Generator Fault Diagnosis with Bit-Coding Support Vector Regression Algorithm
Generator fault diagnosis has a great impact on power networks. With the coupling effects, some uncertain factors, and all the complexities of generator design, fault diagnosis is difficult using any theoretical analysis or mathematical model. This paper proposes a bit-coding support vector regressi...
Saved in:
| Published in: | Energies (Basel) Vol. 16; no. 8; p. 3582 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.04.2023
|
| Subjects: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Generator fault diagnosis has a great impact on power networks. With the coupling effects, some uncertain factors, and all the complexities of generator design, fault diagnosis is difficult using any theoretical analysis or mathematical model. This paper proposes a bit-coding support vector regression (BSVR) algorithm for turbine generator fault diagnosis (GFD) based on a support vector machine (SVM) capable of processing multiple classification problems of fault diagnosis. The BSVR can simplify the design architecture and reduce the processing time for detection, where m classifier is needed for m class problems compared to the [m(m − 1)]/2 size of the original multi-class SVM. Compared with conventional methods, numerical test results showed a high accuracy, good robustness, and a faster processing performance. |
|---|---|
| AbstractList | Generator fault diagnosis has a great impact on power networks. With the coupling effects, some uncertain factors, and all the complexities of generator design, fault diagnosis is difficult using any theoretical analysis or mathematical model. This paper proposes a bit-coding support vector regression (BSVR) algorithm for turbine generator fault diagnosis (GFD) based on a support vector machine (SVM) capable of processing multiple classification problems of fault diagnosis. The BSVR can simplify the design architecture and reduce the processing time for detection, where m classifier is needed for m class problems compared to the [m(m − 1)]/2 size of the original multi-class SVM. Compared with conventional methods, numerical test results showed a high accuracy, good robustness, and a faster processing performance. |
| Audience | Academic |
| Author | Lin, Whei-Min |
| Author_xml | – sequence: 1 givenname: Whei-Min surname: Lin fullname: Lin, Whei-Min |
| BookMark | eNptkW9LJSEUxiUKaqs3fYKB3gXT6jg6-vJ2d2uDIujfWzk6zuRlrt7Uy9K3z_YuFZGCRw6_5_Hg8wNt--AtQkcEn1Iq8U_rCceCMtFsoT0iJa8J7uj2p_suOkxpgcuilFBK99D1hfU2Qg6xOof1lKtfDkYfkkvVX5efqjOX63nonR-ru_VqFWKuHq15w2_tGG1KLvhqNo0hFnp5gHYGmJI9_F_30cP57_v5n_rq5uJyPruqTYtxrrUkmggsmr6jknegDWekHD3TrBeSYugbNkjGuRgaLqxtGq11D1QzwgEPdB9dbnz7AAu1im4J8UUFcOpfI8RRQczOTFYRIYQFIbSRptVSCAbYUC4H00jSElO8jjdeqxie1zZltQjr6Mv4qhGYMyo7wQp1uqFGKKbODyFHMGX3dulMyWFwpT_r2q5tWyJ5EZxsBCaGlKId3sckWL3FpT7iKjD-AhuXIZe_La-46TvJK7sql6w |
| CitedBy_id | crossref_primary_10_3390_bdcc8110145 |
| Cites_doi | 10.1109/PES.2010.5589500 10.1109/TPWRS.2004.826018 10.1109/94.841806 10.1023/A:1009715923555 10.1007/s11517-006-0027-3 10.1017/CBO9780511801389 10.1109/TPAMI.2010.109 10.1109/TIE.2013.2238871 10.1109/61.584363 10.1109/TPWRD.2004.843462 10.1109/TPWRD.2003.820203 10.1109/JSEN.2022.3163401 10.1109/TPWRD.2018.2879686 10.1016/j.renene.2012.04.031 10.1109/61.956723 10.1002/we.438 10.1109/61.544265 10.1016/S0167-6911(82)80025-X 10.1109/TIE.2014.2363440 10.7551/mitpress/4175.001.0001 10.1117/12.59918 10.1049/ip-gtd:19990164 10.1109/61.847234 10.1109/72.991427 10.1049/ip-gtd:20040538 10.1109/TEC.2012.2189887 10.1002/we.1585 10.1109/TEC.2012.2189008 10.1109/ITEC.2013.6574526 10.1109/TIA.2017.2661841 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/en16083582 |
| DatabaseName | CrossRef ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_1888ea88bc9c4b9885a0c369fc29141c A747444196 10_3390_en16083582 |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c400t-b91b18082d73967abc651bc6d5b5d8930ad25f95668f268ee22bbbda3b516a0f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000976445700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Mon Nov 10 04:29:45 EST 2025 Mon Jun 30 11:12:36 EDT 2025 Tue Nov 04 18:15:28 EST 2025 Sat Nov 29 07:20:43 EST 2025 Tue Nov 18 19:49:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-b91b18082d73967abc651bc6d5b5d8930ad25f95668f268ee22bbbda3b516a0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/1888ea88bc9c4b9885a0c369fc29141c |
| PQID | 2806539785 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1888ea88bc9c4b9885a0c369fc29141c proquest_journals_2806539785 gale_infotracacademiconefile_A747444196 crossref_primary_10_3390_en16083582 crossref_citationtrail_10_3390_en16083582 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Siegel (ref_4) 2014; 17 Wang (ref_38) 2004; 151 Ghazali (ref_22) 2022; 22 ref_14 Deng (ref_36) 1982; 1 ref_34 ref_11 Gong (ref_7) 2012; 27 Gong (ref_6) 2013; 60 Zhang (ref_13) 1996; 11 Huang (ref_16) 1997; 12 ref_19 Smola (ref_29) 2000; 12 ref_17 Entezami (ref_9) 2012; 47 Lin (ref_46) 2004; 19 Lin (ref_41) 2006; 44 Lin (ref_45) 2005; 20 Gong (ref_3) 2015; 62 Ertekin (ref_35) 2011; 33 Li (ref_39) 1999; 22 Bouzid (ref_2) 2017; 53 Lin (ref_12) 2001; 16 Hong (ref_44) 1999; 146 ref_25 Lee (ref_18) 2000; 15 ref_23 Szu (ref_24) 1992; 31 ref_21 Burges (ref_30) 1998; 2 ref_20 Deng (ref_37) 1989; 1 ref_42 Wei (ref_10) 2011; 14 Islam (ref_15) 2000; 7 ref_40 Moulin (ref_32) 2004; 19 ref_28 ref_27 ref_26 Gunn (ref_33) 1998; 14 Liu (ref_43) 2001; 9 ref_8 Hsu (ref_31) 2002; 13 Doorwar (ref_1) 2019; 34 Zhang (ref_5) 2012; 27 |
| References_xml | – ident: ref_8 doi: 10.1109/PES.2010.5589500 – volume: 19 start-page: 818 year: 2004 ident: ref_32 article-title: Support Vector Machines for Transient Stability Analysis of Large-Scale Power Systems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2004.826018 – volume: 7 start-page: 177 year: 2000 ident: ref_15 article-title: A Novel Fuzzy Logic Approach to Transformer Fault Diagnosis publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/94.841806 – volume: 2 start-page: 121 year: 1998 ident: ref_30 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – volume: 44 start-page: 311 year: 2006 ident: ref_41 article-title: Classification Enhancible Grey Relational Analysis for Cardiac Arrhythmias Discrimination publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-006-0027-3 – ident: ref_26 – ident: ref_34 – ident: ref_27 doi: 10.1017/CBO9780511801389 – volume: 33 start-page: 368 year: 2011 ident: ref_35 article-title: Nonconvex Online Support Vector Machines publication-title: IEEE Trans. Pattern Anal. Mach. Intelligence doi: 10.1109/TPAMI.2010.109 – volume: 60 start-page: 3419 year: 2013 ident: ref_6 article-title: Bearing fault diagnosis for direct-drive wind turbines via current-demodulated signals publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2013.2238871 – ident: ref_40 – volume: 14 start-page: 5 year: 1998 ident: ref_33 article-title: Support Vector Machines for Classification and Regression publication-title: ISIS Tech. Rep. – volume: 12 start-page: 761 year: 1997 ident: ref_16 article-title: Developing a new transformer fault diagnosis system through evolutionary fuzzy logic publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.584363 – volume: 20 start-page: 2166 year: 2005 ident: ref_45 article-title: Multiple harmonic source detection and equipment identification with cascade correction network publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2004.843462 – volume: 9 start-page: 22 year: 2001 ident: ref_43 article-title: A New Method for Venturous Capital Pricing publication-title: Chin. J. Manag. Sci. – volume: 19 start-page: 64 year: 2004 ident: ref_46 article-title: Adaptive Multiple Fault Detection and Alarm Processing for Loop System with Probabilistic Network publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2003.820203 – ident: ref_14 – volume: 22 start-page: 8439 year: 2022 ident: ref_22 article-title: Vibration-Based Fault Detection in Drone Using Artificial Intelligence publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3163401 – ident: ref_42 – ident: ref_23 – volume: 34 start-page: 739 year: 2019 ident: ref_1 article-title: A New Internal Fault Detection and Classification Technique for Synchronous Generator publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2018.2879686 – ident: ref_21 – volume: 47 start-page: 175 year: 2012 ident: ref_9 article-title: Fault detection and diagnosis within a wind turbine mechanical braking system using condition monitoring publication-title: Renew. Energy doi: 10.1016/j.renene.2012.04.031 – volume: 16 start-page: 473 year: 2001 ident: ref_12 article-title: A Fault Classification Method by RBF Neural Network with OLS Learning Procedure publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.956723 – volume: 12 start-page: 207 year: 2000 ident: ref_29 article-title: New support vector algorithms publication-title: Neural Comput. – volume: 14 start-page: 491 year: 2011 ident: ref_10 article-title: Sensor and actuator fault diagnosis for wind turbine systems by using robust observer and filter publication-title: Wind Energy doi: 10.1002/we.438 – volume: 11 start-page: 1836 year: 1996 ident: ref_13 article-title: An Artificial Neural Network Approach to Transformer Fault Diagnosis publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.544265 – volume: 1 start-page: 288 year: 1982 ident: ref_36 article-title: Control Problems of Grey Systems publication-title: Syst. Control. Lett. doi: 10.1016/S0167-6911(82)80025-X – volume: 22 start-page: 36 year: 1999 ident: ref_39 article-title: The fuzzy inputting and outputting method in vibration fault diagnosis of steam turbine-generator set publication-title: J. Chongqing Univ. – volume: 62 start-page: 1693 year: 2015 ident: ref_3 article-title: Current-based mechanical fault detection for direct-drive wind turbines via synchronous sampling and impulse detection publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2363440 – ident: ref_25 – ident: ref_28 doi: 10.7551/mitpress/4175.001.0001 – volume: 31 start-page: 1907 year: 1992 ident: ref_24 article-title: Neural Network Adaptive Wavelets for Signal Representation and Classification publication-title: Opt. Eng. doi: 10.1117/12.59918 – volume: 146 start-page: 325 year: 1999 ident: ref_44 article-title: Application of Algorithms and Artificial Intelligence Approach for Locating Multiple Harmonics in Distribution System publication-title: IEE Proc. Gener. Transm. Distrib. doi: 10.1049/ip-gtd:19990164 – volume: 15 start-page: 92 year: 2000 ident: ref_18 article-title: A Fault Diagnosis Expert System for Distribution Substations publication-title: IEEE Trans. Power Syst. doi: 10.1109/61.847234 – volume: 13 start-page: 415 year: 2002 ident: ref_31 article-title: A comparison of methods for multi-class support vector machines publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.991427 – volume: 151 start-page: 503 year: 2004 ident: ref_38 article-title: Application of Extension Theory to Vibration Fault Diagnosis of Generator sets publication-title: IEE Proc. Gener. Transm. Distrib. doi: 10.1049/ip-gtd:20040538 – volume: 27 start-page: 526 year: 2012 ident: ref_5 article-title: Fault analysis and condition monitoring of the wind turbine gearbox publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2012.2189887 – volume: 17 start-page: 695 year: 2014 ident: ref_4 article-title: A comparative study on vibration-based condition monitoring algorithms for wind turbine drive trains publication-title: Wind. Energy doi: 10.1002/we.1585 – volume: 27 start-page: 468 year: 2012 ident: ref_7 article-title: Imbalance fault detection of direct-drive wind turbines using generator current signals publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2012.2189008 – ident: ref_17 – ident: ref_19 – ident: ref_11 doi: 10.1109/ITEC.2013.6574526 – volume: 1 start-page: 1 year: 1989 ident: ref_37 article-title: Introduction to Grey System Theory publication-title: J. Grey Syst. – ident: ref_20 – volume: 53 start-page: 2762 year: 2017 ident: ref_2 article-title: An Efficient Simplified Physical Faulty Model of a Permanent Magnet Synchronous Generator Dedicated to Stator Fault Diagnosis Part II: Automatic Stator Fault Diagnosis publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2017.2661841 |
| SSID | ssj0000331333 |
| Score | 2.325698 |
| Snippet | Generator fault diagnosis has a great impact on power networks. With the coupling effects, some uncertain factors, and all the complexities of generator... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3582 |
| SubjectTerms | Algorithms bit-coding support vector regression (BSVR) Classification Comparative analysis Design Fault diagnosis Fuzzy logic generator fault diagnosis (GFD) Neural networks support vector machine (SVM) support vector regression (SVR) Turbines Vibration |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5BlwMclueKwoIsgYQ4RI3jR-0T6i5UILGrCsFqOVl-pVQq6dJm9_czTtwuSMCJSw6JpTgZz8w34_E3AC8ds4JJVhac4grmOuhCW0sLFVQtA7c2dtUWZx_Hp6fq_FzP8vHoTS6r3NrEzlD3bM-pbhuN8CisfMqYj7r9QHSlSry5-FGkHlJprzU31LgJe4l4qxzA3uzDyezrLudSMoYhGetZShlG-6PYUJlAiKp-80sdff_fjHTneaZ3_--c78F-RqBk0i-Z-3AjNg_gzi-8hA_hpCejxnCcTO3lsiVv-4K8xYakvC05WrTF8Sp5PZK6giKCJ2dd9p98ivO-sLYhk-Uc395--_4IvkzffT5-X-S-C4VHjW4Lp6mjCrFBGDMtx9Z5KShegnAiIL4pbahEjYGVVHUlVYxV5ZwLljlBpS1rdgCDZtXEx0C8ZjKgkxSWBe5qrkut3NgHoWpuEb0M4fX2rxufSclTb4ylweAkSchcS2gIL3ZjL3oqjj-OOkrC241I9NndjdV6brI2Gopxf7RKOa89d1opYUvPpK59pSmnfgivkuhNUnKcjrf5rAJ-VKLLMhMMwjgCSS2HcLgVvcnavzHXkn7y78dP4XZqX99XAh3CoF1fxmdwy1-1i836eV6-PwGArwBM priority: 102 providerName: ProQuest |
| Title | Generator Fault Diagnosis with Bit-Coding Support Vector Regression Algorithm |
| URI | https://www.proquest.com/docview/2806539785 https://doaj.org/article/1888ea88bc9c4b9885a0c369fc29141c |
| Volume | 16 |
| WOSCitedRecordID | wos000976445700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hwgEOiKcILZUlkBCHVdfrx9rHpCQCiURRBVU5WX5tFSlsULLtkd_OeL0tQQJx4bIHaw7eGdvzfd7ZbwDeOGYFk6wsOMUVzHXQhbaWFiqoRgZubeyrLc4_1YuFurjQy71WX6kmLMsDZ8edUKRo0SrlvPbcaaWELT2TuvGVppz6dPqWtd4jU_0ZzBiSL5b1SBny-pPYUpnghqp-y0C9UP_fjuM-x8wewcMBHJJxntRjuBPbJ_BgTzLwKcyzTjQyZTKzV-uOvM-1cqsdSVeqZLLqitNNSkgkNexEcE3O-4t5chYvc81rS8bry80Wrb89gy-z6efTD8XQEqHwuNm6wmnqqMK0HWqmZW2dl4LiIwgnAkKP0oZKNMh5pGoqqWKsKudcsMwJKm3ZsOdw0G7a-AKI10wGzF_CssBdw3Wplat9EKrhFoHFCN7duMn4QS88ta1YG-QNyaXml0tH8PrW9ntWyfij1SR5-9YiKVv3AxhvM8Tb_CveI3ibYmXS_sPpeDv8RoAvlZSszBj5EUeMp-UIjm7CaYaNuTP9h2TEYEq8_B-zOYT7qf98LuU5goNuexVfwT1_3a1222O4O5kulmfH_drE5_zHFMeWH-fLrz8BZh3pfw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48EYNFFgJEOJg1fauN7sHhNKWqFGTKEKlak9mX04jBbskLog_xW9k1o8UJODWAxcf7JXl3f0838zu7DcALzVVCeU0DFiECGbSykAqFQXCioxbppSrsi2OR73JRJycyOkG_GjPwvi0ytYmVobaFsavke9UO4BIniJ5d_4l8FWj_O5qW0KjhsWh-_4NQ7bV2-E-zu-rOB68P9o7CJqqAoFBvJaBlpGOBDKf7VHJe0obnkR4sYlOLLJ3qGycZBg2cJHFXDgXx1prq6hOIq7CjOJ7r8EmQ7CHHdicDsfT0_WqTkgpBn201kGlVIY7Lo-4d3NE_BvzVQUC_kYDFbcN7vxvo3IXbjdeNOnXsL8HGy6_D7d-0VZ8AONaULsslmSgLhYl2a-TCucr4teeye68DPYKz9zEVzbFKIQcVzsY5IOb1cnBOekvZtjb8uzzQ_h4Jf15BJ28yN0WECMpt0j0iaKW6YzJUArdMzYRGVPogXXhTTuvqWmE1X19j0WKAZbHQHqJgS68WLc9r-VE_thq18Nj3cJLgFc3iuUsbSxKGgkhnBJCG2mYlkIkKjSUy8zEMmKR6cJrD67UGyr8HKOa8xbYKS_5lfYxkGToDEvehe0WXGljwVbpJbIe__vxc7hxcDQepaPh5PAJ3IzRCawzm7ahUy4v3FO4br6W89XyWfOzEPh01Uj8CZNpUe8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aG0Jw4DdaYYAlQIhD1DhOXPuAULuuYtqoqgmm3Tz_SqnUJaPNQPxr_HU8J2kHEnDbgUsOiRPF8Zf33mc_fw_gpWE6Y5zFUUoRwal0MpJa00g4kXOXau3rbIvjw954LE5O5GQDfqz2woS0ypVNrA21K22YI-_WK4DoPEXWzdu0iMlw9O78SxQqSIWV1lU5jQYiB_77N6Rvy7f7QxzrV0ky2vu4-z5qKwxEFrFbRUZSQwV6Qddjkve0sTyjeHCZyRx68li7JMuRQnCRJ1x4nyTGGKeZySjXcc7wuddgC2-mSPy2BnvjydF6hidmDAkgazRRGZNx1xeUh5BHJL95wbpYwN9cQu3nRnf-5y90F2630TXpN7_DPdjwxX249Yvm4gP40AhtV-WCjPTFvCLDJtlwtiRhTpoMZlW0WwaPTkLFU2Qn5Lhe2SBHftokDRekP59ib6vPZw_h05X05xFsFmXht4FYybjDACDTzKUmT2UshelZl4k81RiZdeDNaoyVbQXXQ92PuULiFfCgLvHQgRfrtueNzMgfWw0CVNYtgjR4faJcTFVraRQVQngthLHSpkYKkenYMi5zm0iaUtuB1wFoKhgwfB2r230Y2KkgBab6SDBTDJIl78DOCmiqtWxLdYmyx_--_BxuIPzU4f744AncTDA2bBKedmCzWlz4p3Ddfq1my8Wz9r8hcHrVQPwJTShaiQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generator+Fault+Diagnosis+with+Bit-Coding+Support+Vector+Regression+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Whei-Min+Lin&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=16&rft.issue=8&rft.spage=3582&rft_id=info:doi/10.3390%2Fen16083582&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1888ea88bc9c4b9885a0c369fc29141c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |