEEE Trans. Instrum. Meas. – ident: ref_44 – volume: 23 start-page: 89 year: 2017 ident: ref_19 article-title: Wind Turbine Fault Detection Using a Denoising Autoencoder With Temporal Information publication-title: IEEE-Asme Trans. Mechatron. doi: 10.1109/TMECH.2017.2759301 – volume: 29 start-page: 141 year: 2012 ident: ref_43 article-title: The mnist database of handwritten digit images for machine learning research [best of the web] publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2211477 – volume: 157 start-page: 647 year: 2020 ident: ref_21 article-title: System-wide anomaly detection in wind turbines using deep autoencoders publication-title: Renew. Energy doi: 10.1016/j.renene.2020.04.148 – volume: 110 start-page: 754 year: 2022 ident: ref_7 article-title: A Comprehensive Review on Signal-Based and Model-Based Condition Monitoring of Wind Turbines: Fault Diagnosis and Lifetime Prognosis publication-title: Proc. IEEE doi: 10.1109/JPROC.2022.3171691 – ident: ref_57 doi: 10.2172/1812486 – volume: 133 start-page: 422 year: 2019 ident: ref_22 article-title: Fault diagnosis of wind turbine based on Long Short-term memory networks publication-title: Renew. Energy doi: 10.1016/j.renene.2018.10.031 – volume: 1 start-page: 20 year: 2022 ident: ref_34 article-title: SCADA data for wind turbine data-driven condition/performance monitoring: A review on state-of-art, challenges and future trends publication-title: Wind Eng. – volume: 4 start-page: 100065 year: 2021 ident: ref_23 article-title: Autoencoder-based anomaly root cause analysis for wind turbines publication-title: Energy AI doi: 10.1016/j.egyai.2021.100065 – ident: ref_33 – ident: ref_54 – ident: ref_46 – volume: 110 start-page: 119 year: 2018 ident: ref_38 article-title: Effects of the pre-processing algorithms in fault diagnosis of wind turbines publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2018.05.002 – volume: 167 start-page: 112723 year: 2022 ident: ref_59 article-title: Recent advances in damage detection of wind turbine blades: A state-of-the-art review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112723 – volume: 11 start-page: 382 year: 2017 ident: ref_4 article-title: Using SCADA data for wind turbine condition monitoring—A review publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2016.0248 – volume: 7 start-page: 59376 year: 2019 ident: ref_20 article-title: A Multi-Level-Denoising Autoencoder Approach for Wind Turbine Fault Detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914731 – volume: 161 start-page: 998 year: 2020 ident: ref_58 article-title: A review of non-destructive testing on wind turbines blades publication-title: Renew. Energy doi: 10.1016/j.renene.2020.07.145 – volume: 1 start-page: 239 year: 1959 ident: ref_30 article-title: Control Chart Tests Based on Geometric Moving Averages publication-title: Technometrics doi: 10.1080/00401706.1959.10489860 |
| SSID | ssj0000331333 |
| Score | 2.44759 |
| Snippet | The operation and maintenance of wind turbines benefit from reliable information on the wind turbine condition. Data-driven models use data from the... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 4544 |
| SubjectTerms | Air-turbines Analysis Bearings Case studies condition monitoring diagnosis early detection False alarms Photovoltaic cells Preventive maintenance SCADA data Turbines variational autoencoder Visualization wind turbine |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9QwDI5glwN74I0YWFAkkBCHapsm6eOEZl_iNFrBAnuLktRBK43aoe3snX-O3WZmQAIuHNu6Uio7tr_Y_czYmzLYLK0hxczNF4nyiFmd81kShKhs6RxRrIzDJorFory6qi7igVsf2yo3PnF01HXr6Yz8iCp-BWIDLd-vvic0NYqqq3GExm22T0xlaOf7x2eLi4_bU5ZUSgRhcuIllYjvj6DBHCdTWqnfItFI2P83tzzGmvP7_7vKB-xezDL5fDKLh-wWNI_YwS_cg4_Zj5HamJ_CMDZjNdw2NT-dGu-ue94G_hXhOr9cd4idgc9dQ9ntkp-0VOQmY-VjuwG-x3edi24J_NN6RQ6oh5p_QSQeTxv5fD20xJpZQ8dpAtvyCft8fnZ58iGJ8xgSjzt9SHwhEMAIaX0ZSkzVskrXmfaZdVangE-0z0OOeMUKp2pd5sKJFN0n8QWVzqfyKdtr2gaeMR6gVJ4a5AQg_kstCkJeFDnGxhy0VDP2bqMb4yNZOc3MWBoELaRHs9PjjL3eyq4mio4_Sh2TircSRKs93mi7bybuUqOUrbzVIKwNqnB4ESoJeRqClejI5Iy9JQMxtPlxOd7Gfxjwo4hGy8wLqkJiEBAzdrgxEBO9Qm921vH8349fsLs01n5qSTtke0O3hpfsjr8ZrvvuVTTynzlwB8I priority: 102 providerName: ProQuest |
| Title | Early Detection and Diagnosis of Wind Turbine Abnormal Conditions Using an Interpretable Supervised Variational Autoencoder Model |
| URI | https://www.proquest.com/docview/2829799853 https://doaj.org/article/44a9ca5e1aaf47ba9cf93e60ffa37933 |
| Volume | 16 |
| WOSCitedRecordID | wos001014222800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1K2kN7KP2km6RB0ELpwcSyJMs-bpIN6SHL0qZtehKSLEFg8YZdb4-B_PPMyE6yhZZecjFYHoOsGY3mSeM3AB-raIu8CTlGbl5n0iNmdc4XWeS8tpVzRLGSik3o6bQ6P69nG6W-KCespwfuB25fSlt7qwK3Nkrt8CbWIpR5jFagbSWez1zXG2Aq-WAhEHyJno9UIK7fDy3GNoVUUv6xAiWi_n-547TGHL-A50NwyMZ9p17Co9C-gmcblIGv4ToxErOj0KUcqpbZtmFHfb7cxYotIvuJKJudrZcIeQMbu5aC0jk7XNDZNNkYS1kC-B67Tzh088C-rS_Jb6xCw34ggB42Cdl43S2I7LIJS0aF0-Zv4Pvx5OzwJBvKKGQeJ2iXec0Rd3BhfRUrjLCKWjWF8oV1VuUBnyhfxhJhhuVONqoqueM5ej2i-amcz8Vb2GoXbXgHLIZKespr4wFhW25RMJRal7iklUEJOYLPt0Nr_MAxTqUu5gaxBqnB3KthBB_uZC97Zo2_Sh2Qhu4kiA07NaCNmMFGzP9sZASfSL-G5ix2x9vh1wP8KGK_MmNNh4fou_kIdm9NwAyTeWXosFkjLFVi-yF6swNPqWZ9n2-2C1vdch3ewxP_u7tYLffg8cFkOvu6l-wZr6dXE2ybfTmd_boB5mL91Q |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXSTgwBtRWMASIMQh2jh2XgeEypbVVrtbVaLAcgq246BKVVKSFMSRP8RvZCaPFiTgtgeOSewocb58M2OPvwF4EmXKc1ProudmQkcajFm1Np6TcR6rSGuSWGmKTYTTaXR2Fs924Ee_F4bSKntObIg6LQzNke_Til-IsYEvXq4-O1Q1ilZX-xIaLSyO7bevGLJVLyZj_L5PPe_w9fzgyOmqCjgG8Vo7JuTohnOhTJRF6HB4sZ96vvGUVr5r8YpvgixAr1txLVM_CrjmLpIAqd5E2rgC73sBdiWBfQC7s8np7MNmVscVAoM-0eqgChG7-zZHn8qTvpS_Wb6mQMDfzEBj2w6v_W-jch2udl40G7WwvwE7Nr8JV37RVrwF3xvpZja2dZNsljOVp2zcJhYuKlZk7P0Cz8zXpcZObKRz8t6X7KCgRXz6GVmTToH92DYzUy8te7NeEcFWNmXvVLnoZlPZaF0XpAqa2pJRhbnlbXh7LmNwBwZ5kdu7wDIbSUMJgNxifOsqbGiDMAzQ9gfWF3IIz3ssJKYTY6eaIMsEgzLCTbLFzRAeb9quWgmSP7Z6RZDatCDZ8OZEUX5KOhZKpFSxUb7lSmUy1HiQxcIGbpYpgUQthvCMAJkQueHjGNXt0cCXIpmwZBTSKisaOT6EvR6QScd6VbJF471_X34El47mpyfJyWR6fB8ue8gIbfrdHgzqcm0fwEXzpV5U5cPuB2Pw8bzR-xOU-WKc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aOgjBgjeiMIAlQIhF1CR2XguEypSKaqCqxAAzq2A7NqpUJSVJQSz5Lb6Oe_NoQQJ2s2CZxInyOD4-1745F-BRbKXvZsZF5aYjR2iMWZXSvmM9L5GxUmSx0hSbiObz-OQkWezBj_5fGEqr7DmxIeqs0DRHPqIVvwhjg4CPbJcWsZhMn68_O1RBilZa-3IaLUSOzLevGL5Vz2YT_NaPfX_68vjwldNVGHA0Yrd2dOShJPe41LGNUXz4SZD5gfalkoFr8EigQxuiApeeElkQh57yXCQEcsCJlXY5Xvcc7KMkF_4A9hezN4vT7QyPyzkGgLz1ROU8cUcmR33li0CI30bBpljA34aEZpybXvmf39BVuNypazZuu8M12DP5dbj0i-fiDfjeWDqziambJLScyTxjkzbhcFmxwrIPS9xzvCkVnsTGKidVv2KHBS3uUydlTZoFnsd2GZtqZdjbzZqItzIZey_LZTfLysabuiC30MyUjCrPrW7CuzN5B7dgkBe5uQ3MmlhoSgz0DMa9rsSGJoyiEDVBaAIuhvC0x0WqO5N2qhWySjFYIwylOwwN4eG27bq1JvljqxcEr20LshNvdhTlp7Rjp1QImWgZGE9KKyKFGzbhJnStlRwJnA_hCYEzJdLD29Gy-3cDH4rsw9JxRKuvOPh5QzjowZl2bFilO2Te-ffhB3ABIZu-ns2P7sJFH4mizco7gEFdbsw9OK-_1MuqvN_1NQYfzxq8PwFRnmtc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+Detection+and+Diagnosis+of+Wind+Turbine+Abnormal+Conditions+Using+an+Interpretable+Supervised+Variational+Autoencoder+Model&rft.jtitle=Energies+%28Basel%29&rft.au=Oliveira-Filho%2C+Adaiton&rft.au=Zemouri%2C+Ryad&rft.au=Cambron%2C+Philippe&rft.au=Tahan%2C+Antoine&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=12&rft_id=info:doi/10.3390%2Fen16124544&rft.externalDocID=A758282191 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |