Distribution Network Reconfiguration Optimization Using a New Algorithm Hyperbolic Tangent Particle Swarm Optimization (HT-PSO)
This paper introduces an innovative approach to address the distribution network reconfiguration (DNR) challenge, aiming to reduce power loss through an advanced hyperbolic tangent particle swarm optimization (HT-PSO) method. This approach is distinguished by the adoption of a novel hyperbolic tange...
Saved in:
| Published in: | Energies (Basel) Vol. 17; no. 15; p. 3798 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.08.2024
|
| Subjects: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper introduces an innovative approach to address the distribution network reconfiguration (DNR) challenge, aiming to reduce power loss through an advanced hyperbolic tangent particle swarm optimization (HT-PSO) method. This approach is distinguished by the adoption of a novel hyperbolic tangent function, which effectively limits the rate of change values, offering a significant improvement over traditional sigmoid function-based methods. A key feature of this new approach is the integration of a tunable parameter, δ, into the HT-PSO, enhancing the curve’s adaptability. The careful optimization of δ ensures superior control over the rate of change across the entire operational range. This enhanced control mechanism substantially improves the efficiency of the search and convergence processes in DNR. Comparative simulations conducted on 33- and 94-bus systems show an improvement in convergence, demonstrating a more exhaustive exploration of the search space than existing methods documented in the literature based on PSO and variations where functions are proposed for the rate of change of values. |
|---|---|
| AbstractList | This paper introduces an innovative approach to address the distribution network reconfiguration (DNR) challenge, aiming to reduce power loss through an advanced hyperbolic tangent particle swarm optimization (HT-PSO) method. This approach is distinguished by the adoption of a novel hyperbolic tangent function, which effectively limits the rate of change values, offering a significant improvement over traditional sigmoid function-based methods. A key feature of this new approach is the integration of a tunable parameter, δ, into the HT-PSO, enhancing the curve’s adaptability. The careful optimization of δ ensures superior control over the rate of change across the entire operational range. This enhanced control mechanism substantially improves the efficiency of the search and convergence processes in DNR. Comparative simulations conducted on 33- and 94-bus systems show an improvement in convergence, demonstrating a more exhaustive exploration of the search space than existing methods documented in the literature based on PSO and variations where functions are proposed for the rate of change of values. |
| Audience | Academic |
| Author | Ñaupari, Zocimo Luyo, J. E. Molina, Y. P. Atoccsa, Brayan A. Puma, David W. |
| Author_xml | – sequence: 1 givenname: David W. orcidid: 0000-0003-1418-0375 surname: Puma fullname: Puma, David W. – sequence: 2 givenname: Y. P. orcidid: 0000-0002-7667-2554 surname: Molina fullname: Molina, Y. P. – sequence: 3 givenname: Brayan A. orcidid: 0000-0003-0384-2863 surname: Atoccsa fullname: Atoccsa, Brayan A. – sequence: 4 givenname: J. E. orcidid: 0000-0002-1890-8127 surname: Luyo fullname: Luyo, J. E. – sequence: 5 givenname: Zocimo orcidid: 0000-0002-8204-516X surname: Ñaupari fullname: Ñaupari, Zocimo |
| BookMark | eNptUU1v1DAUtFCRKKUXfkEkLlApxS-O4-S4KpStVLEV3Z4tfwYvib04Xq3Khb-O2VR8VPU7-Hk0Mx699xId-eANQq8BnxPS4ffGAwNKWNc-Q8fQdU0JmJGjf_oX6HSaNjgfQoAQcox-fnBTik7ukgu--GzSPsRvxRejgreu30VxwFfb5Eb3Y37cTc73hcjkfbEY-hBd-joWy_utiTIMThVr4XvjU3EjYnJqMMXtXsTxf5O3y3V5c7t69wo9t2KYzOnDfYLuLj-uL5bl9erT1cXiulQ1xqmUjNaVaSS1AB1QZUmlBKuVYW2tgdlWKdnUrdEgoLEKmsqAkG3LdCbUUpITdDX76iA2fBvdKOI9D8LxAxBizx_Scmgp7RqmmKakNkzLTgkNlTUCNABusteb2Wsbw_edmRLfhF30OT4nuMuFK-gy63xm9SKbOm9DikLl0mZ0ebzGuowvWlxTqGhLs-BsFqgYpika-ycmYP57wfzvgjMZPyIrlw6jzb-44SnJL9Eqqn8 |
| CitedBy_id | crossref_primary_10_1049_enc2_70012 crossref_primary_10_3390_electricity6020020 |
| Cites_doi | 10.1016/j.eswa.2021.115914 10.3390/en16207185 10.1016/j.rser.2015.07.004 10.20944/preprints202401.2141.v1 10.1109/TII.2021.3123532 10.1109/ACCESS.2019.2918480 10.1007/s11063-020-10290-z 10.1016/j.epsr.2020.106905 10.1109/61.25627 10.1109/ACCESS.2024.3350207 10.1016/j.compeleceng.2020.106893 10.35833/MPCE.2022.000425 10.1109/TPWRS.2011.2161349 10.1109/TAP.2017.2778763 10.1109/TII.2017.2708724 10.1016/j.enconman.2011.09.014 10.1109/TASE.2021.3072862 10.1016/j.asoc.2022.109828 10.3390/su15119034 10.1016/j.eswa.2022.118994 10.1109/61.141868 10.1007/s12667-016-0195-7 10.3390/en16145503 10.3390/electronics13030616 10.1007/s00202-020-01150-z 10.1016/j.epsr.2018.12.030 10.3390/biomimetics8050431 10.1016/j.energy.2021.123011 10.1109/TPWRD.2003.813641 10.1109/ISDA.2008.156 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/en17153798 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_1855967c7d534e7db9cad12fea1d1106 A804512585 10_3390_en17153798 |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c400t-b7542e6b5f11915cf32ca74ce784d17f8ccb648ed1a16fc162e1ab887d7844bb3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001287097100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:43:21 EDT 2025 Mon Jun 30 17:27:25 EDT 2025 Tue Nov 04 18:17:23 EST 2025 Tue Nov 18 21:49:21 EST 2025 Sat Nov 29 07:18:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-b7542e6b5f11915cf32ca74ce784d17f8ccb648ed1a16fc162e1ab887d7844bb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0384-2863 0000-0002-1890-8127 0000-0002-8204-516X 0000-0002-7667-2554 0000-0003-1418-0375 |
| OpenAccessLink | https://www.proquest.com/docview/3090900219?pq-origsite=%requestingapplication% |
| PQID | 3090900219 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1855967c7d534e7db9cad12fea1d1106 proquest_journals_3090900219 gale_infotracacademiconefile_A804512585 crossref_primary_10_3390_en17153798 crossref_citationtrail_10_3390_en17153798 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Silva (ref_10) 2021; 103 ref_14 ref_13 ref_12 ref_17 Baran (ref_29) 1989; 4 Su (ref_34) 2003; 18 Nguyen (ref_9) 2020; 2020 Dong (ref_33) 2017; 66 Lee (ref_27) 2008; Volume 1 Khalil (ref_31) 2012; 3 Gerez (ref_1) 2019; 7 Helmi (ref_2) 2022; 19 Fathi (ref_15) 2023; 132 Naderipour (ref_18) 2022; 187 Lavorato (ref_22) 2011; 27 Zobaa (ref_32) 2017; 13 ref_23 Saraiva (ref_26) 2021; 192 ref_20 Pegado (ref_8) 2019; 169 Behbahani (ref_3) 2024; 12 Jordehi (ref_5) 2015; 51 Shan (ref_6) 2022; 18 ref_28 Goswami (ref_30) 1992; 7 Niknam (ref_21) 2012; 54 Wang (ref_19) 2022; 244 Dennis (ref_24) 2020; 52 Nguyen (ref_11) 2021; 90 Laishram (ref_25) 2023; 213 ref_7 Azizi (ref_16) 2023; 11 Mishra (ref_4) 2017; 8 |
| References_xml | – ident: ref_28 – volume: 187 start-page: 115914 year: 2022 ident: ref_18 article-title: An improved corona-virus herd immunity optimizer algorithm for network reconfiguration based on fuzzy multi-criteria approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115914 – ident: ref_12 doi: 10.3390/en16207185 – volume: 51 start-page: 1088 year: 2015 ident: ref_5 article-title: Optimisation of electric distribution systems: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.07.004 – ident: ref_20 doi: 10.20944/preprints202401.2141.v1 – volume: 18 start-page: 5115 year: 2022 ident: ref_6 article-title: A Holistic Power Management Strategy of Microgrids Based on Model Predictive Control and Particle Swarm Optimization publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3123532 – volume: 7 start-page: 67874 year: 2019 ident: ref_1 article-title: Distribution Network Reconfiguration Using Selective Firefly Algorithm and a Load Flow Analysis Criterion for Reducing the Search Space publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918480 – volume: 52 start-page: 1123 year: 2020 ident: ref_24 article-title: An analysis of activation function saturation in particle swarm optimization trained neural networks publication-title: Neural Process. Lett. doi: 10.1007/s11063-020-10290-z – volume: 192 start-page: 106905 year: 2021 ident: ref_26 article-title: A two-stage constructive heuristic algorithm to handle integer investment variables in transmission network expansion planning publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106905 – volume: 4 start-page: 1401 year: 1989 ident: ref_29 article-title: Network reconfiguration in distribution systems for loss reduction and load balancing publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.25627 – volume: 12 start-page: 9510 year: 2024 ident: ref_3 article-title: Comprehensive Review on Static and Dynamic Distribution Network Reconfiguration Methodologies publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3350207 – volume: 90 start-page: 106893 year: 2021 ident: ref_11 article-title: Optimization of electric distribution network configuration for power loss reduction based on enhanced binary cuckoo search algorithm publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2020.106893 – volume: 11 start-page: 212 year: 2023 ident: ref_16 article-title: Reconfiguration of Active Distribution Networks Equipped with Soft Open Points Considering Protection Constraints publication-title: J. Mod. Power Syst. Clean Energy doi: 10.35833/MPCE.2022.000425 – volume: 27 start-page: 172 year: 2011 ident: ref_22 article-title: Imposing radiality constraints in distribution system optimization problems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2011.2161349 – volume: 66 start-page: 564 year: 2017 ident: ref_33 article-title: Design of fragment-type antenna structure using an improved BPSO publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2017.2778763 – ident: ref_23 – volume: 13 start-page: 3124 year: 2017 ident: ref_32 article-title: Integrated mutation strategy with modified binary PSO algorithm for optimal PMUs placement publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2708724 – volume: 54 start-page: 7 year: 2012 ident: ref_21 article-title: A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for distribution feeder reconfiguration publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2011.09.014 – volume: 19 start-page: 82 year: 2022 ident: ref_2 article-title: Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2021.3072862 – volume: 132 start-page: 109828 year: 2023 ident: ref_15 article-title: Allocation of renewable resources with radial distribution network reconfiguration using improved salp swarm algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109828 – ident: ref_14 doi: 10.3390/su15119034 – volume: 213 start-page: 118994 year: 2023 ident: ref_25 article-title: Optimized hyperbolic tangent function-based contrast-enhanced mammograms for breast mass detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118994 – volume: 7 start-page: 1484 year: 1992 ident: ref_30 article-title: A new algorithm for the reconfiguration of distribution feeders for loss minimization publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.141868 – volume: 8 start-page: 227 year: 2017 ident: ref_4 article-title: A comprehensive review on power distribution network reconfiguration publication-title: Energy Syst. doi: 10.1007/s12667-016-0195-7 – ident: ref_7 doi: 10.3390/en16145503 – ident: ref_17 doi: 10.3390/electronics13030616 – volume: 103 start-page: 1127 year: 2021 ident: ref_10 article-title: Reduced search space combined with particle swarm optimization for distribution system reconfiguration publication-title: Electr. Eng. doi: 10.1007/s00202-020-01150-z – volume: 169 start-page: 206 year: 2019 ident: ref_8 article-title: Radial distribution network reconfiguration for power losses reduction based on improved selective BPSO publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2018.12.030 – ident: ref_13 doi: 10.3390/biomimetics8050431 – volume: 244 start-page: 123011 year: 2022 ident: ref_19 article-title: Distribution network reconfiguration with distributed generation based on parallel slime mould algorithm publication-title: Energy doi: 10.1016/j.energy.2021.123011 – volume: 18 start-page: 1022 year: 2003 ident: ref_34 article-title: Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2003.813641 – volume: 3 start-page: 2045 year: 2012 ident: ref_31 article-title: Selective particle swarm optimization publication-title: Int. J. Multidiscip. Sci. Eng. (IJMSE) – volume: Volume 1 start-page: 474 year: 2008 ident: ref_27 article-title: Bounded PSO Vmax function in neural network learning publication-title: Proceedings of the 2008 Eighth International Conference on Intelligent Systems Design and Applications doi: 10.1109/ISDA.2008.156 – volume: 2020 start-page: 2420171 year: 2020 ident: ref_9 article-title: Optimal network reconfiguration to reduce power loss using an initial searching point for continuous genetic algorithm publication-title: Complexity |
| SSID | ssj0000331333 |
| Score | 2.3884568 |
| Snippet | This paper introduces an innovative approach to address the distribution network reconfiguration (DNR) challenge, aiming to reduce power loss through an... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3798 |
| SubjectTerms | Algorithms delta optimized value Discovery and exploration distribution network reconfiguration Efficiency Energy Genetic algorithms hyperbolic tangent Load Mathematical optimization Methods Optimization Outer space particle swarm optimization rate of change |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA9FPNSDaGtx1ZZABfUwaCYzyeS4_ZA9yLrgCt5CPnXBHWVc67H_et_LRLtCSy9lbsNjyLzvH7z8HiH7UjgvlLMFstcV6BQFVDlfCOOkiFhwQiJxPZPjcXN1pSZLq75wJqynB-4Vdwz1pFZCOulrXgXprXLGszIGwzx8KZFtQ9ezBKZSDuYcwBfv-Ug54Prj0DIJ0S1V86oCJaL-v6XjVGNON8h6bg7psD_UJnkT2ndkbYky8D35-Q2ZbvOSKjruh7gpgsg2zq4fe3vSc0gE83zDkqapAGpA-IkOb6_vutniZk5HAEA7i6zAdGrSBSs6ydqgF0-mm7_-yOFoWkwuzo-2yOXp9-nXUZGXKBQOwnNRWFxxG4StI1K51S7y0hlZuSCbyjMZG-esqJrgmWEiOibKwIyF1ONBoLKWfyAr7V0btgm1qrY1BD1gOFXJRlhho5CWxcpzd6LCgBw9K1a7zDCOiy5uNSANNIL-bYQB-fwie9_zavxR6gva50UCubDTC_AQnXWi_-UhA3KA1tUYsXAcZ_LFA_gp5L7SwwY5dkrATQOy9-wAOofyg-YnCh5ohdTO_zjNLnlbQl_UzxDukZVF9xg-klX3YzF76D4lL_4F8qP3bQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Distribution Network Reconfiguration Optimization Using a New Algorithm Hyperbolic Tangent Particle Swarm Optimization (HT-PSO) |
| URI | https://www.proquest.com/docview/3090900219 https://doaj.org/article/1855967c7d534e7db9cad12fea1d1106 |
| Volume | 17 |
| WOSCitedRecordID | wos001287097100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELeg4wEe-EYUxmQJJNhDtDpO7PgJddCpSKyLWJHGU-TPMmlNR9qxN_jXuUvcjknAC4qUB-eUOPHPd77L-XeEvJLCOqGsSZC9LkFQJGDlXCK0lSKgwfEtietHOZkUJyeqjAG3ZUyrXOvEVlG7hcUY-R4fKDjAIqm3598SrBqFf1djCY2bZAuZyrIe2dofTcpPmyjLgHNwwnjHS8rBv9_zNZMwy6UqrlmilrD_b2q5tTUH9_63l_fJ3bjKpMMOFg_IDV8_JHd-4x58RH6-R8rcWO2KTrpscIreaB1OZxcdMOgRaJR53KpJ2_QCqkH4kg7PZvDc1dc5HYMn2xikF6ZT3e7UomXEIz2-1M38-k3ejKdJeXy0-5h8PhhN342TWI0hsTDPV4nBWrlemDwgJ1xuA0-tlpn1ssgck6Gw1ois8I5pJoJlIvVMG9BhDgQyY_gT0qsXtX9KqFG5yUF7gDOoMlkII0wQ0rCQOW4HyvfJ7npkKhupyrFixlkFLguOYnU1in3yciN73hF0_FFqHwd4I4Gk2m3DoplV8ZtUsHTJlZBWupxnXjqjrHYsDV4zB6AVffIa4VHh1IfuWB13MMBLIYlWNSyQrCcFB6xPttfwqKJOWFZX2Hj278vPye0Ulk5dmuE26a2aC_-C3LLfV6fLZidCfKeNHsD58McI2soPh-WXX5L9Cok |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKiwQceCMWClgCBD1E3cSJHR8Q2tJWW3VJV3Qr9WbiR5ZK3WzJbllx4h_xG5lJnC2VgFsPKLdkZMXONzMeZ-YbQl4JbiyXRgfIXhcgKALwcjbguRG8QIfjahLXgciy9PhYDlfIz7YWBtMqW5tYG2o7NXhGvsm6Ei7wSPL92dcAu0bh39W2hUYDi333fQEh2-zd3jZ839dRtLsz-tAPfFeBwABe54HGnq-O66RAbrPEFCwyuYiNE2lsQ1Gkxmgep86GecgLE_LIhbkGXbQgEGvNYNxrZC1msQC9WtvayYaflqc6XcYg6GMNDypjsrvpylCAVREyveT56gYBf3MDtW_bvfO_rcpdctvvommvgf09suLK--TWb9yKD8iPbaQE9t28aNZku1OMtsviZHzeAJ8egMWc-FJUWqdP0ByEF7R3OoZ5zr9MaB8i9UojfTId5XUlGh16faOHi7yaXB7kbX8UDA8PNh6SoytZgUdktZyW7jGhWiY6AesIwa6MRco11wUXOixiy0xXug7ZaJGgjKdix44gpwpCMkSNukBNh7xcyp41BCR_lNpCQC0lkDS8vjGtxsqviYKtWSK5MMImLHbCamlyG0aFy0MLSsk75A3CUaFpg9cxua_QgEkhSZjqpUhGFEGA2SHrLRyVt3kzdYHFJ_9-_ILc6I8-DtRgL9t_Sm5GsE1sUirXyeq8OnfPyHXzbX4yq5579aLk81Vj9xdegGRr |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELfGhhA88I0oDLAECPYQtYkTO35AqFCqVhtdpBVpezL-LJPWdLQdFU_8X_x1nBOnYxLwtgeUt-Rkxc7v7nzO3e8QesGoNpRrFXn2usiDIgIvZyIqNaPOOxxbkbjusdEoPzzkxQb62dTC-LTKxiZWhtrMtD8jb5MOhws8Em-7kBZR9PpvT79GvoOU_9PatNOoIbJrv68gfFu8GfbgW79Mkv6H8ftBFDoMRBqwu4yU7_9qqcqc5znLtCOJlizVluWpiZnLtVY0za2JZUydjmliY6lALw0IpEoRGPcK2oIteQo6tlUMPxZH6xOeDiEQAJKaE5UQ3mnbMmZgYRjPL3jBqlnA31xC5ef6t_7nFbqNbobdNe7W6nAHbdjyLrrxG-fiPfSj56mCQ5cvPKqz4LGPwkt3PDmrFQLvgyWdhhJVXKVVYAnCK9w9mcA8l1-meAAR_Fx5WmU8llWFGi6CHuKDlZxPLw7yejCOioP9nfvo06WswAO0Wc5K-xBhxTOVgdWEIJinLKeKKkeZil1qiO5w20I7DSqEDhTtvlPIiYBQzSNInCOohZ6vZU9rYpI_Sr3z4FpLeDLx6sZsPhFhTQRs2TJOmWYmI6llRnEtTZw4K2MDykpb6JWHpvAmD15Hy1C5AZPy5GGim3uSogQCzxbabqApgi1ciHNcPvr342foGgBW7A1Hu4_R9QR2j3Wm5TbaXM7P7BN0VX9bHi_mT4OmYfT5sqH7C2xMbV0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution+Network+Reconfiguration+Optimization+Using+a+New+Algorithm+Hyperbolic+Tangent+Particle+Swarm+Optimization+%28HT-PSO%29&rft.jtitle=Energies+%28Basel%29&rft.au=Puma%2C+David+W&rft.au=Molina%2C+Y+P&rft.au=Atoccsa%2C+Brayan+A&rft.au=Luyo%2C+J+E&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=17&rft.issue=15&rft.spage=3798&rft_id=info:doi/10.3390%2Fen17153798&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |