Detecting formal thought disorder by deep contextualized word representations

•NLP algorithm can detect features of formal thought disorder (FTD).•Deep contextual word representations may be used to improve detection of the FTD.•NLP accuracy is comparable to observer’s ratings. Computational linguistics has enabled the introduction of objective tools that measure some of the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Psychiatry research Ročník 304; s. 114135
Hlavní autori: Sarzynska-Wawer, Justyna, Wawer, Aleksander, Pawlak, Aleksandra, Szymanowska, Julia, Stefaniak, Izabela, Jarkiewicz, Michal, Okruszek, Lukasz
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.10.2021
Predmet:
ISSN:0165-1781, 1872-7123, 1872-7123
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •NLP algorithm can detect features of formal thought disorder (FTD).•Deep contextual word representations may be used to improve detection of the FTD.•NLP accuracy is comparable to observer’s ratings. Computational linguistics has enabled the introduction of objective tools that measure some of the symptoms of schizophrenia, including the coherence of speech associated with formal thought disorder (FTD). Our goal was to investigate whether neural network based utterance embeddings are more accurate in detecting FTD than models based on individual indicators. The present research used a comprehensive Embeddings from Language Models (ELMo) approach to represent interviews with patients suffering from schizophrenia (N=35) and with healthy people (N=35). We compared its results to the approach described by Bedi et al. (2015), referred to here as the coherence model. Evaluations were also performed by a clinician using the Scale for the Assessment of Thought, Language and Communication (TLC). Using all six TLC questions the ELMo obtained an accuracy of 80% in distinguishing patients from healthy people. Previously used coherence models were less accurate at 70%. The classifying clinician was accurate 74% of the time. Our analysis shows that both ELMo and TLC are sensitive to the symptoms of disorganization in patients. In this study methods using text representations from language models were more accurate than those based solely on the assessment of FTD, and can be used as measures of disordered language that complement human clinical ratings.
AbstractList •NLP algorithm can detect features of formal thought disorder (FTD).•Deep contextual word representations may be used to improve detection of the FTD.•NLP accuracy is comparable to observer’s ratings. Computational linguistics has enabled the introduction of objective tools that measure some of the symptoms of schizophrenia, including the coherence of speech associated with formal thought disorder (FTD). Our goal was to investigate whether neural network based utterance embeddings are more accurate in detecting FTD than models based on individual indicators. The present research used a comprehensive Embeddings from Language Models (ELMo) approach to represent interviews with patients suffering from schizophrenia (N=35) and with healthy people (N=35). We compared its results to the approach described by Bedi et al. (2015), referred to here as the coherence model. Evaluations were also performed by a clinician using the Scale for the Assessment of Thought, Language and Communication (TLC). Using all six TLC questions the ELMo obtained an accuracy of 80% in distinguishing patients from healthy people. Previously used coherence models were less accurate at 70%. The classifying clinician was accurate 74% of the time. Our analysis shows that both ELMo and TLC are sensitive to the symptoms of disorganization in patients. In this study methods using text representations from language models were more accurate than those based solely on the assessment of FTD, and can be used as measures of disordered language that complement human clinical ratings.
Computational linguistics has enabled the introduction of objective tools that measure some of the symptoms of schizophrenia, including the coherence of speech associated with formal thought disorder (FTD). Our goal was to investigate whether neural network based utterance embeddings are more accurate in detecting FTD than models based on individual indicators. The present research used a comprehensive Embeddings from Language Models (ELMo) approach to represent interviews with patients suffering from schizophrenia (N=35) and with healthy people (N=35). We compared its results to the approach described by Bedi et al. (2015), referred to here as the coherence model. Evaluations were also performed by a clinician using the Scale for the Assessment of Thought, Language and Communication (TLC). Using all six TLC questions the ELMo obtained an accuracy of 80% in distinguishing patients from healthy people. Previously used coherence models were less accurate at 70%. The classifying clinician was accurate 74% of the time. Our analysis shows that both ELMo and TLC are sensitive to the symptoms of disorganization in patients. In this study methods using text representations from language models were more accurate than those based solely on the assessment of FTD, and can be used as measures of disordered language that complement human clinical ratings.Computational linguistics has enabled the introduction of objective tools that measure some of the symptoms of schizophrenia, including the coherence of speech associated with formal thought disorder (FTD). Our goal was to investigate whether neural network based utterance embeddings are more accurate in detecting FTD than models based on individual indicators. The present research used a comprehensive Embeddings from Language Models (ELMo) approach to represent interviews with patients suffering from schizophrenia (N=35) and with healthy people (N=35). We compared its results to the approach described by Bedi et al. (2015), referred to here as the coherence model. Evaluations were also performed by a clinician using the Scale for the Assessment of Thought, Language and Communication (TLC). Using all six TLC questions the ELMo obtained an accuracy of 80% in distinguishing patients from healthy people. Previously used coherence models were less accurate at 70%. The classifying clinician was accurate 74% of the time. Our analysis shows that both ELMo and TLC are sensitive to the symptoms of disorganization in patients. In this study methods using text representations from language models were more accurate than those based solely on the assessment of FTD, and can be used as measures of disordered language that complement human clinical ratings.
ArticleNumber 114135
Author Sarzynska-Wawer, Justyna
Jarkiewicz, Michal
Wawer, Aleksander
Pawlak, Aleksandra
Szymanowska, Julia
Okruszek, Lukasz
Stefaniak, Izabela
Author_xml – sequence: 1
  givenname: Justyna
  surname: Sarzynska-Wawer
  fullname: Sarzynska-Wawer, Justyna
  email: jsarzynska@psych.pan.pl
  organization: Institute of Psychology, Polish Academy of Sciences, Jaracza 1, 00–378 Warszawa, Poland
– sequence: 2
  givenname: Aleksander
  surname: Wawer
  fullname: Wawer, Aleksander
  email: axw@ipipan.waw.pl
  organization: Institute of Computer Science, Polish Academy of Sciences, Jana Kazimierza 5, 01–248 Warszawa, Poland
– sequence: 3
  givenname: Aleksandra
  surname: Pawlak
  fullname: Pawlak, Aleksandra
  email: apawlak11@st.swps.edu.pl
  organization: University of Social Sciences and Humanities, Chodakowska 19/31, 03–815 Warszawa, Poland
– sequence: 4
  givenname: Julia
  surname: Szymanowska
  fullname: Szymanowska, Julia
  email: j.szmnsk@gmail.com
  organization: University of Social Sciences and Humanities, Chodakowska 19/31, 03–815 Warszawa, Poland
– sequence: 5
  givenname: Izabela
  surname: Stefaniak
  fullname: Stefaniak, Izabela
  email: blaszczuk@poczta.onet.pl
  organization: Institute of Psychiatry and Neurology, Sobieskiego 9, 02–957 Warszawa, Poland
– sequence: 6
  givenname: Michal
  surname: Jarkiewicz
  fullname: Jarkiewicz, Michal
  email: michal.mateusz.jarkiewicz@gmail.com
  organization: Institute of Psychiatry and Neurology, Sobieskiego 9, 02–957 Warszawa, Poland
– sequence: 7
  givenname: Lukasz
  surname: Okruszek
  fullname: Okruszek, Lukasz
  email: lokruszek@psych.pan.pl
  organization: Institute of Psychology, Polish Academy of Sciences, Jaracza 1, 00–378 Warszawa, Poland
BookMark eNqNkD1PwzAQhi1UJNrCX0AZWRLspEkcCSFQ-ZSKWGC2HOfSuqR2sB0g_HpcBZYuZbrh3uc93TNBI6UVIHRKcEQwyc7XUWt7sTJgoxjHJCJkRpL0AI0JzeMwJ3EyQmMfTEOSU3KEJtauMfbJohijpxtwIJxUy6DWZsObwK10t1y5oJJWmwpMUPZBBdAGQisHX67jjfyGKvj028BA6--CctxJrewxOqx5Y-Hkd07R693ty_whXDzfP86vF6GYYezCEjjPqCjrvAKOqYAEZ0ld4piXNAZKE5HlPINa1DkheVkWBfU_CZ7jIiMJnSVTdDb0tka_d2Ad20groGm4At1ZFqcpxbRIaOqj2RAVRltroGatkRtuekYw2_pja_bnj239scGfBy92QCGHN53hstmPXw04eA8fEgyzQoISUEnjhbNKy_0VlzsVopFKCt68Qf-fgh9H_aov
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3409843
crossref_primary_10_1007_s11704_024_40579_4
crossref_primary_10_1186_s40537_023_00833_1
crossref_primary_10_1007_s10462_023_10651_9
crossref_primary_10_1109_TCSS_2025_3532984
crossref_primary_10_1007_s11042_025_20984_y
crossref_primary_10_1007_s12559_025_10431_3
crossref_primary_10_5753_jbcs_2025_3705
crossref_primary_10_7717_peerj_cs_1317
crossref_primary_10_3390_app13137739
crossref_primary_10_1016_j_compbiomed_2024_108709
crossref_primary_10_1016_j_schres_2022_07_002
crossref_primary_10_1016_j_jss_2025_112448
crossref_primary_10_1371_journal_pone_0285668
crossref_primary_10_1145_3627704
crossref_primary_10_1371_journal_pone_0313953
crossref_primary_10_3389_fgene_2024_1399810
crossref_primary_10_1109_TCSVT_2023_3284405
crossref_primary_10_3390_a18030168
crossref_primary_10_1155_2023_2088698
crossref_primary_10_3389_fpsyt_2022_954703
crossref_primary_10_1007_s11063_025_11743_z
crossref_primary_10_1093_jamia_ocad213
crossref_primary_10_1007_s44443_025_00018_1
crossref_primary_10_2196_55318
crossref_primary_10_1109_TNNLS_2024_3498935
crossref_primary_10_1016_j_psychres_2023_115667
crossref_primary_10_1007_s11920_022_01399_0
crossref_primary_10_1007_s11227_025_07414_4
crossref_primary_10_3390_app132111845
crossref_primary_10_1007_s42001_024_00286_3
crossref_primary_10_1016_j_aei_2024_102364
crossref_primary_10_1016_j_schres_2024_06_052
crossref_primary_10_1016_j_tra_2024_104074
crossref_primary_10_1097_MD_0000000000041016
crossref_primary_10_1016_j_ins_2024_121100
crossref_primary_10_1109_JSAC_2022_3221948
crossref_primary_10_3390_math12071073
crossref_primary_10_1109_TAI_2022_3199190
crossref_primary_10_1007_s11633_022_1382_8
crossref_primary_10_1016_j_ins_2024_121625
crossref_primary_10_3390_app13063911
crossref_primary_10_1016_j_compbiomed_2024_109496
crossref_primary_10_1371_journal_pone_0291099
crossref_primary_10_1007_s11227_025_07035_x
crossref_primary_10_1038_s41598_023_31368_3
crossref_primary_10_1108_ECAM_03_2023_0255
crossref_primary_10_3390_computers13100266
crossref_primary_10_1142_S2196888824500131
crossref_primary_10_1109_TVCG_2025_3542504
crossref_primary_10_1016_j_heliyon_2024_e24897
crossref_primary_10_1109_COMST_2023_3333342
crossref_primary_10_1093_schbul_sbac145
crossref_primary_10_1371_journal_pone_0324621
crossref_primary_10_1007_s40501_025_00363_y
crossref_primary_10_1186_s13677_024_00708_7
crossref_primary_10_1038_s42003_025_07902_6
crossref_primary_10_3390_app14020489
crossref_primary_10_3390_electronics12224654
crossref_primary_10_1038_s41368_023_00239_y
crossref_primary_10_1109_ACCESS_2024_3454278
crossref_primary_10_2147_PRBM_S460503
crossref_primary_10_1016_j_heliyon_2024_e41488
crossref_primary_10_1109_ACCESS_2023_3313608
crossref_primary_10_1109_ACCESS_2024_3512597
crossref_primary_10_1007_s44443_025_00059_6
crossref_primary_10_1109_ACCESS_2024_3406426
crossref_primary_10_3389_fpsyt_2023_1208856
crossref_primary_10_1111_exsy_13165
crossref_primary_10_1007_s13278_025_01410_5
crossref_primary_10_1371_journal_pone_0267590
crossref_primary_10_1016_j_psychres_2024_116119
crossref_primary_10_1007_s00521_024_09491_7
crossref_primary_10_1016_j_aej_2025_01_119
crossref_primary_10_1016_j_engappai_2023_107694
crossref_primary_10_3390_math12243990
crossref_primary_10_1016_j_inffus_2025_103328
crossref_primary_10_1177_15353702231220669
crossref_primary_10_3389_fpsyt_2022_946387
crossref_primary_10_3390_app15010305
crossref_primary_10_1109_ACCESS_2022_3192866
crossref_primary_10_3390_math11112412
crossref_primary_10_1016_j_psychres_2025_116690
crossref_primary_10_1016_j_schres_2022_01_019
crossref_primary_10_2196_60272
crossref_primary_10_4103_jss_jss_73_23
crossref_primary_10_1007_s10664_025_10631_3
crossref_primary_10_1109_TSE_2024_3523713
crossref_primary_10_3390_math11041006
crossref_primary_10_1016_j_apenergy_2024_123554
crossref_primary_10_1016_j_cie_2025_111163
crossref_primary_10_1109_ACCESS_2023_3279396
crossref_primary_10_3389_fenrg_2024_1346369
crossref_primary_10_1145_3704633
crossref_primary_10_1007_s10462_022_10183_8
crossref_primary_10_1145_3705725
crossref_primary_10_3390_s22145205
crossref_primary_10_1016_j_ipm_2022_103216
crossref_primary_10_2196_63017
crossref_primary_10_3390_math13111737
crossref_primary_10_1109_ACCESS_2025_3536300
crossref_primary_10_3390_math10030310
crossref_primary_10_1080_00295450_2025_2481358
crossref_primary_10_1080_17517575_2025_2549973
crossref_primary_10_3390_electronics13061093
crossref_primary_10_1093_schbul_sbac038
crossref_primary_10_3390_genes15010025
crossref_primary_10_1145_3636511
crossref_primary_10_1142_S0218194025300039
crossref_primary_10_1177_30504554251326853
crossref_primary_10_3390_app13127278
crossref_primary_10_3390_sym17040489
crossref_primary_10_1007_s10462_023_10442_2
crossref_primary_10_1016_j_artint_2023_104058
crossref_primary_10_1109_ACCESS_2024_3357661
crossref_primary_10_1109_ACCESS_2023_3275085
crossref_primary_10_1186_s40359_024_01988_z
crossref_primary_10_2196_69753
crossref_primary_10_1038_s41537_022_00246_8
crossref_primary_10_1186_s12911_024_02613_0
crossref_primary_10_3390_electronics12183909
crossref_primary_10_1108_K_05_2022_0758
crossref_primary_10_1162_dint_a_00144
crossref_primary_10_1080_08839514_2023_2186432
crossref_primary_10_1109_TVCG_2025_3535332
crossref_primary_10_1162_dint_a_00147
crossref_primary_10_1186_s12911_023_02161_z
crossref_primary_10_1007_s00521_025_11349_5
crossref_primary_10_1145_3589324
crossref_primary_10_7717_peerj_cs_2029
crossref_primary_10_1145_3714456
crossref_primary_10_1109_ACCESS_2024_3377463
crossref_primary_10_4018_JOEUC_356500
crossref_primary_10_3389_fpsyg_2023_1287706
crossref_primary_10_1038_s41598_023_34294_6
crossref_primary_10_3390_jmse12060868
crossref_primary_10_3390_electronics13203985
crossref_primary_10_1007_s40747_025_01840_w
crossref_primary_10_1097_HRP_0000000000000356
crossref_primary_10_1145_3748325
crossref_primary_10_1007_s10489_024_05774_7
crossref_primary_10_1016_j_schres_2022_09_020
crossref_primary_10_1186_s13636_024_00329_7
crossref_primary_10_3233_JIFS_230268
crossref_primary_10_1016_j_csl_2022_101404
crossref_primary_10_1016_j_neucom_2025_130909
crossref_primary_10_1016_j_ocecoaman_2023_106679
crossref_primary_10_3390_rs16081344
crossref_primary_10_3390_drones7060360
crossref_primary_10_3390_s23208425
Cites_doi 10.1093/schbul/13.2.261
10.1037/0021-843X.111.2.211
10.1016/j.schres.2005.05.015
10.1016/j.procs.2017.08.009
10.1038/npjschz.2015.54
10.1016/S0006-3223(99)00040-2
10.1002/wps.20491
10.1016/j.pnpbp.2012.07.007
10.1038/s41537-019-0077-9
10.1162/neco.1997.9.8.1735
10.1016/j.schres.2018.02.051
10.1080/01638530802073712
10.1093/schbul/12.3.473
10.1017/S003329170100321X
10.1192/bjp.148.3.275
10.1176/ajp.148.5.670
10.1186/1741-7015-2-13
10.1176/ajp.156.10.1646
10.1038/npjschz.2015.30
10.1093/schbul/sbx030
10.1016/j.schres.2007.03.001
10.1016/j.schres.2014.10.024
10.1590/S0004-282X2012005000015
10.1192/bjp.181.43.s3
10.1016/j.schres.2006.03.021
10.1016/j.jneuroling.2009.05.002
10.7554/eLife.38907
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.psychres.2021.114135
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7123
ExternalDocumentID 10_1016_j_psychres_2021_114135
S0165178121004315
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AADFP
AAEDT
AAEDW
AAGJA
AAGKA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABOYX
ABWVN
ABXDB
ACDAQ
ACGFS
ACHQT
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ACXNI
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEG
HMK
HMO
HMQ
HMW
HVGLF
HZ~
IHE
J1W
KOM
M29
M2V
M39
M3V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OH0
OKEIE
OU-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNS
SPCBC
SPS
SSB
SSH
SSN
SSY
SSZ
T5K
UV1
WUQ
Z5R
ZGI
~G-
~HD
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AFYLN
AJBFU
AJOXV
AMFUW
LCYCR
RIG
ZA5
9DU
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c400t-beaa68cbf7dea08ce3063fb02ab82e883c67a6efcf7117bb998141ca709613843
ISICitedReferencesCount 213
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000697776300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1781
1872-7123
IngestDate Sun Sep 28 07:03:45 EDT 2025
Sat Nov 29 07:24:59 EST 2025
Tue Nov 18 21:44:28 EST 2025
Fri Feb 23 02:43:25 EST 2024
Tue Oct 14 19:38:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Schizophrenia
Natural language processing
Language
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-beaa68cbf7dea08ce3063fb02ab82e883c67a6efcf7117bb998141ca709613843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2558089385
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2558089385
crossref_primary_10_1016_j_psychres_2021_114135
crossref_citationtrail_10_1016_j_psychres_2021_114135
elsevier_sciencedirect_doi_10_1016_j_psychres_2021_114135
elsevier_clinicalkey_doi_10_1016_j_psychres_2021_114135
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Psychiatry research
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kerns, Berenbaum (bib0024) 2002; 111
Andreasen (bib0003) 1986; 12
Hettinger, Dallmann, Zehe, Niebler, Hotho (bib0018) 2018
Scully, Quinn, Morgan, Kinsella, O’Callaghan, Owens, Waddington (bib0040) 2002; 181
Kostova, Passerieux, Laurent, Hardy-Baylé (bib0026) 2005; 78
Kay, Fiszbein, Opler (bib0023) 1987; 13
Andreasen, Tucker (bib0004) 1991; 148
Elvevåg, Foltz, Weinberger, Goldberg (bib0013) 2007; 93
Fraser, King, Thomas, Kendell (bib0016) 1986; 148
Che, Liu, Wang, Zheng, Liu (bib0008) 2018
Foltz, Rosenstein, Elvevåg (bib0015) 2016; 2
Newman, Groom, Handelman, Pennebaker (bib0032) 2008; 45
Lai, Leung, Leung (bib0027) 2018
Radanovic, Sousa, Valiengo, Gattaz, Forlenza (bib0035) 2013; 71
Czernikiewicz (bib0011) 2004
McGrath, Saha, Welham, El Saadi, MacCauley, Chant (bib0028) 2004; 2
Mikolov, Sutskever, Chen, Corrado, Dean (bib0030) 2013
Rodriguez-Ferrera, McCarthy, McKenna (bib0039) 2001; 31
Kircher, Krug, Stratmann, Ghazi, Schales, Frauenheim, Turner, Fährmann, Hornig, Katzev (bib0025) 2014; 160
Cavelti, Kircher, Nagels, Strik, Homan (bib0007) 2018; 199
Cohen, Le, Fedechko, Elvevåg (bib0009) 2017; 43
Elvevåg, Foltz, Rosenstein, DeLisi (bib0012) 2010; 23
Bedi, Carrillo, Cecchi, Slezak, Sigman, Mota, Ribeiro, Javitt, Copelli, Corcoran (bib0005) 2015; 1
Hoffman, Loginova, Russell (bib0020) 2018; 7
Rezaii, Walker, Wolff (bib0037) 2019; 5
Ribeiro, Singh, Guestrin (bib0038) 2016
Indurthi, Syed, Shrivastava, Chakravartula, Gupta, Varma (bib0021) 2019
Remberk, Namysłowska, Rybakowski (bib0036) 2012; 39
Naili, Habacha, Ben Ghezala (bib0031) 2017; 112
Pennington, Socher, Manning (bib0033) 2014
Corcoran, Carrillo, Fernández-Slezak, Bedi, Klim, Javitt, Bearden, Cecchi (bib0010) 2018; 17
Fischer, Buchanan (bib0014) 2013
Breier, Berg (bib0006) 1999; 46
Adler, Malhotra, Elman, Goldberg, Egan, Pickar, Breier (bib0001) 1999; 156
Mikolov, Sutskever, Chen, Corrado, Dean (bib0029) 2013
Peters, Neumann, Iyyer, Gardner, Clark, Lee, Zettlemoyer (bib0034) 2018
Altszyler, Sigman, Slezak (bib0002) 2016; abs/1610.01520
van der Gaag, Hoffman, Remijsen, Hijman, de Haan, van Meijel, van Harten, Valmaggia, De Hert, Cuijpers (bib0017) 2006; 85
Hochreiter, Schmidhuber (bib0019) 1997; 9
Iter, Yoon, Jurafsky (bib0022) 2018
Cavelti (10.1016/j.psychres.2021.114135_bib0007) 2018; 199
Mikolov (10.1016/j.psychres.2021.114135_bib0030) 2013
Adler (10.1016/j.psychres.2021.114135_bib0001) 1999; 156
Andreasen (10.1016/j.psychres.2021.114135_bib0003) 1986; 12
Rezaii (10.1016/j.psychres.2021.114135_bib0037) 2019; 5
Bedi (10.1016/j.psychres.2021.114135_bib0005) 2015; 1
Elvevåg (10.1016/j.psychres.2021.114135_bib0012) 2010; 23
Lai (10.1016/j.psychres.2021.114135_bib0027) 2018
Elvevåg (10.1016/j.psychres.2021.114135_bib0013) 2007; 93
Corcoran (10.1016/j.psychres.2021.114135_bib0010) 2018; 17
Hettinger (10.1016/j.psychres.2021.114135_bib0018) 2018
van der Gaag (10.1016/j.psychres.2021.114135_bib0017) 2006; 85
Remberk (10.1016/j.psychres.2021.114135_bib0036) 2012; 39
Iter (10.1016/j.psychres.2021.114135_bib0022) 2018
Fraser (10.1016/j.psychres.2021.114135_bib0016) 1986; 148
Fischer (10.1016/j.psychres.2021.114135_bib0014) 2013
Pennington (10.1016/j.psychres.2021.114135_bib0033) 2014
Kircher (10.1016/j.psychres.2021.114135_bib0025) 2014; 160
Indurthi (10.1016/j.psychres.2021.114135_bib0021) 2019
Cohen (10.1016/j.psychres.2021.114135_bib0009) 2017; 43
Newman (10.1016/j.psychres.2021.114135_bib0032) 2008; 45
Radanovic (10.1016/j.psychres.2021.114135_bib0035) 2013; 71
Andreasen (10.1016/j.psychres.2021.114135_sbref0004) 1991; 148
Ribeiro (10.1016/j.psychres.2021.114135_bib0038) 2016
McGrath (10.1016/j.psychres.2021.114135_bib0028) 2004; 2
Czernikiewicz (10.1016/j.psychres.2021.114135_bib0011) 2004
Foltz (10.1016/j.psychres.2021.114135_bib0015) 2016; 2
Kay (10.1016/j.psychres.2021.114135_bib0023) 1987; 13
Hoffman (10.1016/j.psychres.2021.114135_bib0020) 2018; 7
Naili (10.1016/j.psychres.2021.114135_bib0031) 2017; 112
Rodriguez-Ferrera (10.1016/j.psychres.2021.114135_bib0039) 2001; 31
Breier (10.1016/j.psychres.2021.114135_bib0006) 1999; 46
Che (10.1016/j.psychres.2021.114135_bib0008) 2018
Kostova (10.1016/j.psychres.2021.114135_bib0026) 2005; 78
Peters (10.1016/j.psychres.2021.114135_bib0034) 2018
Mikolov (10.1016/j.psychres.2021.114135_bib0029) 2013
Altszyler (10.1016/j.psychres.2021.114135_bib0002) 2016; abs/1610.01520
Scully (10.1016/j.psychres.2021.114135_bib0040) 2002; 181
Hochreiter (10.1016/j.psychres.2021.114135_bib0019) 1997; 9
Kerns (10.1016/j.psychres.2021.114135_bib0024) 2002; 111
References_xml – volume: 2
  start-page: 13
  year: 2004
  ident: bib0028
  article-title: A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology
  publication-title: BMC Med
– volume: 23
  start-page: 270
  year: 2010
  end-page: 284
  ident: bib0012
  article-title: An automated method to analyze language use in patients with schizophrenia and their first-degree relatives
  publication-title: J Neurolinguistics
– volume: abs/1610.01520
  year: 2016
  ident: bib0002
  article-title: Comparative study of LSA vs word2vec embeddings in small corpora: a case study in dreams database
  publication-title: CoRR
– start-page: 2227
  year: 2018
  end-page: 2237
  ident: bib0034
  article-title: Deep contextualized word representations
  publication-title: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
– volume: 71
  start-page: 55
  year: 2013
  end-page: 60
  ident: bib0035
  article-title: Formal thought disorder and language impairment in schizophrenia
  publication-title: Arq Neuropsiquiatr
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0019
  article-title: Long short-term memory
  publication-title: Neural Comput
– start-page: 3111
  year: 2013
  end-page: 3119
  ident: bib0029
  article-title: Distributed Representations of Words and Phrases and Their Compositionality
  publication-title: Advances in Neural Information Processing Systems 26
– volume: 13
  start-page: 261
  year: 1987
  end-page: 276
  ident: bib0023
  article-title: The positive and negative syndrome scale (panss) for schizophrenia
  publication-title: Schizophr Bull
– volume: 112
  start-page: 340
  year: 2017
  end-page: 349
  ident: bib0031
  article-title: Comparative study of word embedding methods in topic segmentation
  publication-title: Procedia Comput Sci
– volume: 45
  start-page: 211
  year: 2008
  end-page: 236
  ident: bib0032
  article-title: Gender differences in language use: an analysis of 14,000 text samples
  publication-title: Discourse Process
– volume: 160
  start-page: 216
  year: 2014
  end-page: 221
  ident: bib0025
  article-title: A rating scale for the assessment of objective and subjective formal thought and language disorder (tald)
  publication-title: Schizophr. Res.
– start-page: 836
  year: 2018
  end-page: 841
  ident: bib0018
  article-title: ClaiRE at SemEval-2018 task 7: Classification of relations using embeddings
  publication-title: Proceedings of The 12th International Workshop on Semantic Evaluation
– volume: 85
  start-page: 280
  year: 2006
  end-page: 287
  ident: bib0017
  article-title: The five-factor model of the positive and negative syndrome scale ii: a ten-fold cross-validation of a revised model
  publication-title: Schizophr. Res.
– volume: 5
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib0037
  article-title: A machine learning approach to predicting psychosis using semantic density and latent content analysis
  publication-title: NPJ Schizophr
– volume: 199
  start-page: 2
  year: 2018
  end-page: 16
  ident: bib0007
  article-title: Is formal thought disorder in schizophrenia related to structural and functional aberrations in the language network? a systematic review of neuroimaging findings
  publication-title: Schizophr. Res.
– volume: 2
  start-page: 15054
  year: 2016
  ident: bib0015
  article-title: Detecting clinically significant events through automated language analysis: quo imus?
  publication-title: NPJ Schizophr
– volume: 17
  start-page: 67
  year: 2018
  end-page: 75
  ident: bib0010
  article-title: Prediction of psychosis across protocols and risk cohorts using automated language analysis
  publication-title: World Psychiatry
– volume: 148
  year: 1991
  ident: bib0004
  article-title: Introductory textbook of psychiatry
  publication-title: American Journal of Psychiatry
– volume: 39
  start-page: 348
  year: 2012
  end-page: 354
  ident: bib0036
  article-title: Cognition and communication dysfunctions in early-onset schizophrenia: effect of risperidone
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
– start-page: 3111
  year: 2013
  end-page: 3119
  ident: bib0030
  article-title: Distributed Representations of Words and Phrases and Their Compositionality
  publication-title: Advances in Neural Information Processing Systems 26
– start-page: 1135
  year: 2016
  end-page: 1144
  ident: bib0038
  article-title: “why should i trust you?”: Explaining the predictions of any classifier
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 93
  start-page: 304
  year: 2007
  end-page: 316
  ident: bib0013
  article-title: Quantifying incoherence in speech: an automated methodology and novel application to schizophrenia
  publication-title: Schizophr. Res.
– volume: 46
  start-page: 361
  year: 1999
  end-page: 364
  ident: bib0006
  article-title: The psychosis of schizophrenia: prevalence, response to atypical antipsychotics, and prediction of outcome
  publication-title: Biol. Psychiatry
– volume: 148
  start-page: 275
  year: 1986
  end-page: 278
  ident: bib0016
  article-title: The diagnosis of schizophrenia by language analysis
  publication-title: The British Journal of Psychiatry
– volume: 31
  start-page: 197
  year: 2001
  end-page: 205
  ident: bib0039
  article-title: Language in schizophrenia and its relationship to formal thought disorder
  publication-title: Psychol Med
– volume: 12
  start-page: 473
  year: 1986
  ident: bib0003
  article-title: Scale for the assessment of thought, language, and communication (tlc).
  publication-title: Schizophr Bull
– start-page: 55
  year: 2018
  end-page: 64
  ident: bib0008
  article-title: Towards better UD parsing: Deep contextualized word embeddings, ensemble, and treebank concatenation
  publication-title: Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
– volume: 156
  start-page: 1646
  year: 1999
  end-page: 1649
  ident: bib0001
  article-title: Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia
  publication-title: American Journal of Psychiatry
– start-page: 136
  year: 2018
  end-page: 146
  ident: bib0022
  article-title: Automatic detection of incoherent speech for diagnosing schizophrenia
  publication-title: Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic
– volume: 1
  start-page: 15030
  year: 2015
  ident: bib0005
  article-title: Automated analysis of free speech predicts psychosis onset in high-risk youths
  publication-title: NPJ Schizophr
– volume: 7
  year: 2018
  ident: bib0020
  article-title: Poor coherence in older people’s speech is explained by impaired semantic and executive processes
  publication-title: Elife
– volume: 43
  start-page: 503
  year: 2017
  end-page: 508
  ident: bib0009
  article-title: Can rdoc help find order in thought disorder?
  publication-title: Schizophr Bull
– volume: 111
  start-page: 211
  year: 2002
  ident: bib0024
  article-title: Cognitive impairments associated with formal thought disorder in people with schizophrenia.
  publication-title: J Abnorm Psychol
– start-page: 70
  year: 2019
  end-page: 74
  ident: bib0021
  article-title: FERMI at SemEval-2019 task 5: Using sentence embeddings to identify hate speech against immigrants and women in Twitter
  publication-title: Proceedings of the 13th International Workshop on Semantic Evaluation
– volume: 78
  start-page: 285
  year: 2005
  end-page: 291
  ident: bib0026
  article-title: N400 Anomalies in schizophrenia are correlated with the severity of formal thought disorder
  publication-title: Schizophr. Res.
– start-page: 1532
  year: 2014
  end-page: 1543
  ident: bib0033
  article-title: GloVe: Global vectors for word representation
  publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)
– volume: 181
  start-page: s3
  year: 2002
  end-page: s9
  ident: bib0040
  article-title: First-episode schizophrenia, bipolar disorder and other psychoses in a rural irish catchment area: incidence and gender in the cavan–monaghan study at 5 years
  publication-title: The British Journal of Psychiatry
– year: 2004
  ident: bib0011
  article-title: Przewodnik po zaburzeniach jȩzykowych w schizofrenii
– year: 2013
  ident: bib0014
  article-title: Schizophrenia in adults: epidemiology and pathogenesis
  publication-title: U: UpToDate, Post TW ur. UpToDate [Internet]. Waltham, MA: UpToDate
– start-page: 741
  year: 2018
  end-page: 746
  ident: bib0027
  article-title: SUNNYNLP at SemEval-2018 task 10: A support-vector-machine-based method for detecting semantic difference using taxonomy and word embedding features
  publication-title: Proceedings of The 12th International Workshop on Semantic Evaluation
– year: 2004
  ident: 10.1016/j.psychres.2021.114135_bib0011
– volume: 13
  start-page: 261
  issue: 2
  year: 1987
  ident: 10.1016/j.psychres.2021.114135_bib0023
  article-title: The positive and negative syndrome scale (panss) for schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/13.2.261
– volume: 111
  start-page: 211
  issue: 2
  year: 2002
  ident: 10.1016/j.psychres.2021.114135_bib0024
  article-title: Cognitive impairments associated with formal thought disorder in people with schizophrenia.
  publication-title: J Abnorm Psychol
  doi: 10.1037/0021-843X.111.2.211
– start-page: 3111
  year: 2013
  ident: 10.1016/j.psychres.2021.114135_bib0030
  article-title: Distributed Representations of Words and Phrases and Their Compositionality
– volume: 78
  start-page: 285
  issue: 2–3
  year: 2005
  ident: 10.1016/j.psychres.2021.114135_bib0026
  article-title: N400 Anomalies in schizophrenia are correlated with the severity of formal thought disorder
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2005.05.015
– volume: 112
  start-page: 340
  year: 2017
  ident: 10.1016/j.psychres.2021.114135_bib0031
  article-title: Comparative study of word embedding methods in topic segmentation
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.08.009
– volume: 2
  start-page: 15054
  year: 2016
  ident: 10.1016/j.psychres.2021.114135_bib0015
  article-title: Detecting clinically significant events through automated language analysis: quo imus?
  publication-title: NPJ Schizophr
  doi: 10.1038/npjschz.2015.54
– start-page: 3111
  year: 2013
  ident: 10.1016/j.psychres.2021.114135_bib0029
  article-title: Distributed Representations of Words and Phrases and Their Compositionality
– volume: 46
  start-page: 361
  issue: 3
  year: 1999
  ident: 10.1016/j.psychres.2021.114135_bib0006
  article-title: The psychosis of schizophrenia: prevalence, response to atypical antipsychotics, and prediction of outcome
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(99)00040-2
– volume: 17
  start-page: 67
  issue: 1
  year: 2018
  ident: 10.1016/j.psychres.2021.114135_bib0010
  article-title: Prediction of psychosis across protocols and risk cohorts using automated language analysis
  publication-title: World Psychiatry
  doi: 10.1002/wps.20491
– volume: abs/1610.01520
  year: 2016
  ident: 10.1016/j.psychres.2021.114135_bib0002
  article-title: Comparative study of LSA vs word2vec embeddings in small corpora: a case study in dreams database
  publication-title: CoRR
– year: 2013
  ident: 10.1016/j.psychres.2021.114135_bib0014
  article-title: Schizophrenia in adults: epidemiology and pathogenesis
  publication-title: U: UpToDate, Post TW ur. UpToDate [Internet]. Waltham, MA: UpToDate
– start-page: 136
  year: 2018
  ident: 10.1016/j.psychres.2021.114135_bib0022
  article-title: Automatic detection of incoherent speech for diagnosing schizophrenia
– start-page: 1532
  year: 2014
  ident: 10.1016/j.psychres.2021.114135_bib0033
  article-title: GloVe: Global vectors for word representation
– start-page: 741
  year: 2018
  ident: 10.1016/j.psychres.2021.114135_bib0027
  article-title: SUNNYNLP at SemEval-2018 task 10: A support-vector-machine-based method for detecting semantic difference using taxonomy and word embedding features
– volume: 39
  start-page: 348
  issue: 2
  year: 2012
  ident: 10.1016/j.psychres.2021.114135_bib0036
  article-title: Cognition and communication dysfunctions in early-onset schizophrenia: effect of risperidone
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2012.07.007
– volume: 5
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.psychres.2021.114135_bib0037
  article-title: A machine learning approach to predicting psychosis using semantic density and latent content analysis
  publication-title: NPJ Schizophr
  doi: 10.1038/s41537-019-0077-9
– start-page: 55
  year: 2018
  ident: 10.1016/j.psychres.2021.114135_bib0008
  article-title: Towards better UD parsing: Deep contextualized word embeddings, ensemble, and treebank concatenation
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.psychres.2021.114135_bib0019
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 199
  start-page: 2
  year: 2018
  ident: 10.1016/j.psychres.2021.114135_bib0007
  article-title: Is formal thought disorder in schizophrenia related to structural and functional aberrations in the language network? a systematic review of neuroimaging findings
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2018.02.051
– start-page: 70
  year: 2019
  ident: 10.1016/j.psychres.2021.114135_bib0021
  article-title: FERMI at SemEval-2019 task 5: Using sentence embeddings to identify hate speech against immigrants and women in Twitter
– volume: 45
  start-page: 211
  issue: 3
  year: 2008
  ident: 10.1016/j.psychres.2021.114135_bib0032
  article-title: Gender differences in language use: an analysis of 14,000 text samples
  publication-title: Discourse Process
  doi: 10.1080/01638530802073712
– start-page: 2227
  year: 2018
  ident: 10.1016/j.psychres.2021.114135_bib0034
  article-title: Deep contextualized word representations
– volume: 12
  start-page: 473
  issue: 3
  year: 1986
  ident: 10.1016/j.psychres.2021.114135_bib0003
  article-title: Scale for the assessment of thought, language, and communication (tlc).
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/12.3.473
– volume: 31
  start-page: 197
  issue: 2
  year: 2001
  ident: 10.1016/j.psychres.2021.114135_bib0039
  article-title: Language in schizophrenia and its relationship to formal thought disorder
  publication-title: Psychol Med
  doi: 10.1017/S003329170100321X
– start-page: 1135
  year: 2016
  ident: 10.1016/j.psychres.2021.114135_bib0038
  article-title: “why should i trust you?”: Explaining the predictions of any classifier
– volume: 148
  start-page: 275
  issue: 3
  year: 1986
  ident: 10.1016/j.psychres.2021.114135_bib0016
  article-title: The diagnosis of schizophrenia by language analysis
  publication-title: The British Journal of Psychiatry
  doi: 10.1192/bjp.148.3.275
– volume: 148
  issue: 5
  year: 1991
  ident: 10.1016/j.psychres.2021.114135_sbref0004
  article-title: Introductory textbook of psychiatry
  publication-title: American Journal of Psychiatry
  doi: 10.1176/ajp.148.5.670
– volume: 2
  start-page: 13
  issue: 1
  year: 2004
  ident: 10.1016/j.psychres.2021.114135_bib0028
  article-title: A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology
  publication-title: BMC Med
  doi: 10.1186/1741-7015-2-13
– volume: 156
  start-page: 1646
  issue: 10
  year: 1999
  ident: 10.1016/j.psychres.2021.114135_bib0001
  article-title: Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia
  publication-title: American Journal of Psychiatry
  doi: 10.1176/ajp.156.10.1646
– volume: 1
  start-page: 15030
  year: 2015
  ident: 10.1016/j.psychres.2021.114135_bib0005
  article-title: Automated analysis of free speech predicts psychosis onset in high-risk youths
  publication-title: NPJ Schizophr
  doi: 10.1038/npjschz.2015.30
– volume: 43
  start-page: 503
  issue: 3
  year: 2017
  ident: 10.1016/j.psychres.2021.114135_bib0009
  article-title: Can rdoc help find order in thought disorder?
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbx030
– volume: 93
  start-page: 304
  issue: 1–3
  year: 2007
  ident: 10.1016/j.psychres.2021.114135_bib0013
  article-title: Quantifying incoherence in speech: an automated methodology and novel application to schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2007.03.001
– volume: 160
  start-page: 216
  issue: 1–3
  year: 2014
  ident: 10.1016/j.psychres.2021.114135_bib0025
  article-title: A rating scale for the assessment of objective and subjective formal thought and language disorder (tald)
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2014.10.024
– start-page: 836
  year: 2018
  ident: 10.1016/j.psychres.2021.114135_bib0018
  article-title: ClaiRE at SemEval-2018 task 7: Classification of relations using embeddings
– volume: 71
  start-page: 55
  issue: 1
  year: 2013
  ident: 10.1016/j.psychres.2021.114135_bib0035
  article-title: Formal thought disorder and language impairment in schizophrenia
  publication-title: Arq Neuropsiquiatr
  doi: 10.1590/S0004-282X2012005000015
– volume: 181
  start-page: s3
  issue: S43
  year: 2002
  ident: 10.1016/j.psychres.2021.114135_bib0040
  article-title: First-episode schizophrenia, bipolar disorder and other psychoses in a rural irish catchment area: incidence and gender in the cavan–monaghan study at 5 years
  publication-title: The British Journal of Psychiatry
  doi: 10.1192/bjp.181.43.s3
– volume: 85
  start-page: 280
  issue: 1–3
  year: 2006
  ident: 10.1016/j.psychres.2021.114135_bib0017
  article-title: The five-factor model of the positive and negative syndrome scale ii: a ten-fold cross-validation of a revised model
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2006.03.021
– volume: 23
  start-page: 270
  issue: 3
  year: 2010
  ident: 10.1016/j.psychres.2021.114135_bib0012
  article-title: An automated method to analyze language use in patients with schizophrenia and their first-degree relatives
  publication-title: J Neurolinguistics
  doi: 10.1016/j.jneuroling.2009.05.002
– volume: 7
  year: 2018
  ident: 10.1016/j.psychres.2021.114135_bib0020
  article-title: Poor coherence in older people’s speech is explained by impaired semantic and executive processes
  publication-title: Elife
  doi: 10.7554/eLife.38907
SSID ssj0002199
Score 2.6747127
Snippet •NLP algorithm can detect features of formal thought disorder (FTD).•Deep contextual word representations may be used to improve detection of the FTD.•NLP...
Computational linguistics has enabled the introduction of objective tools that measure some of the symptoms of schizophrenia, including the coherence of speech...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114135
SubjectTerms Deep learning
Language
Natural language processing
Schizophrenia
Title Detecting formal thought disorder by deep contextualized word representations
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0165178121004315
https://dx.doi.org/10.1016/j.psychres.2021.114135
https://www.proquest.com/docview/2558089385
Volume 304
WOSCitedRecordID wos000697776300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7123
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002199
  issn: 0165-1781
  databaseCode: AIEXJ
  dateStart: 20200201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKhhAvE59iDKYg8YZS8m3nsYIhQGya1AF9i2zH0Vi7tGq7delfz1380dKBNoR4iaq0Zye-X8935_sg5HVVwTaTB5UfCZ75iQKDlZWx9ENZMlXKUOjYnG9f6NERGwzy406nsbkwlyNa1-zqKp_8V1bDPWA2ps7-BbvdoHADPgPT4Qpsh-utGP9e4bmACZA8x1jyU-zEM8ezmLbQJmqcpVKTNkwdZDOmVS4xCh0zB9silzYhyXjyjO567AKj35gSQc6V3OfTZVPPhtz_zhcaBNgmrKlXQt_e743UcNam1KxOrxYjPlz_burI-svmnNfjBQxts7n5uqMiCl3Im_GeXcug0Q7NLPVDqtu2dJUWwoyC1h_qPGQrpWPdpfiaxNfOh7NuGxwOb9_FqbECcqjLoGxU0-7jhDhfhKXyYixPsB3RNAeBuN37dDD47LbxSDcfdQ-4ll7--9n-pNls7PGt4nLygOwYi8PraaQ8JB1VPyL3Dk1MxWNy6ADjacB4BjCeBYwnGg8B4_0KGA8B420A5gn5-uHg5N1H3zTZ8CWI77kvFOcZk6KipeIBkwpsyLgSQcQFixRjscwoz1QlKxqGVAgwz-FtJafYKyhmSfyUbNXjWj0jXlJlscqSXFZJkAiwY6NMRKLKUp5yMKvTXZLaBSqkqUCPjVBGhQ01PCvswha4sIVe2F3y1tFNdA2WGymoXf_CZhjDnlgAaG6kzB2l0UG1bnkr2leW1QUIaTx547UaX8CP0pQFYBmw9Pk_jL9H7q_-Vy_I1nx6oV6Su_Jy_mM23Sd36IDtGxT_BEElwiE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+formal+thought+disorder+by+deep+contextualized+word+representations&rft.jtitle=Psychiatry+research&rft.au=Sarzynska-Wawer%2C+Justyna&rft.au=Wawer%2C+Aleksander&rft.au=Pawlak%2C+Aleksandra&rft.au=Szymanowska%2C+Julia&rft.date=2021-10-01&rft.pub=Elsevier+B.V&rft.issn=0165-1781&rft.eissn=1872-7123&rft.volume=304&rft_id=info:doi/10.1016%2Fj.psychres.2021.114135&rft.externalDocID=S0165178121004315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1781&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1781&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1781&client=summon