Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm
This paper proposes a general method to optimize the structure and load current for a segmented thermoelectric generator (TEG) module, where the bismuth telluride is selected as the cold side material, and the skutterudite is selected as the hot side material, respectively. Two objectives, minimum s...
Uloženo v:
| Vydáno v: | Energy (Oxford) Ročník 147; s. 1060 - 1069 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
15.03.2018
Elsevier BV |
| Témata: | |
| ISSN: | 0360-5442, 1873-6785 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes a general method to optimize the structure and load current for a segmented thermoelectric generator (TEG) module, where the bismuth telluride is selected as the cold side material, and the skutterudite is selected as the hot side material, respectively. Two objectives, minimum semiconductor volume V′ and maximum output power P, are simultaneously considered to assess the performance of the TEG module. All the simulation models to be optimized by the multi-objective genetic algorithm are established and solved by finite element method, where the Thomson effect, in conjunction with Peltier effect, Joule heating, and Fourier heat conduction are simultaneously considered. In order to achieve the ultimate optimal design, TOPSIS (technique for order preference by similarity to an ideal solution) is employed to determine the best compromise solution. The results of Pareto solutions show that V′ varies from 432 mm3 to 3868 mm3, while P varies from 5.523 W to 56.293 W, respectively. Meanwhile, optimal design variables are investigated to provide practical guidance for the industrial applications. The mechanism of performance improvement has also been explained in this work by comparing the optimal segmented TEG and the skutterudite TEG.
•Geometry and operating conditions of a thermoelectric generator are optimized.•Optimal solutions are obtained by coupling simulation and genetic algorithm.•TOPSIS technique is employed to determine the best compromised solution.•Effects of various input parameters on two objectives are reported. |
|---|---|
| AbstractList | This paper proposes a general method to optimize the structure and load current for a segmented thermoelectric generator (TEG) module, where the bismuth telluride is selected as the cold side material, and the skutterudite is selected as the hot side material, respectively. Two objectives, minimum semiconductor volume V′ and maximum output power P, are simultaneously considered to assess the performance of the TEG module. All the simulation models to be optimized by the multi-objective genetic algorithm are established and solved by finite element method, where the Thomson effect, in conjunction with Peltier effect, Joule heating, and Fourier heat conduction are simultaneously considered. In order to achieve the ultimate optimal design, TOPSIS (technique for order preference by similarity to an ideal solution) is employed to determine the best compromise solution. The results of Pareto solutions show that V′ varies from 432 mm3 to 3868 mm3, while P varies from 5.523 W to 56.293 W, respectively. Meanwhile, optimal design variables are investigated to provide practical guidance for the industrial applications. The mechanism of performance improvement has also been explained in this work by comparing the optimal segmented TEG and the skutterudite TEG. This paper proposes a general method to optimize the structure and load current for a segmented thermoelectric generator (TEG) module, where the bismuth telluride is selected as the cold side material, and the skutterudite is selected as the hot side material, respectively. Two objectives, minimum semiconductor volume V′ and maximum output power P, are simultaneously considered to assess the performance of the TEG module. All the simulation models to be optimized by the multi-objective genetic algorithm are established and solved by finite element method, where the Thomson effect, in conjunction with Peltier effect, Joule heating, and Fourier heat conduction are simultaneously considered. In order to achieve the ultimate optimal design, TOPSIS (technique for order preference by similarity to an ideal solution) is employed to determine the best compromise solution. The results of Pareto solutions show that V′ varies from 432 mm3 to 3868 mm3, while P varies from 5.523 W to 56.293 W, respectively. Meanwhile, optimal design variables are investigated to provide practical guidance for the industrial applications. The mechanism of performance improvement has also been explained in this work by comparing the optimal segmented TEG and the skutterudite TEG. •Geometry and operating conditions of a thermoelectric generator are optimized.•Optimal solutions are obtained by coupling simulation and genetic algorithm.•TOPSIS technique is employed to determine the best compromised solution.•Effects of various input parameters on two objectives are reported. This paper proposes a general method to optimize the structure and load current for a segmented thermoelectric generator (TEG) module, where the bismuth telluride is selected as the cold side material, and the skutterudite is selected as the hot side material, respectively. Two objectives, minimum semiconductor volume V′ and maximum output power P, are simultaneously considered to assess the performance of the TEG module. All the simulation models to be optimized by the multi-objective genetic algorithm are established and solved by finite element method, where the Thomson effect, in conjunction with Peltier effect, Joule heating, and Fourier heat conduction are simultaneously considered. In order to achieve the ultimate optimal design, TOPSIS (technique for order preference by similarity to an ideal solution) is employed to determine the best compromise solution. The results of Pareto solutions show that V′ varies from 432 mm³ to 3868 mm³, while P varies from 5.523 W to 56.293 W, respectively. Meanwhile, optimal design variables are investigated to provide practical guidance for the industrial applications. The mechanism of performance improvement has also been explained in this work by comparing the optimal segmented TEG and the skutterudite TEG. |
| Author | Ge, Ya Sun, Henan Liu, Wei Liu, Zhichun |
| Author_xml | – sequence: 1 givenname: Ya surname: Ge fullname: Ge, Ya – sequence: 2 givenname: Zhichun surname: Liu fullname: Liu, Zhichun email: zcliu@hust.edu.cn – sequence: 3 givenname: Henan surname: Sun fullname: Sun, Henan – sequence: 4 givenname: Wei surname: Liu fullname: Liu, Wei |
| BookMark | eNqNkc1u1TAQhS1UJG4Lb8AiEhs2CXYS_4QFEqr4kyp1A2vLsSepo8S-2E6lvgMPzdxeVl0AK4_H3zljzbkkFyEGIOQ1ow2jTLxbGgiQ5oempUw1lDV0GJ6RA1Oyq4VU_IIcaCdozfu-fUEuc14opVwNw4H8uj0Wv5m1cpD9HKo4VabKMG8QCriq3EHaIqxgS_K2mk9zTImpGk3G5xiQSAC18yjIPgZ0CvsGCGOV_bavpmC7MsFVeCm-juOCbv4eHt0Kupp1jsmXu-0leT6ZNcOrP-cV-fH50_frr_XN7Zdv1x9vattTWmojx2mUUjhhWugcHyxXoxKjA2MV9gfBKeslYkZAP8E4ia6dHNZCyJGJ7oq8PfseU_y5Qy5689nCupoAcc-65bLvJOPiP1DKO6UUFQzRN0_QJe4JN3Ki8EtcDi1Fqj9TNsWcE0z6mDCA9KAZ1ac09aLPaepTmpoyjWmi7P0TmfXlcbUlGb_-S_zhLAZc6r2HpLP1ECw4nzAL7aL_u8FvTm7DSg |
| CitedBy_id | crossref_primary_10_1016_j_energy_2024_130574 crossref_primary_10_3390_en16114473 crossref_primary_10_1016_j_enconman_2021_114529 crossref_primary_10_1016_j_energy_2019_07_179 crossref_primary_10_3390_en15082944 crossref_primary_10_1016_j_enconman_2020_112744 crossref_primary_10_1016_j_energy_2023_128294 crossref_primary_10_1016_j_energy_2023_126824 crossref_primary_10_1016_j_energy_2021_123032 crossref_primary_10_1080_15435075_2023_2200438 crossref_primary_10_1016_j_anucene_2024_110750 crossref_primary_10_1007_s11664_019_07351_y crossref_primary_10_1016_j_ceramint_2024_10_371 crossref_primary_10_1007_s11664_022_10072_4 crossref_primary_10_1016_j_tsep_2023_102245 crossref_primary_10_1016_j_ijthermalsci_2020_106787 crossref_primary_10_1007_s42114_022_00471_w crossref_primary_10_1016_j_ecmx_2025_101221 crossref_primary_10_1016_j_applthermaleng_2023_122298 crossref_primary_10_3233_JCM_226874 crossref_primary_10_1016_j_apenergy_2019_04_103 crossref_primary_10_1038_s41524_025_01769_1 crossref_primary_10_1016_j_cep_2021_108369 crossref_primary_10_1002_er_6467 crossref_primary_10_1016_j_jpowsour_2019_04_099 crossref_primary_10_1016_j_applthermaleng_2022_119797 crossref_primary_10_1016_j_energy_2021_119967 crossref_primary_10_1016_j_energy_2025_134469 crossref_primary_10_3390_pr11051498 crossref_primary_10_1016_j_heliyon_2023_e13590 crossref_primary_10_3390_math11061326 crossref_primary_10_1088_1742_6596_1982_1_012185 crossref_primary_10_1002_adem_202301609 crossref_primary_10_1016_j_egyr_2019_12_011 crossref_primary_10_3390_en17051016 crossref_primary_10_1016_j_applthermaleng_2024_123098 crossref_primary_10_1038_s41467_021_23944_w crossref_primary_10_1016_j_applthermaleng_2024_124101 crossref_primary_10_1016_j_apenergy_2025_126358 crossref_primary_10_1080_15567036_2024_2386372 crossref_primary_10_1007_s11182_022_02497_5 crossref_primary_10_1007_s40243_024_00293_4 crossref_primary_10_1016_j_compstruct_2019_111484 crossref_primary_10_1016_j_energy_2019_01_003 crossref_primary_10_1016_j_energy_2025_135046 crossref_primary_10_52254_1857_0070_2022_1_53_03 crossref_primary_10_1002_er_6416 crossref_primary_10_1016_j_applthermaleng_2022_119518 crossref_primary_10_1016_j_tsep_2020_100817 crossref_primary_10_1002_er_5960 crossref_primary_10_1016_j_ijthermalsci_2019_106133 crossref_primary_10_1016_j_apenergy_2020_115296 crossref_primary_10_1016_j_energy_2021_122934 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125638 crossref_primary_10_3390_en17092094 crossref_primary_10_1016_j_apenergy_2021_116952 crossref_primary_10_1016_j_apenergy_2023_121709 crossref_primary_10_1016_j_energy_2023_130195 crossref_primary_10_3390_en17071692 crossref_primary_10_1016_j_egypro_2019_01_157 crossref_primary_10_1007_s40745_021_00334_z crossref_primary_10_1016_j_apenergy_2021_117800 crossref_primary_10_1016_j_energy_2023_127784 crossref_primary_10_1680_jnaen_22_00033 crossref_primary_10_1016_j_applthermaleng_2019_114236 crossref_primary_10_1016_j_enconman_2022_116259 crossref_primary_10_1007_s10973_021_10807_1 crossref_primary_10_1016_j_renene_2022_07_124 crossref_primary_10_3390_en12142832 crossref_primary_10_1016_j_energy_2019_05_077 crossref_primary_10_1016_j_enconman_2020_113387 crossref_primary_10_1016_j_enconman_2021_114754 crossref_primary_10_1016_j_energy_2023_128307 crossref_primary_10_1016_j_renene_2022_09_091 crossref_primary_10_3390_en11071770 crossref_primary_10_3390_e21100929 crossref_primary_10_1016_j_applthermaleng_2018_11_038 crossref_primary_10_1155_2024_9921066 crossref_primary_10_1016_j_apenergy_2022_118943 crossref_primary_10_1016_j_renene_2021_11_016 crossref_primary_10_1016_j_energy_2022_125175 crossref_primary_10_3390_en12030414 crossref_primary_10_1007_s11664_020_08163_1 crossref_primary_10_1016_j_applthermaleng_2024_124685 crossref_primary_10_1016_j_heliyon_2022_e12348 crossref_primary_10_1016_j_tsep_2025_103444 crossref_primary_10_1016_j_enconman_2019_01_064 crossref_primary_10_1016_j_apenergy_2023_122216 crossref_primary_10_1016_j_energy_2021_121220 crossref_primary_10_3390_en12030385 crossref_primary_10_1016_j_enconman_2018_08_095 crossref_primary_10_1016_j_energy_2018_06_067 crossref_primary_10_1016_j_egyai_2025_100534 crossref_primary_10_1016_j_apenergy_2020_115075 crossref_primary_10_1016_j_applthermaleng_2023_121790 crossref_primary_10_1016_j_energy_2022_125889 |
| Cites_doi | 10.1016/j.ijhydene.2016.11.021 10.3390/ma7042577 10.1016/j.energy.2016.01.092 10.1016/j.enconman.2016.11.043 10.1016/j.energy.2014.04.082 10.1063/1.1689396 10.1016/0360-8352(96)00037-X 10.1016/j.enconman.2012.08.022 10.1109/4235.996017 10.1016/0305-0548(93)90109-V 10.1016/j.energy.2014.11.080 10.1016/j.ijheatmasstransfer.2015.10.051 10.1016/j.ijheatmasstransfer.2015.01.107 10.1016/j.energy.2014.02.018 10.1016/j.enconman.2015.09.068 10.1016/j.energy.2015.02.063 10.1039/C4CP01582G 10.1016/j.energy.2015.08.044 10.1016/j.apenergy.2011.07.033 10.1016/j.apenergy.2007.10.005 10.1016/j.solmat.2015.10.040 10.1103/PhysRevB.80.115329 10.1016/j.apenergy.2004.12.003 10.1016/j.ijheatmasstransfer.2016.05.118 10.1016/j.apenergy.2017.01.002 10.1063/1.348408 10.1016/j.jpowsour.2008.12.067 10.1016/j.mseb.2014.02.005 10.1016/j.apenergy.2011.06.006 10.1063/1.362507 10.1103/PhysRevLett.91.148301 10.1016/j.apenergy.2014.05.048 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Mar 15, 2018 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Mar 15, 2018 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2018.01.099 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| EndPage | 1069 |
| ExternalDocumentID | 10_1016_j_energy_2018_01_099 S0360544218301178 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c400t-a7bfb776d6a2e3d59c58b86bdeac87769650147a7ba6e4febf632fd6e4667b163 |
| ISICitedReferencesCount | 103 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429391100082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 10:18:46 EDT 2025 Sun Sep 28 10:32:22 EDT 2025 Wed Aug 13 02:57:38 EDT 2025 Tue Nov 18 22:18:47 EST 2025 Sat Nov 29 07:23:26 EST 2025 Fri Feb 23 02:46:33 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Numerical simulation Multi-objective optimization Thermoelectric generator Genetic algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c400t-a7bfb776d6a2e3d59c58b86bdeac87769650147a7ba6e4febf632fd6e4667b163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2065057920 |
| PQPubID | 24069 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2574371566 proquest_miscellaneous_2053888061 proquest_journals_2065057920 crossref_primary_10_1016_j_energy_2018_01_099 crossref_citationtrail_10_1016_j_energy_2018_01_099 elsevier_sciencedirect_doi_10_1016_j_energy_2018_01_099 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-15 |
| PublicationDateYYYYMMDD | 2018-03-15 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Zhang, Fan, Niu, Jiao, Diao, Du (bib19) 2015; 106 Liu, Zhu, Ge, Shan, Zeng, Liu (bib22) 2017; 190 Hsu, Huang, Chu, Yu, Yao (bib33) 2011; 88 Snyder, Ursell (bib13) 2003; 91 Deb, Pratap, Agarwal, Meyarivan (bib30) 2002; 6 Chen, Li, Sun, Wu (bib35) 2008; 85 Ming, Yang, Huang, Wu, Li, Liu (bib7) 2017; 132 Zhang, Jiao, Niu, Diao, Du, Tian (bib20) 2016; 93 Goldsmid (bib8) 2014; 7 Tan, Wang, Tang (bib29) 2014; vol. 43 Vining, Laskow, Hanson, Van Der Beck, Gorsuch (bib10) 1991; 69 Chen, Yan, Wu (bib36) 1996; 79 Seebeck (bib1) 1821 Manikandan, Kaushik (bib25) 2016; 100 Arora, Kaushik, Arora (bib23) 2015; 91 Fraisse, Ramousse, Sgorlon, Goupil (bib24) 2013; 65 Chen, Li, Sun, Wu (bib5) 2005; 82 Meng, Zhang, Wang (bib21) 2014; 71 Xiao, Yang, Li, Zhai, Zhang (bib11) 2012; 93 Tian, Sun, Jia, Liang, Shu, Wang (bib16) 2015; 84 Madenci, Guven (bib37) 2006 Ge, Liu, Liu (bib26) 2016; 101 Ming, Yang, Wu, Xiang, Huang, Cheng (bib18) 2017; 42 Candadai, Kumar, Barshilia (bib4) 2016; 145 Meng, Chen, Sun, Yang (bib3) 2014; 66 Ming, Wu, Peng, Tao (bib17) 2015; 80 Hwang, Lai, Liu (bib27) 1993; 20 Yeniay (bib32) 2005; 10 Menon, Yee (bib6) 2016 Liang, Sun, Tian, Shu, Wang, Wang (bib12) 2014; 130 Snyder (bib14) 2004; 84 Kim, Kikuchi, Itoh, Iida, Taya (bib15) 2014; 185 Niu, Yu, Diao, Li, Jiao, Du (bib34) 2015; 85 Yang, Hao, Wang, Lan, He, Minnich (bib28) 2009; 80 Salvador, Cho, Ye, Moczygemba, Thompson, Sharp (bib9) 2014; 16 Michalewicz, Dasgupta, Le Riche, Schoenauer (bib31) 1996; 30 Niu, Yu, Wang (bib2) 2009; 188 Ge (10.1016/j.energy.2018.01.099_bib26) 2016; 101 Niu (10.1016/j.energy.2018.01.099_bib34) 2015; 85 Niu (10.1016/j.energy.2018.01.099_bib2) 2009; 188 Liu (10.1016/j.energy.2018.01.099_bib22) 2017; 190 Manikandan (10.1016/j.energy.2018.01.099_bib25) 2016; 100 Yeniay (10.1016/j.energy.2018.01.099_bib32) 2005; 10 Deb (10.1016/j.energy.2018.01.099_bib30) 2002; 6 Meng (10.1016/j.energy.2018.01.099_bib21) 2014; 71 Zhang (10.1016/j.energy.2018.01.099_bib20) 2016; 93 Meng (10.1016/j.energy.2018.01.099_bib3) 2014; 66 Ming (10.1016/j.energy.2018.01.099_bib18) 2017; 42 Zhang (10.1016/j.energy.2018.01.099_bib19) 2015; 106 Goldsmid (10.1016/j.energy.2018.01.099_bib8) 2014; 7 Vining (10.1016/j.energy.2018.01.099_bib10) 1991; 69 Snyder (10.1016/j.energy.2018.01.099_bib14) 2004; 84 Tian (10.1016/j.energy.2018.01.099_bib16) 2015; 84 Kim (10.1016/j.energy.2018.01.099_bib15) 2014; 185 Chen (10.1016/j.energy.2018.01.099_bib35) 2008; 85 Ming (10.1016/j.energy.2018.01.099_bib17) 2015; 80 Snyder (10.1016/j.energy.2018.01.099_bib13) 2003; 91 Seebeck (10.1016/j.energy.2018.01.099_bib1) 1821 Liang (10.1016/j.energy.2018.01.099_bib12) 2014; 130 Salvador (10.1016/j.energy.2018.01.099_bib9) 2014; 16 Chen (10.1016/j.energy.2018.01.099_bib36) 1996; 79 Hwang (10.1016/j.energy.2018.01.099_bib27) 1993; 20 Michalewicz (10.1016/j.energy.2018.01.099_bib31) 1996; 30 Ming (10.1016/j.energy.2018.01.099_bib7) 2017; 132 Yang (10.1016/j.energy.2018.01.099_bib28) 2009; 80 Madenci (10.1016/j.energy.2018.01.099_bib37) 2006 Fraisse (10.1016/j.energy.2018.01.099_bib24) 2013; 65 Arora (10.1016/j.energy.2018.01.099_bib23) 2015; 91 Xiao (10.1016/j.energy.2018.01.099_bib11) 2012; 93 Tan (10.1016/j.energy.2018.01.099_bib29) 2014; vol. 43 Menon (10.1016/j.energy.2018.01.099_bib6) 2016 Hsu (10.1016/j.energy.2018.01.099_bib33) 2011; 88 Candadai (10.1016/j.energy.2018.01.099_bib4) 2016; 145 Chen (10.1016/j.energy.2018.01.099_bib5) 2005; 82 |
| References_xml | – volume: 66 start-page: 965 year: 2014 end-page: 972 ident: bib3 article-title: Thermoelectric power generation driven by blast furnace slag flushing water publication-title: Energy – volume: 16 start-page: 12510 year: 2014 end-page: 12520 ident: bib9 article-title: Conversion efficiency of skutterudite-based thermoelectric modules publication-title: Phys Chem Chem Phys – volume: 106 start-page: 510 year: 2015 end-page: 519 ident: bib19 article-title: A comprehensive design method for segmented thermoelectric generator publication-title: Energy Convers Manag – volume: 84 start-page: 121 year: 2015 end-page: 130 ident: bib16 article-title: Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine publication-title: Energy – volume: 69 start-page: 4333 year: 1991 end-page: 4340 ident: bib10 article-title: Thermoelectric properties of pressure-sintered Si0.8Ge 0.2 thermoelectric alloys publication-title: J Appl Phys – volume: 10 start-page: 45 year: 2005 end-page: 56 ident: bib32 article-title: Penalty function methods for constrained optimization with genetic algorithms publication-title: Math Comput Appl – start-page: 119 year: 2016 ident: bib6 article-title: Design of a polymer thermoelectric generator using radial architecture publication-title: J Appl Phys – volume: 145 start-page: 333 year: 2016 end-page: 341 ident: bib4 article-title: Performance evaluation of a natural convective-cooled concentration solar thermoelectric generator coupled with a spectrally selective high temperature absorber coating publication-title: Sol Energy Mater Sol Cells – volume: 132 start-page: 261 year: 2017 end-page: 271 ident: bib7 article-title: Analytical and numerical investigation on a new compact thermoelectric generator publication-title: Energy Convers Manag – volume: 185 start-page: 45 year: 2014 end-page: 52 ident: bib15 article-title: Design of segmented thermoelectric generator based on cost-effective and light-weight thermoelectric alloys publication-title: Mater Sci Eng B Solid-State Mater Adv Technol – volume: 84 start-page: 2436 year: 2004 end-page: 2438 ident: bib14 article-title: Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators publication-title: Appl Phys Lett – volume: 101 start-page: 981 year: 2016 end-page: 987 ident: bib26 article-title: Multi-objective genetic optimization of the heat transfer for tube inserted with porous media publication-title: Int J Heat Mass Transf – volume: 93 start-page: 1034 year: 2016 end-page: 1037 ident: bib20 article-title: Power and efficiency factors for comprehensive evaluation of thermoelectric generator materials publication-title: Int J Heat Mass Transf – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib30 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: Evol Comput IEEE Trans – volume: 80 start-page: 1 year: 2009 end-page: 5 ident: bib28 article-title: Solubility study of Yb in n -type skutterudites Ybx Co4 Sb12 and their enhanced thermoelectric properties publication-title: Phys Rev B Condens Matter Mater Phys – volume: 85 start-page: 12 year: 2015 end-page: 32 ident: bib34 article-title: Elucidating modeling aspects of thermoelectric generator publication-title: Int J Heat Mass Transf – volume: 20 start-page: 889 year: 1993 end-page: 899 ident: bib27 article-title: A new approach for multiple objective decision making publication-title: Comput Oper Res – volume: 91 start-page: 148301/1 year: 2003 end-page: 148301/4 ident: bib13 article-title: Thermoelectric efficiency and compatibility publication-title: Phys Rev Lett – volume: 80 start-page: 388 year: 2015 end-page: 399 ident: bib17 article-title: Thermal analysis on a segmented thermoelectric generator publication-title: Energy – volume: 93 start-page: 33 year: 2012 end-page: 38 ident: bib11 article-title: Thermal design and management for performance optimization of solar thermoelectric generator publication-title: Appl Energy – volume: 85 start-page: 641 year: 2008 end-page: 649 ident: bib35 article-title: Performance optimization for a two-stage thermoelectric heat-pump with internal and external irreversibilities publication-title: Appl Energy – volume: 79 start-page: 8823 year: 1996 end-page: 8828 ident: bib36 article-title: The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator publication-title: J Appl Phys – volume: 82 start-page: 300 year: 2005 end-page: 312 ident: bib5 article-title: Performance optimization of a two-stage semiconductor thermoelectric-generator publication-title: Appl Energy – year: 2006 ident: bib37 article-title: The finite element method and applications in engineering using ANSYS® – volume: 188 start-page: 621 year: 2009 end-page: 626 ident: bib2 article-title: Experimental study on low-temperature waste heat thermoelectric generator publication-title: J Power Sources – volume: 100 start-page: 227 year: 2016 end-page: 237 ident: bib25 article-title: The influence of Thomson effect in the performance optimization of a two stage thermoelectric generator publication-title: Energy – volume: 30 start-page: 851 year: 1996 end-page: 870 ident: bib31 article-title: Evolutionary algorithms for constrained engineering problems publication-title: Comput Ind Eng – volume: 71 start-page: 367 year: 2014 end-page: 376 ident: bib21 article-title: Multi-objective and multi-parameter optimization of a thermoelectric generator module publication-title: Energy – volume: 190 start-page: 540 year: 2017 end-page: 552 ident: bib22 article-title: Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method publication-title: Appl Energy – volume: 7 start-page: 2577 year: 2014 end-page: 2592 ident: bib8 article-title: Bismuth telluride and its alloys as materials for thermoelectric generation publication-title: Mater (Basel) – volume: 91 start-page: 242 year: 2015 end-page: 254 ident: bib23 article-title: Multi-objective and multi-parameter optimization of two-stage thermoelectric generator in electrically series and parallel configurations through NSGA-II publication-title: Energy – volume: 42 start-page: 3521 year: 2017 end-page: 3535 ident: bib18 article-title: Numerical analysis on the thermal behavior of a segmented thermoelectric generator publication-title: Int J Hydrogen Energy – volume: 130 start-page: 190 year: 2014 end-page: 199 ident: bib12 article-title: Comparison and parameter optimization of a two-stage thermoelectric generator using high temperature exhaust of internal combustion engine publication-title: Appl Energy – volume: vol. 43 start-page: 1712 year: 2014 end-page: 1717 ident: bib29 publication-title: Thermoelectric performance optimization in p -type Ce y Fe 3 CoSb 12 skutterudites – volume: 65 start-page: 351 year: 2013 end-page: 356 ident: bib24 article-title: Comparison of different modeling approaches for thermoelectric elements publication-title: Energy Convers Manag – year: 1821 ident: bib1 article-title: Ueber den Magnetismus der galvanischen Kette. Berlin – volume: 88 start-page: 5173 year: 2011 end-page: 5179 ident: bib33 article-title: An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module publication-title: Appl Energy – volume: 42 start-page: 3521 year: 2017 ident: 10.1016/j.energy.2018.01.099_bib18 article-title: Numerical analysis on the thermal behavior of a segmented thermoelectric generator publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.11.021 – volume: 7 start-page: 2577 year: 2014 ident: 10.1016/j.energy.2018.01.099_bib8 article-title: Bismuth telluride and its alloys as materials for thermoelectric generation publication-title: Mater (Basel) doi: 10.3390/ma7042577 – volume: 100 start-page: 227 year: 2016 ident: 10.1016/j.energy.2018.01.099_bib25 article-title: The influence of Thomson effect in the performance optimization of a two stage thermoelectric generator publication-title: Energy doi: 10.1016/j.energy.2016.01.092 – volume: 132 start-page: 261 year: 2017 ident: 10.1016/j.energy.2018.01.099_bib7 article-title: Analytical and numerical investigation on a new compact thermoelectric generator publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.11.043 – volume: 71 start-page: 367 year: 2014 ident: 10.1016/j.energy.2018.01.099_bib21 article-title: Multi-objective and multi-parameter optimization of a thermoelectric generator module publication-title: Energy doi: 10.1016/j.energy.2014.04.082 – volume: 84 start-page: 2436 year: 2004 ident: 10.1016/j.energy.2018.01.099_bib14 article-title: Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators publication-title: Appl Phys Lett doi: 10.1063/1.1689396 – volume: 30 start-page: 851 year: 1996 ident: 10.1016/j.energy.2018.01.099_bib31 article-title: Evolutionary algorithms for constrained engineering problems publication-title: Comput Ind Eng doi: 10.1016/0360-8352(96)00037-X – volume: 65 start-page: 351 year: 2013 ident: 10.1016/j.energy.2018.01.099_bib24 article-title: Comparison of different modeling approaches for thermoelectric elements publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2012.08.022 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.energy.2018.01.099_bib30 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: Evol Comput IEEE Trans doi: 10.1109/4235.996017 – volume: 20 start-page: 889 year: 1993 ident: 10.1016/j.energy.2018.01.099_bib27 article-title: A new approach for multiple objective decision making publication-title: Comput Oper Res doi: 10.1016/0305-0548(93)90109-V – volume: 80 start-page: 388 year: 2015 ident: 10.1016/j.energy.2018.01.099_bib17 article-title: Thermal analysis on a segmented thermoelectric generator publication-title: Energy doi: 10.1016/j.energy.2014.11.080 – volume: vol. 43 start-page: 1712 year: 2014 ident: 10.1016/j.energy.2018.01.099_bib29 – volume: 10 start-page: 45 year: 2005 ident: 10.1016/j.energy.2018.01.099_bib32 article-title: Penalty function methods for constrained optimization with genetic algorithms publication-title: Math Comput Appl – volume: 93 start-page: 1034 year: 2016 ident: 10.1016/j.energy.2018.01.099_bib20 article-title: Power and efficiency factors for comprehensive evaluation of thermoelectric generator materials publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.10.051 – volume: 85 start-page: 12 year: 2015 ident: 10.1016/j.energy.2018.01.099_bib34 article-title: Elucidating modeling aspects of thermoelectric generator publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.01.107 – volume: 66 start-page: 965 year: 2014 ident: 10.1016/j.energy.2018.01.099_bib3 article-title: Thermoelectric power generation driven by blast furnace slag flushing water publication-title: Energy doi: 10.1016/j.energy.2014.02.018 – year: 2006 ident: 10.1016/j.energy.2018.01.099_bib37 – volume: 106 start-page: 510 year: 2015 ident: 10.1016/j.energy.2018.01.099_bib19 article-title: A comprehensive design method for segmented thermoelectric generator publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.09.068 – volume: 84 start-page: 121 year: 2015 ident: 10.1016/j.energy.2018.01.099_bib16 article-title: Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine publication-title: Energy doi: 10.1016/j.energy.2015.02.063 – volume: 16 start-page: 12510 year: 2014 ident: 10.1016/j.energy.2018.01.099_bib9 article-title: Conversion efficiency of skutterudite-based thermoelectric modules publication-title: Phys Chem Chem Phys doi: 10.1039/C4CP01582G – volume: 91 start-page: 242 year: 2015 ident: 10.1016/j.energy.2018.01.099_bib23 article-title: Multi-objective and multi-parameter optimization of two-stage thermoelectric generator in electrically series and parallel configurations through NSGA-II publication-title: Energy doi: 10.1016/j.energy.2015.08.044 – volume: 88 start-page: 5173 year: 2011 ident: 10.1016/j.energy.2018.01.099_bib33 article-title: An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.07.033 – volume: 85 start-page: 641 year: 2008 ident: 10.1016/j.energy.2018.01.099_bib35 article-title: Performance optimization for a two-stage thermoelectric heat-pump with internal and external irreversibilities publication-title: Appl Energy doi: 10.1016/j.apenergy.2007.10.005 – volume: 145 start-page: 333 year: 2016 ident: 10.1016/j.energy.2018.01.099_bib4 article-title: Performance evaluation of a natural convective-cooled concentration solar thermoelectric generator coupled with a spectrally selective high temperature absorber coating publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2015.10.040 – volume: 80 start-page: 1 year: 2009 ident: 10.1016/j.energy.2018.01.099_bib28 article-title: Solubility study of Yb in n -type skutterudites Ybx Co4 Sb12 and their enhanced thermoelectric properties publication-title: Phys Rev B Condens Matter Mater Phys doi: 10.1103/PhysRevB.80.115329 – volume: 82 start-page: 300 year: 2005 ident: 10.1016/j.energy.2018.01.099_bib5 article-title: Performance optimization of a two-stage semiconductor thermoelectric-generator publication-title: Appl Energy doi: 10.1016/j.apenergy.2004.12.003 – volume: 101 start-page: 981 year: 2016 ident: 10.1016/j.energy.2018.01.099_bib26 article-title: Multi-objective genetic optimization of the heat transfer for tube inserted with porous media publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2016.05.118 – volume: 190 start-page: 540 year: 2017 ident: 10.1016/j.energy.2018.01.099_bib22 article-title: Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.01.002 – volume: 69 start-page: 4333 year: 1991 ident: 10.1016/j.energy.2018.01.099_bib10 article-title: Thermoelectric properties of pressure-sintered Si0.8Ge 0.2 thermoelectric alloys publication-title: J Appl Phys doi: 10.1063/1.348408 – volume: 188 start-page: 621 year: 2009 ident: 10.1016/j.energy.2018.01.099_bib2 article-title: Experimental study on low-temperature waste heat thermoelectric generator publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.12.067 – start-page: 119 year: 2016 ident: 10.1016/j.energy.2018.01.099_bib6 article-title: Design of a polymer thermoelectric generator using radial architecture publication-title: J Appl Phys – year: 1821 ident: 10.1016/j.energy.2018.01.099_bib1 – volume: 185 start-page: 45 year: 2014 ident: 10.1016/j.energy.2018.01.099_bib15 article-title: Design of segmented thermoelectric generator based on cost-effective and light-weight thermoelectric alloys publication-title: Mater Sci Eng B Solid-State Mater Adv Technol doi: 10.1016/j.mseb.2014.02.005 – volume: 93 start-page: 33 year: 2012 ident: 10.1016/j.energy.2018.01.099_bib11 article-title: Thermal design and management for performance optimization of solar thermoelectric generator publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.06.006 – volume: 79 start-page: 8823 year: 1996 ident: 10.1016/j.energy.2018.01.099_bib36 article-title: The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator publication-title: J Appl Phys doi: 10.1063/1.362507 – volume: 91 start-page: 148301/1 year: 2003 ident: 10.1016/j.energy.2018.01.099_bib13 article-title: Thermoelectric efficiency and compatibility publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.91.148301 – volume: 130 start-page: 190 year: 2014 ident: 10.1016/j.energy.2018.01.099_bib12 article-title: Comparison and parameter optimization of a two-stage thermoelectric generator using high temperature exhaust of internal combustion engine publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.05.048 |
| SSID | ssj0005899 |
| Score | 2.5611935 |
| Snippet | This paper proposes a general method to optimize the structure and load current for a segmented thermoelectric generator (TEG) module, where the bismuth... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1060 |
| SubjectTerms | Algorithms bismuth Bismuth tellurides cold Computer simulation Conduction Conduction heating Conductive heat transfer Design electric generators Electricity generation energy finite element analysis Finite element method Genetic algorithm Genetic algorithms heat Heat transfer Industrial applications Intermetallic compounds Mathematical models Multi-objective optimization Multiple objective analysis Numerical simulation Ohmic dissipation Optimization Peltier effects Performance assessment Semiconductors simulation models Studies Tellurides Thermoelectric generator Thermoelectric generators Thermoelectricity |
| Title | Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm |
| URI | https://dx.doi.org/10.1016/j.energy.2018.01.099 https://www.proquest.com/docview/2065057920 https://www.proquest.com/docview/2053888061 https://www.proquest.com/docview/2574371566 |
| Volume | 147 |
| WOSCitedRecordID | wos000429391100082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKhwQvEwwmygYyEuKl8pTm6jxOqOOiqkOig_IUxYmzpmqT0jRTfwQ_hJ_J8SVuu8EGD6hSFDmOk_Z8Pef4XBF63eOO51hxSFiShcS1U0qYHbskZVkCH1D4E1nEdRAMh3Q8Dj-1Wj-bXJirWVAUdL0OF_-V1DAGxBaps_9AbrMoDMA5EB2OQHY4_hXhz4EJzIXrRcZmqPzHil_K4psyWHI5L1XzmzwRDZS5dLR3hThLletgyTlJRdV_VbGjW9TKrTPrVvlct_uSTgcZjUhKNlVcU64mC8DOLstlvprMd-z-KstQlDddq4h6Y4N4J62q34yEGOS1dJpM8mRSG_R-rgslKIutOCI18yvPt80XPZnPpxI4lU3N5NV82eJ8jm8Rz1Vlt0644sw0cAhIVm-HdatqnZr5wu7W-q1UUAaK6QmXX1TE81FZq1W1Ztotwj08j84uBoNo1B-P3iy-E9GfTPjxdbOWe2jPDryQttHe6Yf--OMmnIjKXqXm1Zs0TRlLePPBf1KDrikEUssZPUL7enuCTxWsHqMWLw7QgyZ7vTpAh_1NZiRM1KKheoJ-aNxhhTtcZjjGBnd4F3fY4A5L3OGywDdwhw3u8AZ3GHCHr-EOa9xhg7un6OKsP3r7nuhWHyQBIbIiccAyFgR-6sc2d1IvTDzKqM9S0AsojIe-8H8HMC32uZtxlvmOnaVw7vsBgz3FIWoXZcGfIexloOUmtstjD9ZOGeWOlcEm30moyznvdZDT_PJRouvgi3Yss6gJeJxGil6RoFdk9SKgVwcRc9dC1YG5Y37QEDXSuqzSUSMA5R13HjcYiDRbqeC6LywJoW110CtzGSSBcO_FBS9rMQeUFxDHfu-WOR7sGAJhs3l--2OO0MPNv_UYtVfLmr9A95OrVV4tX2rw_wKtt-iR |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+a+segmented+thermoelectric+generator+based+on+three-dimensional+numerical+simulation+and+multi-objective+genetic+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Ge%2C+Ya&rft.au=Liu%2C+Zhichun&rft.au=Sun%2C+Henan&rft.au=Liu%2C+Wei&rft.date=2018-03-15&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=147&rft.spage=1060&rft_id=info:doi/10.1016%2Fj.energy.2018.01.099&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |