Early Detection and Diagnosis of Wind Turbine Abnormal Conditions Using an Interpretable Supervised Variational Autoencoder Model

The operation and maintenance of wind turbines benefit from reliable information on the wind turbine condition. Data-driven models use data from the supervisory data acquisition system. In particular, great performance is reported for artificial intelligence models. However, the lack of interpretabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) Jg. 16; H. 12; S. 4544
Hauptverfasser: Oliveira-Filho, Adaiton, Zemouri, Ryad, Cambron, Philippe, Tahan, Antoine
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.06.2023
Schlagworte:
ISSN:1996-1073, 1996-1073
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The operation and maintenance of wind turbines benefit from reliable information on the wind turbine condition. Data-driven models use data from the supervisory data acquisition system. In particular, great performance is reported for artificial intelligence models. However, the lack of interpretability limits their effective industrial implementation. The present work introduces a new condition-monitoring approach for wind turbines featuring a built-in visualization tool that confers interpretability upon the model outcomes. The proposed approach is based on a supervised implementation of the variational autoencoder model, which allows the projection of the wind turbine system onto a low-dimensional representation space. Three outcomes follow from such representation: a health indicator for the early detection of abnormal conditions, a classifier providing the diagnosis status, and a visualization tool depicting the wind turbine condition as a trajectory in a 2D plot. The approach is implemented with a vast database. Two case studies demonstrate the potential of the proposed approach. The proposed health indicator detects the main bearing overtemperature 11 days before the control system alarm, one week earlier than a competing approach. Study cases illustrate that the built-in visualization tool enhances the interpretability and trust in the model outcomes, thus supporting wind turbine operation and maintenance.
AbstractList The operation and maintenance of wind turbines benefit from reliable information on the wind turbine condition. Data-driven models use data from the supervisory data acquisition system. In particular, great performance is reported for artificial intelligence models. However, the lack of interpretability limits their effective industrial implementation. The present work introduces a new condition-monitoring approach for wind turbines featuring a built-in visualization tool that confers interpretability upon the model outcomes. The proposed approach is based on a supervised implementation of the variational autoencoder model, which allows the projection of the wind turbine system onto a low-dimensional representation space. Three outcomes follow from such representation: a health indicator for the early detection of abnormal conditions, a classifier providing the diagnosis status, and a visualization tool depicting the wind turbine condition as a trajectory in a 2D plot. The approach is implemented with a vast database. Two case studies demonstrate the potential of the proposed approach. The proposed health indicator detects the main bearing overtemperature 11 days before the control system alarm, one week earlier than a competing approach. Study cases illustrate that the built-in visualization tool enhances the interpretability and trust in the model outcomes, thus supporting wind turbine operation and maintenance.
Audience Academic
Author Tahan, Antoine
Oliveira-Filho, Adaiton
Cambron, Philippe
Zemouri, Ryad
Author_xml – sequence: 1
  givenname: Adaiton
  orcidid: 0009-0005-2091-0647
  surname: Oliveira-Filho
  fullname: Oliveira-Filho, Adaiton
– sequence: 2
  givenname: Ryad
  orcidid: 0000-0002-3283-9391
  surname: Zemouri
  fullname: Zemouri, Ryad
– sequence: 3
  givenname: Philippe
  surname: Cambron
  fullname: Cambron, Philippe
– sequence: 4
  givenname: Antoine
  orcidid: 0000-0002-9228-5255
  surname: Tahan
  fullname: Tahan, Antoine
BookMark eNptkd9rFDEQx4NUsJ598S8I-CZcm2w2u5vH41rtQcUHW30Ms8nkyLGXnEm20Ef_c3M9RRETyI-Z72dg5vuanIUYkJC3nF0KodgVBt7xppVt-4Kcc6W6JWe9OPvr_Ypc5LxjdQnBhRDn5McNpOmJXmNBU3wMFIKl1x62IWafaXT0m6-R-zmNPiBdjSGmPUx0HYP1RyDTh-zDtnJ0EwqmQ8IC44T0y3zA9OgzWvoVkoejuIKruUQMJlpM9FM9pzfkpYMp48Wve0EePtzcr2-Xd58_btaru6VpGStL0_OG91yAGdzABtkoaRtpGhhBMqwZaTrXDU0HfGytHDo-cmYt9l3fDqNhYkE2p7o2wk4fkt9DetIRvH4OxLTVkIo3E-q2BWVAIgdwbT_Wj1MCO-YciF7VuS3Iu1OtQ4rfZ8xF7-KcantZN0OjeqUGeVRdnlRbqEV9cLEkMHVb3HtTvXO-xle9HCrEFa8AOwEmxZwTOm18eR5cBf2kOdNHo_Ufoyvy_h_kd2f_Ef8Eda6q5g
CitedBy_id crossref_primary_10_1016_j_seta_2025_104398
crossref_primary_10_1016_j_aei_2024_102807
crossref_primary_10_1016_j_engappai_2023_107322
crossref_primary_10_3390_electronics12163509
crossref_primary_10_3390_s25072175
crossref_primary_10_1007_s42452_023_05485_7
crossref_primary_10_1109_ACCESS_2024_3370949
crossref_primary_10_3390_app14177458
crossref_primary_10_1109_JIOT_2025_3552774
crossref_primary_10_1016_j_asoc_2025_112785
crossref_primary_10_3390_en18010059
crossref_primary_10_1016_j_engappai_2025_111484
crossref_primary_10_1016_j_neucom_2025_129830
crossref_primary_10_1016_j_rser_2025_116098
crossref_primary_10_3390_s23135873
crossref_primary_10_1007_s10845_024_02395_2
crossref_primary_10_1016_j_eswa_2023_121982
Cites_doi 10.1108/JQME-06-2016-0028
10.1007/s00170-022-09054-x
10.21437/Interspeech.2019-1426
10.1080/01621459.1987.10478458
10.1002/9781119436805
10.1007/978-3-030-05971-2
10.3390/s21041512
10.1109/PHM2022-London52454.2022.00069
10.1016/j.renene.2018.05.024
10.1109/ACCESS.2020.2974942
10.1109/TPAMI.2022.3185773
10.1016/j.renene.2017.01.056
10.1109/PHM2022-London52454.2022.00055
10.1002/we.2404
10.17148/IARJSET.2015.2305
10.1016/j.rser.2018.09.012
10.1016/j.renene.2021.07.120
10.3390/en15145280
10.1145/3236386.3241340
10.1109/PHM2022-London52454.2022.00042
10.1109/ACCESS.2019.2962775
10.1038/s41524-021-00575-9
10.1007/s00170-020-06338-y
10.1016/j.renene.2018.10.047
10.3390/app11041386
10.1109/TSG.2016.2621135
10.1088/1748-9326/ac0278
10.3390/app11178065
10.1561/2200000056
10.1016/j.measurement.2021.109810
10.1109/DSAA.2018.00018
10.1109/TMECH.2017.2759301
10.1109/MSP.2012.2211477
10.1016/j.renene.2020.04.148
10.1109/JPROC.2022.3171691
10.2172/1812486
10.1016/j.renene.2018.10.031
10.1016/j.egyai.2021.100065
10.1016/j.envsoft.2018.05.002
10.1016/j.rser.2022.112723
10.1049/iet-rpg.2016.0248
10.1109/ACCESS.2019.2914731
10.1016/j.renene.2020.07.145
10.1080/00401706.1959.10489860
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en16124544
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_44a9ca5e1aaf47ba9cf93e60ffa37933
A758282191
10_3390_en16124544
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c400t-c7121713ac8f8085295d25c2aba50e1715c6f6826a1b4d5861b10dde76748bc03
IEDL.DBID DOA
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001014222800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Tue Oct 14 18:56:40 EDT 2025
Mon Jun 30 07:31:05 EDT 2025
Tue Nov 04 18:38:54 EST 2025
Sat Nov 29 07:10:01 EST 2025
Tue Nov 18 19:47:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-c7121713ac8f8085295d25c2aba50e1715c6f6826a1b4d5861b10dde76748bc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-2091-0647
0000-0002-3283-9391
0000-0002-9228-5255
OpenAccessLink https://doaj.org/article/44a9ca5e1aaf47ba9cf93e60ffa37933
PQID 2829799853
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_44a9ca5e1aaf47ba9cf93e60ffa37933
proquest_journals_2829799853
gale_infotracacademiconefile_A758282191
crossref_citationtrail_10_3390_en16124544
crossref_primary_10_3390_en16124544
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Wang (ref_16) 2018; 9
Badihi (ref_7) 2022; 110
ref_57
ref_11
ref_54
ref_53
Dao (ref_1) 2019; 22
Hemmer (ref_18) 2020; 8
ref_17
Zhao (ref_15) 2018; 127
Cheng (ref_14) 2022; 120
Deng (ref_43) 2012; 29
Guo (ref_35) 2021; 179
Chadebec (ref_52) 2022; 45
Wu (ref_20) 2019; 7
Farnham (ref_56) 2021; 16
Roelofs (ref_23) 2021; 4
ref_29
ref_26
Watson (ref_4) 2017; 11
Kingma (ref_39) 2019; 12
Banko (ref_13) 2021; 7
Hochart (ref_32) 2008; 11
Kaewniam (ref_59) 2022; 167
ref_36
Lipton (ref_10) 2018; 16
ref_33
Proteau (ref_12) 2020; 111
ref_31
Jiang (ref_19) 2017; 23
ref_37
(ref_38) 2018; 110
Bangalore (ref_21) 2020; 157
Cambron (ref_55) 2017; 23
Peeters (ref_25) 2018; 116
Roberts (ref_30) 1959; 1
Liu (ref_28) 2021; 183
Zemouri (ref_8) 2019; 8
Lei (ref_22) 2019; 133
ref_47
ref_46
Tanner (ref_51) 1987; 82
ref_45
ref_44
Zhang (ref_27) 2022; 71
ref_42
Stetco (ref_24) 2019; 133
ref_41
ref_40
Helbing (ref_6) 2018; 98
ref_3
ref_2
Pandit (ref_34) 2022; 1
ref_49
ref_48
ref_9
(ref_58) 2020; 161
ref_5
References_xml – volume: 23
  start-page: 479
  year: 2017
  ident: ref_55
  article-title: Bearing temperature monitoring of a wind turbine using physics-based model
  publication-title: J. Qual. Maint. Eng.
  doi: 10.1108/JQME-06-2016-0028
– volume: 120
  start-page: 4803
  year: 2022
  ident: ref_14
  article-title: Ball bearing multiple failure diagnosis using feature-selected autoencoder model
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-022-09054-x
– ident: ref_5
– ident: ref_11
  doi: 10.21437/Interspeech.2019-1426
– volume: 82
  start-page: 528
  year: 1987
  ident: ref_51
  article-title: The calculation of posterior distributions by data augmentation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1987.10478458
– ident: ref_3
  doi: 10.1002/9781119436805
– ident: ref_26
  doi: 10.1007/978-3-030-05971-2
– ident: ref_31
  doi: 10.3390/s21041512
– ident: ref_29
  doi: 10.1109/PHM2022-London52454.2022.00069
– volume: 11
  start-page: 319
  year: 2008
  ident: ref_32
  article-title: Wind turbine performance under icing conditions
  publication-title: Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol.
– volume: 127
  start-page: 825
  year: 2018
  ident: ref_15
  article-title: Anomaly detection and fault analysis of wind turbine components based on deep learning network
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.05.024
– volume: 8
  start-page: 35842
  year: 2020
  ident: ref_18
  article-title: Health indicator for low-speed axial bearings using variational autoencoders
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974942
– volume: 45
  start-page: 2879
  year: 2022
  ident: ref_52
  article-title: Data augmentation in high dimensional low sample size setting using a geometry-based variational autoencoder
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3185773
– ident: ref_48
– volume: 116
  start-page: 74
  year: 2018
  ident: ref_25
  article-title: Vibration-based bearing fault detection for operations and maintenance cost reduction in wind energy
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.01.056
– ident: ref_49
  doi: 10.1109/PHM2022-London52454.2022.00055
– volume: 22
  start-page: 1848
  year: 2019
  ident: ref_1
  article-title: Wind turbine reliability data review and impacts on levelised cost of energy
  publication-title: Wind Energy
  doi: 10.1002/we.2404
– ident: ref_41
– ident: ref_50
  doi: 10.17148/IARJSET.2015.2305
– ident: ref_17
– ident: ref_45
– volume: 98
  start-page: 189
  year: 2018
  ident: ref_6
  article-title: Deep Learning for fault detection in wind turbines
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.09.012
– volume: 179
  start-page: 1098
  year: 2021
  ident: ref_35
  article-title: Wind turbine blade icing detection with multi-model collaborative monitoring method
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.07.120
– ident: ref_36
  doi: 10.3390/en15145280
– volume: 16
  start-page: 31
  year: 2018
  ident: ref_10
  article-title: The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery
  publication-title: Queue
  doi: 10.1145/3236386.3241340
– ident: ref_42
  doi: 10.1109/PHM2022-London52454.2022.00042
– ident: ref_53
– volume: 8
  start-page: 5438
  year: 2019
  ident: ref_8
  article-title: Deep convolutional variational autoencoder as a 2D-visualization tool for partial discharge source classification in hydrogenerators
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962775
– volume: 7
  start-page: 1
  year: 2021
  ident: ref_13
  article-title: Deep learning for visualization and novelty detection in large X-ray diffraction datasets
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-021-00575-9
– volume: 111
  start-page: 3597
  year: 2020
  ident: ref_12
  article-title: Dimension reduction and 2D-visualization for early change of state detection in a machining process with a variational autoencoder approach
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-020-06338-y
– volume: 133
  start-page: 620
  year: 2019
  ident: ref_24
  article-title: Machine learning methods for wind turbine condition monitoring: A review
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.10.047
– ident: ref_2
  doi: 10.3390/app11041386
– ident: ref_47
– volume: 9
  start-page: 2824
  year: 2018
  ident: ref_16
  article-title: Wind Turbine Blade Breakage Monitoring with Deep Autoencoders
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2621135
– volume: 16
  start-page: 064056
  year: 2021
  ident: ref_56
  article-title: How unprecedented was the February 2021 Texas cold snap?
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac0278
– ident: ref_37
  doi: 10.3390/app11178065
– ident: ref_40
– volume: 12
  start-page: 307
  year: 2019
  ident: ref_39
  article-title: An introduction to variational autoencoders
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000056
– volume: 183
  start-page: 109810
  year: 2021
  ident: ref_28
  article-title: Sparse dictionary learning based adversarial variational auto-encoders for fault identification of wind turbines
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109810
– ident: ref_9
  doi: 10.1109/DSAA.2018.00018
– volume: 71
  start-page: 1
  year: 2022
  ident: ref_27
  article-title: The multiclass fault diagnosis of wind turbine bearing based on multisource signal fusion and deep learning generative model
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_44
– volume: 23
  start-page: 89
  year: 2017
  ident: ref_19
  article-title: Wind Turbine Fault Detection Using a Denoising Autoencoder With Temporal Information
  publication-title: IEEE-Asme Trans. Mechatron.
  doi: 10.1109/TMECH.2017.2759301
– volume: 29
  start-page: 141
  year: 2012
  ident: ref_43
  article-title: The mnist database of handwritten digit images for machine learning research [best of the web]
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2211477
– volume: 157
  start-page: 647
  year: 2020
  ident: ref_21
  article-title: System-wide anomaly detection in wind turbines using deep autoencoders
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.04.148
– volume: 110
  start-page: 754
  year: 2022
  ident: ref_7
  article-title: A Comprehensive Review on Signal-Based and Model-Based Condition Monitoring of Wind Turbines: Fault Diagnosis and Lifetime Prognosis
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2022.3171691
– ident: ref_57
  doi: 10.2172/1812486
– volume: 133
  start-page: 422
  year: 2019
  ident: ref_22
  article-title: Fault diagnosis of wind turbine based on Long Short-term memory networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.10.031
– volume: 1
  start-page: 20
  year: 2022
  ident: ref_34
  article-title: SCADA data for wind turbine data-driven condition/performance monitoring: A review on state-of-art, challenges and future trends
  publication-title: Wind Eng.
– volume: 4
  start-page: 100065
  year: 2021
  ident: ref_23
  article-title: Autoencoder-based anomaly root cause analysis for wind turbines
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2021.100065
– ident: ref_33
– ident: ref_54
– ident: ref_46
– volume: 110
  start-page: 119
  year: 2018
  ident: ref_38
  article-title: Effects of the pre-processing algorithms in fault diagnosis of wind turbines
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2018.05.002
– volume: 167
  start-page: 112723
  year: 2022
  ident: ref_59
  article-title: Recent advances in damage detection of wind turbine blades: A state-of-the-art review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112723
– volume: 11
  start-page: 382
  year: 2017
  ident: ref_4
  article-title: Using SCADA data for wind turbine condition monitoring—A review
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2016.0248
– volume: 7
  start-page: 59376
  year: 2019
  ident: ref_20
  article-title: A Multi-Level-Denoising Autoencoder Approach for Wind Turbine Fault Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914731
– volume: 161
  start-page: 998
  year: 2020
  ident: ref_58
  article-title: A review of non-destructive testing on wind turbines blades
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.07.145
– volume: 1
  start-page: 239
  year: 1959
  ident: ref_30
  article-title: Control Chart Tests Based on Geometric Moving Averages
  publication-title: Technometrics
  doi: 10.1080/00401706.1959.10489860
SSID ssj0000331333
Score 2.44759
Snippet The operation and maintenance of wind turbines benefit from reliable information on the wind turbine condition. Data-driven models use data from the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4544
SubjectTerms Air-turbines
Analysis
Bearings
Case studies
condition monitoring
diagnosis
early detection
False alarms
Photovoltaic cells
Preventive maintenance
SCADA data
Turbines
variational autoencoder
Visualization
wind turbine
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9QwDI5glwN74I0YWFAkkBCHapsm6eOEZl_iNFrBAnuLktRBK43aoe3snX-O3WZmQAIuHNu6Uio7tr_Y_czYmzLYLK0hxczNF4nyiFmd81kShKhs6RxRrIzDJorFory6qi7igVsf2yo3PnF01HXr6Yz8iCp-BWIDLd-vvic0NYqqq3GExm22T0xlaOf7x2eLi4_bU5ZUSgRhcuIllYjvj6DBHCdTWqnfItFI2P83tzzGmvP7_7vKB-xezDL5fDKLh-wWNI_YwS_cg4_Zj5HamJ_CMDZjNdw2NT-dGu-ue94G_hXhOr9cd4idgc9dQ9ntkp-0VOQmY-VjuwG-x3edi24J_NN6RQ6oh5p_QSQeTxv5fD20xJpZQ8dpAtvyCft8fnZ58iGJ8xgSjzt9SHwhEMAIaX0ZSkzVskrXmfaZdVangE-0z0OOeMUKp2pd5sKJFN0n8QWVzqfyKdtr2gaeMR6gVJ4a5AQg_kstCkJeFDnGxhy0VDP2bqMb4yNZOc3MWBoELaRHs9PjjL3eyq4mio4_Sh2TircSRKs93mi7bybuUqOUrbzVIKwNqnB4ESoJeRqClejI5Iy9JQMxtPlxOd7Gfxjwo4hGy8wLqkJiEBAzdrgxEBO9Qm921vH8349fsLs01n5qSTtke0O3hpfsjr8ZrvvuVTTynzlwB8I
  priority: 102
  providerName: ProQuest
Title Early Detection and Diagnosis of Wind Turbine Abnormal Conditions Using an Interpretable Supervised Variational Autoencoder Model
URI https://www.proquest.com/docview/2829799853
https://doaj.org/article/44a9ca5e1aaf47ba9cf93e60ffa37933
Volume 16
WOSCitedRecordID wos001014222800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1K2kN7KP2km6RB0ELpwcSyJMs-bpIN6SHL0qZtehKSLEFg8YZdb4-B_PPMyE6yhZZecjFYHoOsGY3mSeM3AB-raIu8CTlGbl5n0iNmdc4XWeS8tpVzRLGSik3o6bQ6P69nG6W-KCespwfuB25fSlt7qwK3Nkrt8CbWIpR5jFagbSWez1zXG2Aq-WAhEHyJno9UIK7fDy3GNoVUUv6xAiWi_n-547TGHL-A50NwyMZ9p17Co9C-gmcblIGv4ToxErOj0KUcqpbZtmFHfb7cxYotIvuJKJudrZcIeQMbu5aC0jk7XNDZNNkYS1kC-B67Tzh088C-rS_Jb6xCw34ggB42Cdl43S2I7LIJS0aF0-Zv4Pvx5OzwJBvKKGQeJ2iXec0Rd3BhfRUrjLCKWjWF8oV1VuUBnyhfxhJhhuVONqoqueM5ej2i-amcz8Vb2GoXbXgHLIZKespr4wFhW25RMJRal7iklUEJOYLPt0Nr_MAxTqUu5gaxBqnB3KthBB_uZC97Zo2_Sh2Qhu4kiA07NaCNmMFGzP9sZASfSL-G5ix2x9vh1wP8KGK_MmNNh4fou_kIdm9NwAyTeWXosFkjLFVi-yF6swNPqWZ9n2-2C1vdch3ewxP_u7tYLffg8cFkOvu6l-wZr6dXE2ybfTmd_boB5mL91Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXSTgwBtRWMASIMQh2jh2XgeEypbVVrtbVaLAcgq246BKVVKSFMSRP8RvZCaPFiTgtgeOSewocb58M2OPvwF4EmXKc1ProudmQkcajFm1Np6TcR6rSGuSWGmKTYTTaXR2Fs924Ee_F4bSKntObIg6LQzNke_Til-IsYEvXq4-O1Q1ilZX-xIaLSyO7bevGLJVLyZj_L5PPe_w9fzgyOmqCjgG8Vo7JuTohnOhTJRF6HB4sZ96vvGUVr5r8YpvgixAr1txLVM_CrjmLpIAqd5E2rgC73sBdiWBfQC7s8np7MNmVscVAoM-0eqgChG7-zZHn8qTvpS_Wb6mQMDfzEBj2w6v_W-jch2udl40G7WwvwE7Nr8JV37RVrwF3xvpZja2dZNsljOVp2zcJhYuKlZk7P0Cz8zXpcZObKRz8t6X7KCgRXz6GVmTToH92DYzUy8te7NeEcFWNmXvVLnoZlPZaF0XpAqa2pJRhbnlbXh7LmNwBwZ5kdu7wDIbSUMJgNxifOsqbGiDMAzQ9gfWF3IIz3ssJKYTY6eaIMsEgzLCTbLFzRAeb9quWgmSP7Z6RZDatCDZ8OZEUX5KOhZKpFSxUb7lSmUy1HiQxcIGbpYpgUQthvCMAJkQueHjGNXt0cCXIpmwZBTSKisaOT6EvR6QScd6VbJF471_X34El47mpyfJyWR6fB8ue8gIbfrdHgzqcm0fwEXzpV5U5cPuB2Pw8bzR-xOU-WKc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aOgjBgjeiMIAlQIhF1CR2XguEypSKaqCqxAAzq2A7NqpUJSVJQSz5Lb6Oe_NoQQJ2s2CZxInyOD4-1745F-BRbKXvZsZF5aYjR2iMWZXSvmM9L5GxUmSx0hSbiObz-OQkWezBj_5fGEqr7DmxIeqs0DRHPqIVvwhjg4CPbJcWsZhMn68_O1RBilZa-3IaLUSOzLevGL5Vz2YT_NaPfX_68vjwldNVGHA0Yrd2dOShJPe41LGNUXz4SZD5gfalkoFr8EigQxuiApeeElkQh57yXCQEcsCJlXY5Xvcc7KMkF_4A9hezN4vT7QyPyzkGgLz1ROU8cUcmR33li0CI30bBpljA34aEZpybXvmf39BVuNypazZuu8M12DP5dbj0i-fiDfjeWDqziambJLScyTxjkzbhcFmxwrIPS9xzvCkVnsTGKidVv2KHBS3uUydlTZoFnsd2GZtqZdjbzZqItzIZey_LZTfLysabuiC30MyUjCrPrW7CuzN5B7dgkBe5uQ3MmlhoSgz0DMa9rsSGJoyiEDVBaAIuhvC0x0WqO5N2qhWySjFYIwylOwwN4eG27bq1JvljqxcEr20LshNvdhTlp7Rjp1QImWgZGE9KKyKFGzbhJnStlRwJnA_hCYEzJdLD29Gy-3cDH4rsw9JxRKuvOPh5QzjowZl2bFilO2Te-ffhB3ABIZu-ns2P7sJFH4mizco7gEFdbsw9OK-_1MuqvN_1NQYfzxq8PwFRnmtc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+Detection+and+Diagnosis+of+Wind+Turbine+Abnormal+Conditions+Using+an+Interpretable+Supervised+Variational+Autoencoder+Model&rft.jtitle=Energies+%28Basel%29&rft.au=Oliveira-Filho%2C+Adaiton&rft.au=Zemouri%2C+Ryad&rft.au=Cambron%2C+Philippe&rft.au=Tahan%2C+Antoine&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=12&rft_id=info:doi/10.3390%2Fen16124544&rft.externalDocID=A758282191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon