Crisp and fuzzy k-means clustering algorithms for multivariate functional data
Functional data analysis, as proposed by Ramsay (Psychometrika 47:379–396, 1982), has recently attracted many researchers. The most popular approach taken in recent studies of functional data has been the extension of statistical methods for the analysis of usual data to that of functional data (e.g...
Saved in:
| Published in: | Computational Statistics Vol. 22; no. 1; pp. 1 - 16 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English Japanese |
| Published: |
Heidelberg
Springer Science and Business Media LLC
01.04.2007
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0943-4062, 1613-9658 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Functional data analysis, as proposed by Ramsay (Psychometrika 47:379–396, 1982), has recently attracted many researchers. The most popular approach taken in recent studies of functional data has been the extension of statistical methods for the analysis of usual data to that of functional data (e.g., Ramsay and Silverman in Functional data Analysis Springer, Berlin Heidelberg New York, 1997, Applied functional data analysis: methods and case studies. Springer, Berlin Heidelberg New York, 2002; Mizuta in Proceedings of the tenth Japan and Korea Joint Conference of Statistics, pp 77–82, 2000; Shimokawa et al. in Japan J Appl Stat 29:27–39, 2000). In addition, several methods for clustering functional data have been proposed (Abraham et al. in Scand J Stat 30:581–595, 2003; Gareth and Catherine in J Am Stat Assoc 98:397–408, 2003; Tarpey and kinateder in J Classif 20:93–114, 2003; Rossi et al. in Proceedings of European Symposium on Artificial Neural Networks pp 305–312, 2004). Furthermore, Tokushige et al. (J Jpn Soc Comput Stat 15:319–326, 2002) defined several dissimilarities between functions for the case of functional data. In this paper, we extend existing crisp and fuzzy k-means clustering algorithms to the analysis of multivariate functional data. In particular, we consider the dissimilarity between functions as a function. Furthermore, cluster centers and memberships, which are defined as functions, are determined at the minimum of a certain target function by using a calculus-of-variations approach. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0943-4062 1613-9658 |
| DOI: | 10.1007/s00180-006-0013-0 |