Detecting formal thought disorder by deep contextualized word representations
•NLP algorithm can detect features of formal thought disorder (FTD).•Deep contextual word representations may be used to improve detection of the FTD.•NLP accuracy is comparable to observer’s ratings. Computational linguistics has enabled the introduction of objective tools that measure some of the...
Uložené v:
| Vydané v: | Psychiatry research Ročník 304; s. 114135 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.10.2021
|
| Predmet: | |
| ISSN: | 0165-1781, 1872-7123, 1872-7123 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •NLP algorithm can detect features of formal thought disorder (FTD).•Deep contextual word representations may be used to improve detection of the FTD.•NLP accuracy is comparable to observer’s ratings.
Computational linguistics has enabled the introduction of objective tools that measure some of the symptoms of schizophrenia, including the coherence of speech associated with formal thought disorder (FTD). Our goal was to investigate whether neural network based utterance embeddings are more accurate in detecting FTD than models based on individual indicators. The present research used a comprehensive Embeddings from Language Models (ELMo) approach to represent interviews with patients suffering from schizophrenia (N=35) and with healthy people (N=35). We compared its results to the approach described by Bedi et al. (2015), referred to here as the coherence model. Evaluations were also performed by a clinician using the Scale for the Assessment of Thought, Language and Communication (TLC). Using all six TLC questions the ELMo obtained an accuracy of 80% in distinguishing patients from healthy people. Previously used coherence models were less accurate at 70%. The classifying clinician was accurate 74% of the time. Our analysis shows that both ELMo and TLC are sensitive to the symptoms of disorganization in patients. In this study methods using text representations from language models were more accurate than those based solely on the assessment of FTD, and can be used as measures of disordered language that complement human clinical ratings. |
|---|---|
| AbstractList | •NLP algorithm can detect features of formal thought disorder (FTD).•Deep contextual word representations may be used to improve detection of the FTD.•NLP accuracy is comparable to observer’s ratings.
Computational linguistics has enabled the introduction of objective tools that measure some of the symptoms of schizophrenia, including the coherence of speech associated with formal thought disorder (FTD). Our goal was to investigate whether neural network based utterance embeddings are more accurate in detecting FTD than models based on individual indicators. The present research used a comprehensive Embeddings from Language Models (ELMo) approach to represent interviews with patients suffering from schizophrenia (N=35) and with healthy people (N=35). We compared its results to the approach described by Bedi et al. (2015), referred to here as the coherence model. Evaluations were also performed by a clinician using the Scale for the Assessment of Thought, Language and Communication (TLC). Using all six TLC questions the ELMo obtained an accuracy of 80% in distinguishing patients from healthy people. Previously used coherence models were less accurate at 70%. The classifying clinician was accurate 74% of the time. Our analysis shows that both ELMo and TLC are sensitive to the symptoms of disorganization in patients. In this study methods using text representations from language models were more accurate than those based solely on the assessment of FTD, and can be used as measures of disordered language that complement human clinical ratings. Computational linguistics has enabled the introduction of objective tools that measure some of the symptoms of schizophrenia, including the coherence of speech associated with formal thought disorder (FTD). Our goal was to investigate whether neural network based utterance embeddings are more accurate in detecting FTD than models based on individual indicators. The present research used a comprehensive Embeddings from Language Models (ELMo) approach to represent interviews with patients suffering from schizophrenia (N=35) and with healthy people (N=35). We compared its results to the approach described by Bedi et al. (2015), referred to here as the coherence model. Evaluations were also performed by a clinician using the Scale for the Assessment of Thought, Language and Communication (TLC). Using all six TLC questions the ELMo obtained an accuracy of 80% in distinguishing patients from healthy people. Previously used coherence models were less accurate at 70%. The classifying clinician was accurate 74% of the time. Our analysis shows that both ELMo and TLC are sensitive to the symptoms of disorganization in patients. In this study methods using text representations from language models were more accurate than those based solely on the assessment of FTD, and can be used as measures of disordered language that complement human clinical ratings.Computational linguistics has enabled the introduction of objective tools that measure some of the symptoms of schizophrenia, including the coherence of speech associated with formal thought disorder (FTD). Our goal was to investigate whether neural network based utterance embeddings are more accurate in detecting FTD than models based on individual indicators. The present research used a comprehensive Embeddings from Language Models (ELMo) approach to represent interviews with patients suffering from schizophrenia (N=35) and with healthy people (N=35). We compared its results to the approach described by Bedi et al. (2015), referred to here as the coherence model. Evaluations were also performed by a clinician using the Scale for the Assessment of Thought, Language and Communication (TLC). Using all six TLC questions the ELMo obtained an accuracy of 80% in distinguishing patients from healthy people. Previously used coherence models were less accurate at 70%. The classifying clinician was accurate 74% of the time. Our analysis shows that both ELMo and TLC are sensitive to the symptoms of disorganization in patients. In this study methods using text representations from language models were more accurate than those based solely on the assessment of FTD, and can be used as measures of disordered language that complement human clinical ratings. |
| ArticleNumber | 114135 |
| Author | Sarzynska-Wawer, Justyna Jarkiewicz, Michal Wawer, Aleksander Pawlak, Aleksandra Szymanowska, Julia Okruszek, Lukasz Stefaniak, Izabela |
| Author_xml | – sequence: 1 givenname: Justyna surname: Sarzynska-Wawer fullname: Sarzynska-Wawer, Justyna email: jsarzynska@psych.pan.pl organization: Institute of Psychology, Polish Academy of Sciences, Jaracza 1, 00–378 Warszawa, Poland – sequence: 2 givenname: Aleksander surname: Wawer fullname: Wawer, Aleksander email: axw@ipipan.waw.pl organization: Institute of Computer Science, Polish Academy of Sciences, Jana Kazimierza 5, 01–248 Warszawa, Poland – sequence: 3 givenname: Aleksandra surname: Pawlak fullname: Pawlak, Aleksandra email: apawlak11@st.swps.edu.pl organization: University of Social Sciences and Humanities, Chodakowska 19/31, 03–815 Warszawa, Poland – sequence: 4 givenname: Julia surname: Szymanowska fullname: Szymanowska, Julia email: j.szmnsk@gmail.com organization: University of Social Sciences and Humanities, Chodakowska 19/31, 03–815 Warszawa, Poland – sequence: 5 givenname: Izabela surname: Stefaniak fullname: Stefaniak, Izabela email: blaszczuk@poczta.onet.pl organization: Institute of Psychiatry and Neurology, Sobieskiego 9, 02–957 Warszawa, Poland – sequence: 6 givenname: Michal surname: Jarkiewicz fullname: Jarkiewicz, Michal email: michal.mateusz.jarkiewicz@gmail.com organization: Institute of Psychiatry and Neurology, Sobieskiego 9, 02–957 Warszawa, Poland – sequence: 7 givenname: Lukasz surname: Okruszek fullname: Okruszek, Lukasz email: lokruszek@psych.pan.pl organization: Institute of Psychology, Polish Academy of Sciences, Jaracza 1, 00–378 Warszawa, Poland |
| BookMark | eNqNkD1PwzAQhi1UJNrCX0AZWRLspEkcCSFQ-ZSKWGC2HOfSuqR2sB0g_HpcBZYuZbrh3uc93TNBI6UVIHRKcEQwyc7XUWt7sTJgoxjHJCJkRpL0AI0JzeMwJ3EyQmMfTEOSU3KEJtauMfbJohijpxtwIJxUy6DWZsObwK10t1y5oJJWmwpMUPZBBdAGQisHX67jjfyGKvj028BA6--CctxJrewxOqx5Y-Hkd07R693ty_whXDzfP86vF6GYYezCEjjPqCjrvAKOqYAEZ0ld4piXNAZKE5HlPINa1DkheVkWBfU_CZ7jIiMJnSVTdDb0tka_d2Ad20groGm4At1ZFqcpxbRIaOqj2RAVRltroGatkRtuekYw2_pja_bnj239scGfBy92QCGHN53hstmPXw04eA8fEgyzQoISUEnjhbNKy_0VlzsVopFKCt68Qf-fgh9H_aov |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3409843 crossref_primary_10_1007_s11704_024_40579_4 crossref_primary_10_1186_s40537_023_00833_1 crossref_primary_10_1007_s10462_023_10651_9 crossref_primary_10_1109_TCSS_2025_3532984 crossref_primary_10_1007_s11042_025_20984_y crossref_primary_10_1007_s12559_025_10431_3 crossref_primary_10_5753_jbcs_2025_3705 crossref_primary_10_7717_peerj_cs_1317 crossref_primary_10_3390_app13137739 crossref_primary_10_1016_j_compbiomed_2024_108709 crossref_primary_10_1016_j_schres_2022_07_002 crossref_primary_10_1016_j_jss_2025_112448 crossref_primary_10_1371_journal_pone_0285668 crossref_primary_10_1145_3627704 crossref_primary_10_1371_journal_pone_0313953 crossref_primary_10_3389_fgene_2024_1399810 crossref_primary_10_1109_TCSVT_2023_3284405 crossref_primary_10_3390_a18030168 crossref_primary_10_1155_2023_2088698 crossref_primary_10_3389_fpsyt_2022_954703 crossref_primary_10_1007_s11063_025_11743_z crossref_primary_10_1093_jamia_ocad213 crossref_primary_10_1007_s44443_025_00018_1 crossref_primary_10_2196_55318 crossref_primary_10_1109_TNNLS_2024_3498935 crossref_primary_10_1016_j_psychres_2023_115667 crossref_primary_10_1007_s11920_022_01399_0 crossref_primary_10_1007_s11227_025_07414_4 crossref_primary_10_3390_app132111845 crossref_primary_10_1007_s42001_024_00286_3 crossref_primary_10_1016_j_aei_2024_102364 crossref_primary_10_1016_j_schres_2024_06_052 crossref_primary_10_1016_j_tra_2024_104074 crossref_primary_10_1097_MD_0000000000041016 crossref_primary_10_1016_j_ins_2024_121100 crossref_primary_10_1109_JSAC_2022_3221948 crossref_primary_10_3390_math12071073 crossref_primary_10_1109_TAI_2022_3199190 crossref_primary_10_1007_s11633_022_1382_8 crossref_primary_10_1016_j_ins_2024_121625 crossref_primary_10_3390_app13063911 crossref_primary_10_1016_j_compbiomed_2024_109496 crossref_primary_10_1371_journal_pone_0291099 crossref_primary_10_1007_s11227_025_07035_x crossref_primary_10_1038_s41598_023_31368_3 crossref_primary_10_1108_ECAM_03_2023_0255 crossref_primary_10_3390_computers13100266 crossref_primary_10_1142_S2196888824500131 crossref_primary_10_1109_TVCG_2025_3542504 crossref_primary_10_1016_j_heliyon_2024_e24897 crossref_primary_10_1109_COMST_2023_3333342 crossref_primary_10_1093_schbul_sbac145 crossref_primary_10_1371_journal_pone_0324621 crossref_primary_10_1007_s40501_025_00363_y crossref_primary_10_1186_s13677_024_00708_7 crossref_primary_10_1038_s42003_025_07902_6 crossref_primary_10_3390_app14020489 crossref_primary_10_3390_electronics12224654 crossref_primary_10_1038_s41368_023_00239_y crossref_primary_10_1109_ACCESS_2024_3454278 crossref_primary_10_2147_PRBM_S460503 crossref_primary_10_1016_j_heliyon_2024_e41488 crossref_primary_10_1109_ACCESS_2023_3313608 crossref_primary_10_1109_ACCESS_2024_3512597 crossref_primary_10_1007_s44443_025_00059_6 crossref_primary_10_1109_ACCESS_2024_3406426 crossref_primary_10_3389_fpsyt_2023_1208856 crossref_primary_10_1111_exsy_13165 crossref_primary_10_1007_s13278_025_01410_5 crossref_primary_10_1371_journal_pone_0267590 crossref_primary_10_1016_j_psychres_2024_116119 crossref_primary_10_1007_s00521_024_09491_7 crossref_primary_10_1016_j_aej_2025_01_119 crossref_primary_10_1016_j_engappai_2023_107694 crossref_primary_10_3390_math12243990 crossref_primary_10_1016_j_inffus_2025_103328 crossref_primary_10_1177_15353702231220669 crossref_primary_10_3389_fpsyt_2022_946387 crossref_primary_10_3390_app15010305 crossref_primary_10_1109_ACCESS_2022_3192866 crossref_primary_10_3390_math11112412 crossref_primary_10_1016_j_psychres_2025_116690 crossref_primary_10_1016_j_schres_2022_01_019 crossref_primary_10_2196_60272 crossref_primary_10_4103_jss_jss_73_23 crossref_primary_10_1007_s10664_025_10631_3 crossref_primary_10_1109_TSE_2024_3523713 crossref_primary_10_3390_math11041006 crossref_primary_10_1016_j_apenergy_2024_123554 crossref_primary_10_1016_j_cie_2025_111163 crossref_primary_10_1109_ACCESS_2023_3279396 crossref_primary_10_3389_fenrg_2024_1346369 crossref_primary_10_1145_3704633 crossref_primary_10_1007_s10462_022_10183_8 crossref_primary_10_1145_3705725 crossref_primary_10_3390_s22145205 crossref_primary_10_1016_j_ipm_2022_103216 crossref_primary_10_2196_63017 crossref_primary_10_3390_math13111737 crossref_primary_10_1109_ACCESS_2025_3536300 crossref_primary_10_3390_math10030310 crossref_primary_10_1080_00295450_2025_2481358 crossref_primary_10_1080_17517575_2025_2549973 crossref_primary_10_3390_electronics13061093 crossref_primary_10_1093_schbul_sbac038 crossref_primary_10_3390_genes15010025 crossref_primary_10_1145_3636511 crossref_primary_10_1142_S0218194025300039 crossref_primary_10_1177_30504554251326853 crossref_primary_10_3390_app13127278 crossref_primary_10_3390_sym17040489 crossref_primary_10_1007_s10462_023_10442_2 crossref_primary_10_1016_j_artint_2023_104058 crossref_primary_10_1109_ACCESS_2024_3357661 crossref_primary_10_1109_ACCESS_2023_3275085 crossref_primary_10_1186_s40359_024_01988_z crossref_primary_10_2196_69753 crossref_primary_10_1038_s41537_022_00246_8 crossref_primary_10_1186_s12911_024_02613_0 crossref_primary_10_3390_electronics12183909 crossref_primary_10_1108_K_05_2022_0758 crossref_primary_10_1162_dint_a_00144 crossref_primary_10_1080_08839514_2023_2186432 crossref_primary_10_1109_TVCG_2025_3535332 crossref_primary_10_1162_dint_a_00147 crossref_primary_10_1186_s12911_023_02161_z crossref_primary_10_1007_s00521_025_11349_5 crossref_primary_10_1145_3589324 crossref_primary_10_7717_peerj_cs_2029 crossref_primary_10_1145_3714456 crossref_primary_10_1109_ACCESS_2024_3377463 crossref_primary_10_4018_JOEUC_356500 crossref_primary_10_3389_fpsyg_2023_1287706 crossref_primary_10_1038_s41598_023_34294_6 crossref_primary_10_3390_jmse12060868 crossref_primary_10_3390_electronics13203985 crossref_primary_10_1007_s40747_025_01840_w crossref_primary_10_1097_HRP_0000000000000356 crossref_primary_10_1145_3748325 crossref_primary_10_1007_s10489_024_05774_7 crossref_primary_10_1016_j_schres_2022_09_020 crossref_primary_10_1186_s13636_024_00329_7 crossref_primary_10_3233_JIFS_230268 crossref_primary_10_1016_j_csl_2022_101404 crossref_primary_10_1016_j_neucom_2025_130909 crossref_primary_10_1016_j_ocecoaman_2023_106679 crossref_primary_10_3390_rs16081344 crossref_primary_10_3390_drones7060360 crossref_primary_10_3390_s23208425 |
| Cites_doi | 10.1093/schbul/13.2.261 10.1037/0021-843X.111.2.211 10.1016/j.schres.2005.05.015 10.1016/j.procs.2017.08.009 10.1038/npjschz.2015.54 10.1016/S0006-3223(99)00040-2 10.1002/wps.20491 10.1016/j.pnpbp.2012.07.007 10.1038/s41537-019-0077-9 10.1162/neco.1997.9.8.1735 10.1016/j.schres.2018.02.051 10.1080/01638530802073712 10.1093/schbul/12.3.473 10.1017/S003329170100321X 10.1192/bjp.148.3.275 10.1176/ajp.148.5.670 10.1186/1741-7015-2-13 10.1176/ajp.156.10.1646 10.1038/npjschz.2015.30 10.1093/schbul/sbx030 10.1016/j.schres.2007.03.001 10.1016/j.schres.2014.10.024 10.1590/S0004-282X2012005000015 10.1192/bjp.181.43.s3 10.1016/j.schres.2006.03.021 10.1016/j.jneuroling.2009.05.002 10.7554/eLife.38907 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1016/j.psychres.2021.114135 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-7123 |
| ExternalDocumentID | 10_1016_j_psychres_2021_114135 S0165178121004315 |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29P 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JO AABNK AADFP AAEDT AAEDW AAGJA AAGKA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABIVO ABJNI ABMAC ABMZM ABOYX ABWVN ABXDB ACDAQ ACGFS ACHQT ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ACXNI ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEG HMK HMO HMQ HMW HVGLF HZ~ IHE J1W KOM M29 M2V M39 M3V M41 MO0 MOBAO N9A O-L O9- OAUVE OH0 OKEIE OU- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SNS SPCBC SPS SSB SSH SSN SSY SSZ T5K UV1 WUQ Z5R ZGI ~G- ~HD AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AFYLN AJBFU AJOXV AMFUW LCYCR RIG ZA5 9DU AAYXX CITATION 7X8 |
| ID | FETCH-LOGICAL-c400t-beaa68cbf7dea08ce3063fb02ab82e883c67a6efcf7117bb998141ca709613843 |
| ISICitedReferencesCount | 213 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000697776300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-1781 1872-7123 |
| IngestDate | Sun Sep 28 07:03:45 EDT 2025 Sat Nov 29 07:24:59 EST 2025 Tue Nov 18 21:44:28 EST 2025 Fri Feb 23 02:43:25 EST 2024 Tue Oct 14 19:38:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Schizophrenia Natural language processing Language |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c400t-beaa68cbf7dea08ce3063fb02ab82e883c67a6efcf7117bb998141ca709613843 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2558089385 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2558089385 crossref_primary_10_1016_j_psychres_2021_114135 crossref_citationtrail_10_1016_j_psychres_2021_114135 elsevier_sciencedirect_doi_10_1016_j_psychres_2021_114135 elsevier_clinicalkey_doi_10_1016_j_psychres_2021_114135 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Psychiatry research |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kerns, Berenbaum (bib0024) 2002; 111 Andreasen (bib0003) 1986; 12 Hettinger, Dallmann, Zehe, Niebler, Hotho (bib0018) 2018 Scully, Quinn, Morgan, Kinsella, O’Callaghan, Owens, Waddington (bib0040) 2002; 181 Kostova, Passerieux, Laurent, Hardy-Baylé (bib0026) 2005; 78 Kay, Fiszbein, Opler (bib0023) 1987; 13 Andreasen, Tucker (bib0004) 1991; 148 Elvevåg, Foltz, Weinberger, Goldberg (bib0013) 2007; 93 Fraser, King, Thomas, Kendell (bib0016) 1986; 148 Che, Liu, Wang, Zheng, Liu (bib0008) 2018 Foltz, Rosenstein, Elvevåg (bib0015) 2016; 2 Newman, Groom, Handelman, Pennebaker (bib0032) 2008; 45 Lai, Leung, Leung (bib0027) 2018 Radanovic, Sousa, Valiengo, Gattaz, Forlenza (bib0035) 2013; 71 Czernikiewicz (bib0011) 2004 McGrath, Saha, Welham, El Saadi, MacCauley, Chant (bib0028) 2004; 2 Mikolov, Sutskever, Chen, Corrado, Dean (bib0030) 2013 Rodriguez-Ferrera, McCarthy, McKenna (bib0039) 2001; 31 Kircher, Krug, Stratmann, Ghazi, Schales, Frauenheim, Turner, Fährmann, Hornig, Katzev (bib0025) 2014; 160 Cavelti, Kircher, Nagels, Strik, Homan (bib0007) 2018; 199 Cohen, Le, Fedechko, Elvevåg (bib0009) 2017; 43 Elvevåg, Foltz, Rosenstein, DeLisi (bib0012) 2010; 23 Bedi, Carrillo, Cecchi, Slezak, Sigman, Mota, Ribeiro, Javitt, Copelli, Corcoran (bib0005) 2015; 1 Hoffman, Loginova, Russell (bib0020) 2018; 7 Rezaii, Walker, Wolff (bib0037) 2019; 5 Ribeiro, Singh, Guestrin (bib0038) 2016 Indurthi, Syed, Shrivastava, Chakravartula, Gupta, Varma (bib0021) 2019 Remberk, Namysłowska, Rybakowski (bib0036) 2012; 39 Naili, Habacha, Ben Ghezala (bib0031) 2017; 112 Pennington, Socher, Manning (bib0033) 2014 Corcoran, Carrillo, Fernández-Slezak, Bedi, Klim, Javitt, Bearden, Cecchi (bib0010) 2018; 17 Fischer, Buchanan (bib0014) 2013 Breier, Berg (bib0006) 1999; 46 Adler, Malhotra, Elman, Goldberg, Egan, Pickar, Breier (bib0001) 1999; 156 Mikolov, Sutskever, Chen, Corrado, Dean (bib0029) 2013 Peters, Neumann, Iyyer, Gardner, Clark, Lee, Zettlemoyer (bib0034) 2018 Altszyler, Sigman, Slezak (bib0002) 2016; abs/1610.01520 van der Gaag, Hoffman, Remijsen, Hijman, de Haan, van Meijel, van Harten, Valmaggia, De Hert, Cuijpers (bib0017) 2006; 85 Hochreiter, Schmidhuber (bib0019) 1997; 9 Iter, Yoon, Jurafsky (bib0022) 2018 Cavelti (10.1016/j.psychres.2021.114135_bib0007) 2018; 199 Mikolov (10.1016/j.psychres.2021.114135_bib0030) 2013 Adler (10.1016/j.psychres.2021.114135_bib0001) 1999; 156 Andreasen (10.1016/j.psychres.2021.114135_bib0003) 1986; 12 Rezaii (10.1016/j.psychres.2021.114135_bib0037) 2019; 5 Bedi (10.1016/j.psychres.2021.114135_bib0005) 2015; 1 Elvevåg (10.1016/j.psychres.2021.114135_bib0012) 2010; 23 Lai (10.1016/j.psychres.2021.114135_bib0027) 2018 Elvevåg (10.1016/j.psychres.2021.114135_bib0013) 2007; 93 Corcoran (10.1016/j.psychres.2021.114135_bib0010) 2018; 17 Hettinger (10.1016/j.psychres.2021.114135_bib0018) 2018 van der Gaag (10.1016/j.psychres.2021.114135_bib0017) 2006; 85 Remberk (10.1016/j.psychres.2021.114135_bib0036) 2012; 39 Iter (10.1016/j.psychres.2021.114135_bib0022) 2018 Fraser (10.1016/j.psychres.2021.114135_bib0016) 1986; 148 Fischer (10.1016/j.psychres.2021.114135_bib0014) 2013 Pennington (10.1016/j.psychres.2021.114135_bib0033) 2014 Kircher (10.1016/j.psychres.2021.114135_bib0025) 2014; 160 Indurthi (10.1016/j.psychres.2021.114135_bib0021) 2019 Cohen (10.1016/j.psychres.2021.114135_bib0009) 2017; 43 Newman (10.1016/j.psychres.2021.114135_bib0032) 2008; 45 Radanovic (10.1016/j.psychres.2021.114135_bib0035) 2013; 71 Andreasen (10.1016/j.psychres.2021.114135_sbref0004) 1991; 148 Ribeiro (10.1016/j.psychres.2021.114135_bib0038) 2016 McGrath (10.1016/j.psychres.2021.114135_bib0028) 2004; 2 Czernikiewicz (10.1016/j.psychres.2021.114135_bib0011) 2004 Foltz (10.1016/j.psychres.2021.114135_bib0015) 2016; 2 Kay (10.1016/j.psychres.2021.114135_bib0023) 1987; 13 Hoffman (10.1016/j.psychres.2021.114135_bib0020) 2018; 7 Naili (10.1016/j.psychres.2021.114135_bib0031) 2017; 112 Rodriguez-Ferrera (10.1016/j.psychres.2021.114135_bib0039) 2001; 31 Breier (10.1016/j.psychres.2021.114135_bib0006) 1999; 46 Che (10.1016/j.psychres.2021.114135_bib0008) 2018 Kostova (10.1016/j.psychres.2021.114135_bib0026) 2005; 78 Peters (10.1016/j.psychres.2021.114135_bib0034) 2018 Mikolov (10.1016/j.psychres.2021.114135_bib0029) 2013 Altszyler (10.1016/j.psychres.2021.114135_bib0002) 2016; abs/1610.01520 Scully (10.1016/j.psychres.2021.114135_bib0040) 2002; 181 Hochreiter (10.1016/j.psychres.2021.114135_bib0019) 1997; 9 Kerns (10.1016/j.psychres.2021.114135_bib0024) 2002; 111 |
| References_xml | – volume: 2 start-page: 13 year: 2004 ident: bib0028 article-title: A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology publication-title: BMC Med – volume: 23 start-page: 270 year: 2010 end-page: 284 ident: bib0012 article-title: An automated method to analyze language use in patients with schizophrenia and their first-degree relatives publication-title: J Neurolinguistics – volume: abs/1610.01520 year: 2016 ident: bib0002 article-title: Comparative study of LSA vs word2vec embeddings in small corpora: a case study in dreams database publication-title: CoRR – start-page: 2227 year: 2018 end-page: 2237 ident: bib0034 article-title: Deep contextualized word representations publication-title: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers) – volume: 71 start-page: 55 year: 2013 end-page: 60 ident: bib0035 article-title: Formal thought disorder and language impairment in schizophrenia publication-title: Arq Neuropsiquiatr – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib0019 article-title: Long short-term memory publication-title: Neural Comput – start-page: 3111 year: 2013 end-page: 3119 ident: bib0029 article-title: Distributed Representations of Words and Phrases and Their Compositionality publication-title: Advances in Neural Information Processing Systems 26 – volume: 13 start-page: 261 year: 1987 end-page: 276 ident: bib0023 article-title: The positive and negative syndrome scale (panss) for schizophrenia publication-title: Schizophr Bull – volume: 112 start-page: 340 year: 2017 end-page: 349 ident: bib0031 article-title: Comparative study of word embedding methods in topic segmentation publication-title: Procedia Comput Sci – volume: 45 start-page: 211 year: 2008 end-page: 236 ident: bib0032 article-title: Gender differences in language use: an analysis of 14,000 text samples publication-title: Discourse Process – volume: 160 start-page: 216 year: 2014 end-page: 221 ident: bib0025 article-title: A rating scale for the assessment of objective and subjective formal thought and language disorder (tald) publication-title: Schizophr. Res. – start-page: 836 year: 2018 end-page: 841 ident: bib0018 article-title: ClaiRE at SemEval-2018 task 7: Classification of relations using embeddings publication-title: Proceedings of The 12th International Workshop on Semantic Evaluation – volume: 85 start-page: 280 year: 2006 end-page: 287 ident: bib0017 article-title: The five-factor model of the positive and negative syndrome scale ii: a ten-fold cross-validation of a revised model publication-title: Schizophr. Res. – volume: 5 start-page: 1 year: 2019 end-page: 12 ident: bib0037 article-title: A machine learning approach to predicting psychosis using semantic density and latent content analysis publication-title: NPJ Schizophr – volume: 199 start-page: 2 year: 2018 end-page: 16 ident: bib0007 article-title: Is formal thought disorder in schizophrenia related to structural and functional aberrations in the language network? a systematic review of neuroimaging findings publication-title: Schizophr. Res. – volume: 2 start-page: 15054 year: 2016 ident: bib0015 article-title: Detecting clinically significant events through automated language analysis: quo imus? publication-title: NPJ Schizophr – volume: 17 start-page: 67 year: 2018 end-page: 75 ident: bib0010 article-title: Prediction of psychosis across protocols and risk cohorts using automated language analysis publication-title: World Psychiatry – volume: 148 year: 1991 ident: bib0004 article-title: Introductory textbook of psychiatry publication-title: American Journal of Psychiatry – volume: 39 start-page: 348 year: 2012 end-page: 354 ident: bib0036 article-title: Cognition and communication dysfunctions in early-onset schizophrenia: effect of risperidone publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry – start-page: 3111 year: 2013 end-page: 3119 ident: bib0030 article-title: Distributed Representations of Words and Phrases and Their Compositionality publication-title: Advances in Neural Information Processing Systems 26 – start-page: 1135 year: 2016 end-page: 1144 ident: bib0038 article-title: “why should i trust you?”: Explaining the predictions of any classifier publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 93 start-page: 304 year: 2007 end-page: 316 ident: bib0013 article-title: Quantifying incoherence in speech: an automated methodology and novel application to schizophrenia publication-title: Schizophr. Res. – volume: 46 start-page: 361 year: 1999 end-page: 364 ident: bib0006 article-title: The psychosis of schizophrenia: prevalence, response to atypical antipsychotics, and prediction of outcome publication-title: Biol. Psychiatry – volume: 148 start-page: 275 year: 1986 end-page: 278 ident: bib0016 article-title: The diagnosis of schizophrenia by language analysis publication-title: The British Journal of Psychiatry – volume: 31 start-page: 197 year: 2001 end-page: 205 ident: bib0039 article-title: Language in schizophrenia and its relationship to formal thought disorder publication-title: Psychol Med – volume: 12 start-page: 473 year: 1986 ident: bib0003 article-title: Scale for the assessment of thought, language, and communication (tlc). publication-title: Schizophr Bull – start-page: 55 year: 2018 end-page: 64 ident: bib0008 article-title: Towards better UD parsing: Deep contextualized word embeddings, ensemble, and treebank concatenation publication-title: Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies – volume: 156 start-page: 1646 year: 1999 end-page: 1649 ident: bib0001 article-title: Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia publication-title: American Journal of Psychiatry – start-page: 136 year: 2018 end-page: 146 ident: bib0022 article-title: Automatic detection of incoherent speech for diagnosing schizophrenia publication-title: Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic – volume: 1 start-page: 15030 year: 2015 ident: bib0005 article-title: Automated analysis of free speech predicts psychosis onset in high-risk youths publication-title: NPJ Schizophr – volume: 7 year: 2018 ident: bib0020 article-title: Poor coherence in older people’s speech is explained by impaired semantic and executive processes publication-title: Elife – volume: 43 start-page: 503 year: 2017 end-page: 508 ident: bib0009 article-title: Can rdoc help find order in thought disorder? publication-title: Schizophr Bull – volume: 111 start-page: 211 year: 2002 ident: bib0024 article-title: Cognitive impairments associated with formal thought disorder in people with schizophrenia. publication-title: J Abnorm Psychol – start-page: 70 year: 2019 end-page: 74 ident: bib0021 article-title: FERMI at SemEval-2019 task 5: Using sentence embeddings to identify hate speech against immigrants and women in Twitter publication-title: Proceedings of the 13th International Workshop on Semantic Evaluation – volume: 78 start-page: 285 year: 2005 end-page: 291 ident: bib0026 article-title: N400 Anomalies in schizophrenia are correlated with the severity of formal thought disorder publication-title: Schizophr. Res. – start-page: 1532 year: 2014 end-page: 1543 ident: bib0033 article-title: GloVe: Global vectors for word representation publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) – volume: 181 start-page: s3 year: 2002 end-page: s9 ident: bib0040 article-title: First-episode schizophrenia, bipolar disorder and other psychoses in a rural irish catchment area: incidence and gender in the cavan–monaghan study at 5 years publication-title: The British Journal of Psychiatry – year: 2004 ident: bib0011 article-title: Przewodnik po zaburzeniach jȩzykowych w schizofrenii – year: 2013 ident: bib0014 article-title: Schizophrenia in adults: epidemiology and pathogenesis publication-title: U: UpToDate, Post TW ur. UpToDate [Internet]. Waltham, MA: UpToDate – start-page: 741 year: 2018 end-page: 746 ident: bib0027 article-title: SUNNYNLP at SemEval-2018 task 10: A support-vector-machine-based method for detecting semantic difference using taxonomy and word embedding features publication-title: Proceedings of The 12th International Workshop on Semantic Evaluation – year: 2004 ident: 10.1016/j.psychres.2021.114135_bib0011 – volume: 13 start-page: 261 issue: 2 year: 1987 ident: 10.1016/j.psychres.2021.114135_bib0023 article-title: The positive and negative syndrome scale (panss) for schizophrenia publication-title: Schizophr Bull doi: 10.1093/schbul/13.2.261 – volume: 111 start-page: 211 issue: 2 year: 2002 ident: 10.1016/j.psychres.2021.114135_bib0024 article-title: Cognitive impairments associated with formal thought disorder in people with schizophrenia. publication-title: J Abnorm Psychol doi: 10.1037/0021-843X.111.2.211 – start-page: 3111 year: 2013 ident: 10.1016/j.psychres.2021.114135_bib0030 article-title: Distributed Representations of Words and Phrases and Their Compositionality – volume: 78 start-page: 285 issue: 2–3 year: 2005 ident: 10.1016/j.psychres.2021.114135_bib0026 article-title: N400 Anomalies in schizophrenia are correlated with the severity of formal thought disorder publication-title: Schizophr. Res. doi: 10.1016/j.schres.2005.05.015 – volume: 112 start-page: 340 year: 2017 ident: 10.1016/j.psychres.2021.114135_bib0031 article-title: Comparative study of word embedding methods in topic segmentation publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2017.08.009 – volume: 2 start-page: 15054 year: 2016 ident: 10.1016/j.psychres.2021.114135_bib0015 article-title: Detecting clinically significant events through automated language analysis: quo imus? publication-title: NPJ Schizophr doi: 10.1038/npjschz.2015.54 – start-page: 3111 year: 2013 ident: 10.1016/j.psychres.2021.114135_bib0029 article-title: Distributed Representations of Words and Phrases and Their Compositionality – volume: 46 start-page: 361 issue: 3 year: 1999 ident: 10.1016/j.psychres.2021.114135_bib0006 article-title: The psychosis of schizophrenia: prevalence, response to atypical antipsychotics, and prediction of outcome publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(99)00040-2 – volume: 17 start-page: 67 issue: 1 year: 2018 ident: 10.1016/j.psychres.2021.114135_bib0010 article-title: Prediction of psychosis across protocols and risk cohorts using automated language analysis publication-title: World Psychiatry doi: 10.1002/wps.20491 – volume: abs/1610.01520 year: 2016 ident: 10.1016/j.psychres.2021.114135_bib0002 article-title: Comparative study of LSA vs word2vec embeddings in small corpora: a case study in dreams database publication-title: CoRR – year: 2013 ident: 10.1016/j.psychres.2021.114135_bib0014 article-title: Schizophrenia in adults: epidemiology and pathogenesis publication-title: U: UpToDate, Post TW ur. UpToDate [Internet]. Waltham, MA: UpToDate – start-page: 136 year: 2018 ident: 10.1016/j.psychres.2021.114135_bib0022 article-title: Automatic detection of incoherent speech for diagnosing schizophrenia – start-page: 1532 year: 2014 ident: 10.1016/j.psychres.2021.114135_bib0033 article-title: GloVe: Global vectors for word representation – start-page: 741 year: 2018 ident: 10.1016/j.psychres.2021.114135_bib0027 article-title: SUNNYNLP at SemEval-2018 task 10: A support-vector-machine-based method for detecting semantic difference using taxonomy and word embedding features – volume: 39 start-page: 348 issue: 2 year: 2012 ident: 10.1016/j.psychres.2021.114135_bib0036 article-title: Cognition and communication dysfunctions in early-onset schizophrenia: effect of risperidone publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2012.07.007 – volume: 5 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.psychres.2021.114135_bib0037 article-title: A machine learning approach to predicting psychosis using semantic density and latent content analysis publication-title: NPJ Schizophr doi: 10.1038/s41537-019-0077-9 – start-page: 55 year: 2018 ident: 10.1016/j.psychres.2021.114135_bib0008 article-title: Towards better UD parsing: Deep contextualized word embeddings, ensemble, and treebank concatenation – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.psychres.2021.114135_bib0019 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 199 start-page: 2 year: 2018 ident: 10.1016/j.psychres.2021.114135_bib0007 article-title: Is formal thought disorder in schizophrenia related to structural and functional aberrations in the language network? a systematic review of neuroimaging findings publication-title: Schizophr. Res. doi: 10.1016/j.schres.2018.02.051 – start-page: 70 year: 2019 ident: 10.1016/j.psychres.2021.114135_bib0021 article-title: FERMI at SemEval-2019 task 5: Using sentence embeddings to identify hate speech against immigrants and women in Twitter – volume: 45 start-page: 211 issue: 3 year: 2008 ident: 10.1016/j.psychres.2021.114135_bib0032 article-title: Gender differences in language use: an analysis of 14,000 text samples publication-title: Discourse Process doi: 10.1080/01638530802073712 – start-page: 2227 year: 2018 ident: 10.1016/j.psychres.2021.114135_bib0034 article-title: Deep contextualized word representations – volume: 12 start-page: 473 issue: 3 year: 1986 ident: 10.1016/j.psychres.2021.114135_bib0003 article-title: Scale for the assessment of thought, language, and communication (tlc). publication-title: Schizophr Bull doi: 10.1093/schbul/12.3.473 – volume: 31 start-page: 197 issue: 2 year: 2001 ident: 10.1016/j.psychres.2021.114135_bib0039 article-title: Language in schizophrenia and its relationship to formal thought disorder publication-title: Psychol Med doi: 10.1017/S003329170100321X – start-page: 1135 year: 2016 ident: 10.1016/j.psychres.2021.114135_bib0038 article-title: “why should i trust you?”: Explaining the predictions of any classifier – volume: 148 start-page: 275 issue: 3 year: 1986 ident: 10.1016/j.psychres.2021.114135_bib0016 article-title: The diagnosis of schizophrenia by language analysis publication-title: The British Journal of Psychiatry doi: 10.1192/bjp.148.3.275 – volume: 148 issue: 5 year: 1991 ident: 10.1016/j.psychres.2021.114135_sbref0004 article-title: Introductory textbook of psychiatry publication-title: American Journal of Psychiatry doi: 10.1176/ajp.148.5.670 – volume: 2 start-page: 13 issue: 1 year: 2004 ident: 10.1016/j.psychres.2021.114135_bib0028 article-title: A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology publication-title: BMC Med doi: 10.1186/1741-7015-2-13 – volume: 156 start-page: 1646 issue: 10 year: 1999 ident: 10.1016/j.psychres.2021.114135_bib0001 article-title: Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia publication-title: American Journal of Psychiatry doi: 10.1176/ajp.156.10.1646 – volume: 1 start-page: 15030 year: 2015 ident: 10.1016/j.psychres.2021.114135_bib0005 article-title: Automated analysis of free speech predicts psychosis onset in high-risk youths publication-title: NPJ Schizophr doi: 10.1038/npjschz.2015.30 – volume: 43 start-page: 503 issue: 3 year: 2017 ident: 10.1016/j.psychres.2021.114135_bib0009 article-title: Can rdoc help find order in thought disorder? publication-title: Schizophr Bull doi: 10.1093/schbul/sbx030 – volume: 93 start-page: 304 issue: 1–3 year: 2007 ident: 10.1016/j.psychres.2021.114135_bib0013 article-title: Quantifying incoherence in speech: an automated methodology and novel application to schizophrenia publication-title: Schizophr. Res. doi: 10.1016/j.schres.2007.03.001 – volume: 160 start-page: 216 issue: 1–3 year: 2014 ident: 10.1016/j.psychres.2021.114135_bib0025 article-title: A rating scale for the assessment of objective and subjective formal thought and language disorder (tald) publication-title: Schizophr. Res. doi: 10.1016/j.schres.2014.10.024 – start-page: 836 year: 2018 ident: 10.1016/j.psychres.2021.114135_bib0018 article-title: ClaiRE at SemEval-2018 task 7: Classification of relations using embeddings – volume: 71 start-page: 55 issue: 1 year: 2013 ident: 10.1016/j.psychres.2021.114135_bib0035 article-title: Formal thought disorder and language impairment in schizophrenia publication-title: Arq Neuropsiquiatr doi: 10.1590/S0004-282X2012005000015 – volume: 181 start-page: s3 issue: S43 year: 2002 ident: 10.1016/j.psychres.2021.114135_bib0040 article-title: First-episode schizophrenia, bipolar disorder and other psychoses in a rural irish catchment area: incidence and gender in the cavan–monaghan study at 5 years publication-title: The British Journal of Psychiatry doi: 10.1192/bjp.181.43.s3 – volume: 85 start-page: 280 issue: 1–3 year: 2006 ident: 10.1016/j.psychres.2021.114135_bib0017 article-title: The five-factor model of the positive and negative syndrome scale ii: a ten-fold cross-validation of a revised model publication-title: Schizophr. Res. doi: 10.1016/j.schres.2006.03.021 – volume: 23 start-page: 270 issue: 3 year: 2010 ident: 10.1016/j.psychres.2021.114135_bib0012 article-title: An automated method to analyze language use in patients with schizophrenia and their first-degree relatives publication-title: J Neurolinguistics doi: 10.1016/j.jneuroling.2009.05.002 – volume: 7 year: 2018 ident: 10.1016/j.psychres.2021.114135_bib0020 article-title: Poor coherence in older people’s speech is explained by impaired semantic and executive processes publication-title: Elife doi: 10.7554/eLife.38907 |
| SSID | ssj0002199 |
| Score | 2.6747127 |
| Snippet | •NLP algorithm can detect features of formal thought disorder (FTD).•Deep contextual word representations may be used to improve detection of the FTD.•NLP... Computational linguistics has enabled the introduction of objective tools that measure some of the symptoms of schizophrenia, including the coherence of speech... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114135 |
| SubjectTerms | Deep learning Language Natural language processing Schizophrenia |
| Title | Detecting formal thought disorder by deep contextualized word representations |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0165178121004315 https://dx.doi.org/10.1016/j.psychres.2021.114135 https://www.proquest.com/docview/2558089385 |
| Volume | 304 |
| WOSCitedRecordID | wos000697776300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7123 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002199 issn: 0165-1781 databaseCode: AIEXJ dateStart: 20200201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKhhAvE59iDKYg8YZS8m3nsYIhQGya1AF9i2zH0Vi7tGq7delfz1380dKBNoR4iaq0Zye-X8935_sg5HVVwTaTB5UfCZ75iQKDlZWx9ENZMlXKUOjYnG9f6NERGwzy406nsbkwlyNa1-zqKp_8V1bDPWA2ps7-BbvdoHADPgPT4Qpsh-utGP9e4bmACZA8x1jyU-zEM8ezmLbQJmqcpVKTNkwdZDOmVS4xCh0zB9silzYhyXjyjO567AKj35gSQc6V3OfTZVPPhtz_zhcaBNgmrKlXQt_e743UcNam1KxOrxYjPlz_burI-svmnNfjBQxts7n5uqMiCl3Im_GeXcug0Q7NLPVDqtu2dJUWwoyC1h_qPGQrpWPdpfiaxNfOh7NuGxwOb9_FqbECcqjLoGxU0-7jhDhfhKXyYixPsB3RNAeBuN37dDD47LbxSDcfdQ-4ll7--9n-pNls7PGt4nLygOwYi8PraaQ8JB1VPyL3Dk1MxWNy6ADjacB4BjCeBYwnGg8B4_0KGA8B420A5gn5-uHg5N1H3zTZ8CWI77kvFOcZk6KipeIBkwpsyLgSQcQFixRjscwoz1QlKxqGVAgwz-FtJafYKyhmSfyUbNXjWj0jXlJlscqSXFZJkAiwY6NMRKLKUp5yMKvTXZLaBSqkqUCPjVBGhQ01PCvswha4sIVe2F3y1tFNdA2WGymoXf_CZhjDnlgAaG6kzB2l0UG1bnkr2leW1QUIaTx547UaX8CP0pQFYBmw9Pk_jL9H7q_-Vy_I1nx6oV6Su_Jy_mM23Sd36IDtGxT_BEElwiE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+formal+thought+disorder+by+deep+contextualized+word+representations&rft.jtitle=Psychiatry+research&rft.au=Sarzynska-Wawer%2C+Justyna&rft.au=Wawer%2C+Aleksander&rft.au=Pawlak%2C+Aleksandra&rft.au=Szymanowska%2C+Julia&rft.date=2021-10-01&rft.pub=Elsevier+B.V&rft.issn=0165-1781&rft.eissn=1872-7123&rft.volume=304&rft_id=info:doi/10.1016%2Fj.psychres.2021.114135&rft.externalDocID=S0165178121004315 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1781&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1781&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1781&client=summon |