Generator Fault Diagnosis with Bit-Coding Support Vector Regression Algorithm

Generator fault diagnosis has a great impact on power networks. With the coupling effects, some uncertain factors, and all the complexities of generator design, fault diagnosis is difficult using any theoretical analysis or mathematical model. This paper proposes a bit-coding support vector regressi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energies (Basel) Ročník 16; číslo 8; s. 3582
Hlavní autor: Lin, Whei-Min
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.04.2023
Témata:
ISSN:1996-1073, 1996-1073
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Generator fault diagnosis has a great impact on power networks. With the coupling effects, some uncertain factors, and all the complexities of generator design, fault diagnosis is difficult using any theoretical analysis or mathematical model. This paper proposes a bit-coding support vector regression (BSVR) algorithm for turbine generator fault diagnosis (GFD) based on a support vector machine (SVM) capable of processing multiple classification problems of fault diagnosis. The BSVR can simplify the design architecture and reduce the processing time for detection, where m classifier is needed for m class problems compared to the [m(m − 1)]/2 size of the original multi-class SVM. Compared with conventional methods, numerical test results showed a high accuracy, good robustness, and a faster processing performance.
AbstractList Generator fault diagnosis has a great impact on power networks. With the coupling effects, some uncertain factors, and all the complexities of generator design, fault diagnosis is difficult using any theoretical analysis or mathematical model. This paper proposes a bit-coding support vector regression (BSVR) algorithm for turbine generator fault diagnosis (GFD) based on a support vector machine (SVM) capable of processing multiple classification problems of fault diagnosis. The BSVR can simplify the design architecture and reduce the processing time for detection, where m classifier is needed for m class problems compared to the [m(m − 1)]/2 size of the original multi-class SVM. Compared with conventional methods, numerical test results showed a high accuracy, good robustness, and a faster processing performance.
Audience Academic
Author Lin, Whei-Min
Author_xml – sequence: 1
  givenname: Whei-Min
  surname: Lin
  fullname: Lin, Whei-Min
BookMark eNptkW9LJSEUxiUKaqs3fYKB3gXT6jg6-vJ2d2uDIujfWzk6zuRlrt7Uy9K3z_YuFZGCRw6_5_Hg8wNt--AtQkcEn1Iq8U_rCceCMtFsoT0iJa8J7uj2p_suOkxpgcuilFBK99D1hfU2Qg6xOof1lKtfDkYfkkvVX5efqjOX63nonR-ru_VqFWKuHq15w2_tGG1KLvhqNo0hFnp5gHYGmJI9_F_30cP57_v5n_rq5uJyPruqTYtxrrUkmggsmr6jknegDWekHD3TrBeSYugbNkjGuRgaLqxtGq11D1QzwgEPdB9dbnz7AAu1im4J8UUFcOpfI8RRQczOTFYRIYQFIbSRptVSCAbYUC4H00jSElO8jjdeqxie1zZltQjr6Mv4qhGYMyo7wQp1uqFGKKbODyFHMGX3dulMyWFwpT_r2q5tWyJ5EZxsBCaGlKId3sckWL3FpT7iKjD-AhuXIZe_La-46TvJK7sql6w
CitedBy_id crossref_primary_10_3390_bdcc8110145
Cites_doi 10.1109/PES.2010.5589500
10.1109/TPWRS.2004.826018
10.1109/94.841806
10.1023/A:1009715923555
10.1007/s11517-006-0027-3
10.1017/CBO9780511801389
10.1109/TPAMI.2010.109
10.1109/TIE.2013.2238871
10.1109/61.584363
10.1109/TPWRD.2004.843462
10.1109/TPWRD.2003.820203
10.1109/JSEN.2022.3163401
10.1109/TPWRD.2018.2879686
10.1016/j.renene.2012.04.031
10.1109/61.956723
10.1002/we.438
10.1109/61.544265
10.1016/S0167-6911(82)80025-X
10.1109/TIE.2014.2363440
10.7551/mitpress/4175.001.0001
10.1117/12.59918
10.1049/ip-gtd:19990164
10.1109/61.847234
10.1109/72.991427
10.1049/ip-gtd:20040538
10.1109/TEC.2012.2189887
10.1002/we.1585
10.1109/TEC.2012.2189008
10.1109/ITEC.2013.6574526
10.1109/TIA.2017.2661841
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/en16083582
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals (ODIN)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_1888ea88bc9c4b9885a0c369fc29141c
A747444196
10_3390_en16083582
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c400t-b91b18082d73967abc651bc6d5b5d8930ad25f95668f268ee22bbbda3b516a0f3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000976445700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Mon Nov 10 04:29:45 EST 2025
Mon Jun 30 11:12:36 EDT 2025
Tue Nov 04 18:15:28 EST 2025
Sat Nov 29 07:20:43 EST 2025
Tue Nov 18 19:49:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-b91b18082d73967abc651bc6d5b5d8930ad25f95668f268ee22bbbda3b516a0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/1888ea88bc9c4b9885a0c369fc29141c
PQID 2806539785
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_1888ea88bc9c4b9885a0c369fc29141c
proquest_journals_2806539785
gale_infotracacademiconefile_A747444196
crossref_primary_10_3390_en16083582
crossref_citationtrail_10_3390_en16083582
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Siegel (ref_4) 2014; 17
Wang (ref_38) 2004; 151
Ghazali (ref_22) 2022; 22
ref_14
Deng (ref_36) 1982; 1
ref_34
ref_11
Gong (ref_7) 2012; 27
Gong (ref_6) 2013; 60
Zhang (ref_13) 1996; 11
Huang (ref_16) 1997; 12
ref_19
Smola (ref_29) 2000; 12
ref_17
Entezami (ref_9) 2012; 47
Lin (ref_46) 2004; 19
Lin (ref_41) 2006; 44
Lin (ref_45) 2005; 20
Gong (ref_3) 2015; 62
Ertekin (ref_35) 2011; 33
Li (ref_39) 1999; 22
Bouzid (ref_2) 2017; 53
Lin (ref_12) 2001; 16
Hong (ref_44) 1999; 146
ref_25
Lee (ref_18) 2000; 15
ref_23
Szu (ref_24) 1992; 31
ref_21
Burges (ref_30) 1998; 2
ref_20
Deng (ref_37) 1989; 1
ref_42
Wei (ref_10) 2011; 14
Islam (ref_15) 2000; 7
ref_40
Moulin (ref_32) 2004; 19
ref_28
ref_27
ref_26
Gunn (ref_33) 1998; 14
Liu (ref_43) 2001; 9
ref_8
Hsu (ref_31) 2002; 13
Doorwar (ref_1) 2019; 34
Zhang (ref_5) 2012; 27
References_xml – ident: ref_8
  doi: 10.1109/PES.2010.5589500
– volume: 19
  start-page: 818
  year: 2004
  ident: ref_32
  article-title: Support Vector Machines for Transient Stability Analysis of Large-Scale Power Systems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2004.826018
– volume: 7
  start-page: 177
  year: 2000
  ident: ref_15
  article-title: A Novel Fuzzy Logic Approach to Transformer Fault Diagnosis
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/94.841806
– volume: 2
  start-page: 121
  year: 1998
  ident: ref_30
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– volume: 44
  start-page: 311
  year: 2006
  ident: ref_41
  article-title: Classification Enhancible Grey Relational Analysis for Cardiac Arrhythmias Discrimination
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-006-0027-3
– ident: ref_26
– ident: ref_34
– ident: ref_27
  doi: 10.1017/CBO9780511801389
– volume: 33
  start-page: 368
  year: 2011
  ident: ref_35
  article-title: Nonconvex Online Support Vector Machines
  publication-title: IEEE Trans. Pattern Anal. Mach. Intelligence
  doi: 10.1109/TPAMI.2010.109
– volume: 60
  start-page: 3419
  year: 2013
  ident: ref_6
  article-title: Bearing fault diagnosis for direct-drive wind turbines via current-demodulated signals
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2238871
– ident: ref_40
– volume: 14
  start-page: 5
  year: 1998
  ident: ref_33
  article-title: Support Vector Machines for Classification and Regression
  publication-title: ISIS Tech. Rep.
– volume: 12
  start-page: 761
  year: 1997
  ident: ref_16
  article-title: Developing a new transformer fault diagnosis system through evolutionary fuzzy logic
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.584363
– volume: 20
  start-page: 2166
  year: 2005
  ident: ref_45
  article-title: Multiple harmonic source detection and equipment identification with cascade correction network
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2004.843462
– volume: 9
  start-page: 22
  year: 2001
  ident: ref_43
  article-title: A New Method for Venturous Capital Pricing
  publication-title: Chin. J. Manag. Sci.
– volume: 19
  start-page: 64
  year: 2004
  ident: ref_46
  article-title: Adaptive Multiple Fault Detection and Alarm Processing for Loop System with Probabilistic Network
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2003.820203
– ident: ref_14
– volume: 22
  start-page: 8439
  year: 2022
  ident: ref_22
  article-title: Vibration-Based Fault Detection in Drone Using Artificial Intelligence
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3163401
– ident: ref_42
– ident: ref_23
– volume: 34
  start-page: 739
  year: 2019
  ident: ref_1
  article-title: A New Internal Fault Detection and Classification Technique for Synchronous Generator
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2018.2879686
– ident: ref_21
– volume: 47
  start-page: 175
  year: 2012
  ident: ref_9
  article-title: Fault detection and diagnosis within a wind turbine mechanical braking system using condition monitoring
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.04.031
– volume: 16
  start-page: 473
  year: 2001
  ident: ref_12
  article-title: A Fault Classification Method by RBF Neural Network with OLS Learning Procedure
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.956723
– volume: 12
  start-page: 207
  year: 2000
  ident: ref_29
  article-title: New support vector algorithms
  publication-title: Neural Comput.
– volume: 14
  start-page: 491
  year: 2011
  ident: ref_10
  article-title: Sensor and actuator fault diagnosis for wind turbine systems by using robust observer and filter
  publication-title: Wind Energy
  doi: 10.1002/we.438
– volume: 11
  start-page: 1836
  year: 1996
  ident: ref_13
  article-title: An Artificial Neural Network Approach to Transformer Fault Diagnosis
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.544265
– volume: 1
  start-page: 288
  year: 1982
  ident: ref_36
  article-title: Control Problems of Grey Systems
  publication-title: Syst. Control. Lett.
  doi: 10.1016/S0167-6911(82)80025-X
– volume: 22
  start-page: 36
  year: 1999
  ident: ref_39
  article-title: The fuzzy inputting and outputting method in vibration fault diagnosis of steam turbine-generator set
  publication-title: J. Chongqing Univ.
– volume: 62
  start-page: 1693
  year: 2015
  ident: ref_3
  article-title: Current-based mechanical fault detection for direct-drive wind turbines via synchronous sampling and impulse detection
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2363440
– ident: ref_25
– ident: ref_28
  doi: 10.7551/mitpress/4175.001.0001
– volume: 31
  start-page: 1907
  year: 1992
  ident: ref_24
  article-title: Neural Network Adaptive Wavelets for Signal Representation and Classification
  publication-title: Opt. Eng.
  doi: 10.1117/12.59918
– volume: 146
  start-page: 325
  year: 1999
  ident: ref_44
  article-title: Application of Algorithms and Artificial Intelligence Approach for Locating Multiple Harmonics in Distribution System
  publication-title: IEE Proc. Gener. Transm. Distrib.
  doi: 10.1049/ip-gtd:19990164
– volume: 15
  start-page: 92
  year: 2000
  ident: ref_18
  article-title: A Fault Diagnosis Expert System for Distribution Substations
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/61.847234
– volume: 13
  start-page: 415
  year: 2002
  ident: ref_31
  article-title: A comparison of methods for multi-class support vector machines
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.991427
– volume: 151
  start-page: 503
  year: 2004
  ident: ref_38
  article-title: Application of Extension Theory to Vibration Fault Diagnosis of Generator sets
  publication-title: IEE Proc. Gener. Transm. Distrib.
  doi: 10.1049/ip-gtd:20040538
– volume: 27
  start-page: 526
  year: 2012
  ident: ref_5
  article-title: Fault analysis and condition monitoring of the wind turbine gearbox
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2012.2189887
– volume: 17
  start-page: 695
  year: 2014
  ident: ref_4
  article-title: A comparative study on vibration-based condition monitoring algorithms for wind turbine drive trains
  publication-title: Wind. Energy
  doi: 10.1002/we.1585
– volume: 27
  start-page: 468
  year: 2012
  ident: ref_7
  article-title: Imbalance fault detection of direct-drive wind turbines using generator current signals
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2012.2189008
– ident: ref_17
– ident: ref_19
– ident: ref_11
  doi: 10.1109/ITEC.2013.6574526
– volume: 1
  start-page: 1
  year: 1989
  ident: ref_37
  article-title: Introduction to Grey System Theory
  publication-title: J. Grey Syst.
– ident: ref_20
– volume: 53
  start-page: 2762
  year: 2017
  ident: ref_2
  article-title: An Efficient Simplified Physical Faulty Model of a Permanent Magnet Synchronous Generator Dedicated to Stator Fault Diagnosis Part II: Automatic Stator Fault Diagnosis
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2017.2661841
SSID ssj0000331333
Score 2.325698
Snippet Generator fault diagnosis has a great impact on power networks. With the coupling effects, some uncertain factors, and all the complexities of generator...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3582
SubjectTerms Algorithms
bit-coding support vector regression (BSVR)
Classification
Comparative analysis
Design
Fault diagnosis
Fuzzy logic
generator fault diagnosis (GFD)
Neural networks
support vector machine (SVM)
support vector regression (SVR)
Turbines
Vibration
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BxwM8bHxNlA1kCSTEQ9TYThz7CXVjFUhsqhBM48nyV0qlko4229_POXE7kGBPvOQhsRQn57v73fn8O4DXziPsCCFkgfqQFV6hHeQSoxREy8Eoxmh3vuL8U3V2Ji8u1DQdj16nssqNTewMdc_2HOu20QiP_NLFjPmo2w9EVyrLd5c_s9hDKu61poYad2EnEm_lA9iZfjydftvmXHLOMSTjPUspx2h_FBoqIgiR7A-_1NH3_8tId55nsvd_5_wQdhMCJeN-yTyCO6F5DA9-4yV8Aqc9GTWG42RirhYted8X5M3XJOZtydG8zY6X0euR2BUUETw577L_5HOY9YW1DRkvZvj29vuPp_B1cvLl-EOW-i5kDjW6zayilkrEBr7iSlTGOlFSvPjSlh7xTW48K2sMrISsmZAhMGat9YbbkgqT13wfBs2yCc-A2MAMgqy6qrwraipsKetaWsu9Q6wh-RDebv66domUPPbGWGgMTqKE9I2EhvBqO_ayp-L466ijKLztiEif3d1YrmY6aaOmGPcHI6V1yhVWSVma3HGhascULagbwpsoeh2VHKfjTDqrgB8V6bL0GIOwAoGkEkM43IheJ-1f6xtJP7_98QHcj-3r-0qgQxi0q6vwAu6563a-Xr1My_cXVOMA2Q
  priority: 102
  providerName: ProQuest
Title Generator Fault Diagnosis with Bit-Coding Support Vector Regression Algorithm
URI https://www.proquest.com/docview/2806539785
https://doaj.org/article/1888ea88bc9c4b9885a0c369fc29141c
Volume 16
WOSCitedRecordID wos000976445700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEB1K0kNzKOlHiJs0CFooOSyxpF2tdLRTmxZqY0IT0pPQ1waDsw72Jsf89oxWm9SFllx62YPQQTuzmnlPO3oD8Nl5hB0hhCxQH7LcK4yDXCJLQbQcjGKMtvcrLn6U06m8vFSzjVZfsSYsyQMnw51QpGjBSGmdcrlVUham77hQlWOK5tTF6Nsv1QaZamMw50i-eNIj5cjrT0JNRYQbkv2RgVqh_n-F4zbHjHfhdQcOySAt6g28CPVb2NmQDHwHk6QTjUyZjM3toiFfU63cfE3ikSoZzpvsdBkTEokNOxFck4v2YJ6chatU81qTweJqucLZ1-_hfDz6efot61oiZA43W5NZRS2VmLZ9yZUojXWioPjwhS08Qo--8ayokPMIWTEhQ2DMWusNtwUVpl_xPdiql3XYB2IDM4h_qrL0Lq-osIWsKmkt9w5hgOQ9OH40k3adXnhsW7HQyBuiSfVvk_bg09Pcm6SS8ddZw2jtpxlR2bodQH_rzt_6OX_34Ev0lY77D5fjTHeNAF8qKlnpAfKjHDGeEj04fHSn7jbmWrc_khGDyeLD_1jNAbyK_edTKc8hbDWr2_ARXrq7Zr5eHcH2cDSdnR213yY-J_cjHJt9n8x-PQBXG-oM
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48EYNFFgJEOJg1btrO7sHhNKWqFGTKEKlak9mX04jBbskLog_xW9k1o8UJODWAxcf7JXl3f08M9_u7DcAL43FsMM5FzhqXRBZiXaQC2QpGC07JRmj1fmK41FvMhEnJ3K6AT_aszA-rbK1iZWhtoXxa-Q71Q4gOk8Rvzv_EviqUX53tS2hUcPi0H3_hpRt9Xa4j_P7irHB-6O9g6CpKhAYxGsZaEk1Fej5bI_LpKe0SWKKFxvr2KL3DpVlcYa0IREZS4RzjGmtreI6pokKM47vvQabEYI97MDmdDienq5XdULOkfTxWgeVcxnuuJwmPswR7DfPVxUI-JsbqHzb4M7_Nip34XYTRZN-Dft7sOHy-3DrF23FBzCuBbXLYkkG6mJRkv06qXC-In7tmezOy2Cv8J6b-MqmyELIcbWDQT64WZ0cnJP-Yoa9Lc8-P4SPV9KfR9DJi9xtAdGOKZzrrNezJspoomORZUJrbg3GS4J34U07r6lphNV9fY9FigTLYyC9xEAXXqzbntdyIn9stevhsW7hJcCrG8VyljYWJaVCCKeE0EaaSEshYhUansjMMEkjarrw2oMr9YYKP8eo5rwFdspLfqV9JJIRBsMy6cJ2C660sWCr9BJZj__9-DncODgaj9LRcHL4BG4yDALrzKZt6JTLC_cUrpuv5Xy1fNb8LAQ-XTUSfwKq4FJ8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFiE48EZdKGAJEOIQbWznYR8Q2u12RdWyWlVQ9ebGjywrbZOym4L4a_w6xnlsQQJuPXDJIXGiOP4y8332eAbgpbFIO5xzgaPWBZGVaAe5QJWCbNllkjFa7684PkwnE3FyIqcb8KPbC-PDKjubWBtqWxo_R96vVwDReYq4n7dhEdPR-N35l8BXkPIrrV05jQYiB-77N5Rvq7f7IxzrV4yN9z7uvg_aCgOBQexWgZZUU4Fe0KZcJmmmTRJTPNhYxxY9eZhZFucoIRKRs0Q4x5jW2mZcxzTJwpzjc6_BFt5MUfhtDfcm06P1DE_IOQpA3uRE5VyGfVfQxFMewX7zgnWxgL-5hNrPje_8z1_oLtxu2TUZNL_DPdhwxX249UvOxQfwoUm0XZVLMs4uFhUZNcGG8xXxc9JkOK-C3dJ7dOIrnqI6Icf1ygY5crMmaLggg8UMe1t9PnsIn66kP49gsygLtw1EO5YhgczT1Joop4mORZ4Lrbk1yKME78GbboyVaROu-7ofC4XCy-NBXeKhBy_Wbc-bNCN_bDX0UFm38KnB6xPlcqZaS6OoEMJlQmgjTaSlEHEWGp7I3DBJI2p68NoDTXkDhq9jsnYfBnbKpwJTAxSYEZJkmfRgpwOaai3bSl2i7PG_Lz-HGwg_dbg_OXgCNxlywybgaQc2q-WFewrXzddqvlo-a_8bAqdXDcSfZNJbFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generator+Fault+Diagnosis+with+Bit-Coding+Support+Vector+Regression+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Lin%2C+Whei-Min&rft.date=2023-04-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=8&rft.spage=3582&rft_id=info:doi/10.3390%2Fen16083582&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en16083582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon