Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm

This paper proposes a general method to optimize the structure and load current for a segmented thermoelectric generator (TEG) module, where the bismuth telluride is selected as the cold side material, and the skutterudite is selected as the hot side material, respectively. Two objectives, minimum s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy (Oxford) Ročník 147; s. 1060 - 1069
Hlavní autoři: Ge, Ya, Liu, Zhichun, Sun, Henan, Liu, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 15.03.2018
Elsevier BV
Témata:
ISSN:0360-5442, 1873-6785
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes a general method to optimize the structure and load current for a segmented thermoelectric generator (TEG) module, where the bismuth telluride is selected as the cold side material, and the skutterudite is selected as the hot side material, respectively. Two objectives, minimum semiconductor volume V′ and maximum output power P, are simultaneously considered to assess the performance of the TEG module. All the simulation models to be optimized by the multi-objective genetic algorithm are established and solved by finite element method, where the Thomson effect, in conjunction with Peltier effect, Joule heating, and Fourier heat conduction are simultaneously considered. In order to achieve the ultimate optimal design, TOPSIS (technique for order preference by similarity to an ideal solution) is employed to determine the best compromise solution. The results of Pareto solutions show that V′ varies from 432 mm3 to 3868 mm3, while P varies from 5.523 W to 56.293 W, respectively. Meanwhile, optimal design variables are investigated to provide practical guidance for the industrial applications. The mechanism of performance improvement has also been explained in this work by comparing the optimal segmented TEG and the skutterudite TEG. •Geometry and operating conditions of a thermoelectric generator are optimized.•Optimal solutions are obtained by coupling simulation and genetic algorithm.•TOPSIS technique is employed to determine the best compromised solution.•Effects of various input parameters on two objectives are reported.
AbstractList This paper proposes a general method to optimize the structure and load current for a segmented thermoelectric generator (TEG) module, where the bismuth telluride is selected as the cold side material, and the skutterudite is selected as the hot side material, respectively. Two objectives, minimum semiconductor volume V′ and maximum output power P, are simultaneously considered to assess the performance of the TEG module. All the simulation models to be optimized by the multi-objective genetic algorithm are established and solved by finite element method, where the Thomson effect, in conjunction with Peltier effect, Joule heating, and Fourier heat conduction are simultaneously considered. In order to achieve the ultimate optimal design, TOPSIS (technique for order preference by similarity to an ideal solution) is employed to determine the best compromise solution. The results of Pareto solutions show that V′ varies from 432 mm3 to 3868 mm3, while P varies from 5.523 W to 56.293 W, respectively. Meanwhile, optimal design variables are investigated to provide practical guidance for the industrial applications. The mechanism of performance improvement has also been explained in this work by comparing the optimal segmented TEG and the skutterudite TEG.
This paper proposes a general method to optimize the structure and load current for a segmented thermoelectric generator (TEG) module, where the bismuth telluride is selected as the cold side material, and the skutterudite is selected as the hot side material, respectively. Two objectives, minimum semiconductor volume V′ and maximum output power P, are simultaneously considered to assess the performance of the TEG module. All the simulation models to be optimized by the multi-objective genetic algorithm are established and solved by finite element method, where the Thomson effect, in conjunction with Peltier effect, Joule heating, and Fourier heat conduction are simultaneously considered. In order to achieve the ultimate optimal design, TOPSIS (technique for order preference by similarity to an ideal solution) is employed to determine the best compromise solution. The results of Pareto solutions show that V′ varies from 432 mm3 to 3868 mm3, while P varies from 5.523 W to 56.293 W, respectively. Meanwhile, optimal design variables are investigated to provide practical guidance for the industrial applications. The mechanism of performance improvement has also been explained in this work by comparing the optimal segmented TEG and the skutterudite TEG. •Geometry and operating conditions of a thermoelectric generator are optimized.•Optimal solutions are obtained by coupling simulation and genetic algorithm.•TOPSIS technique is employed to determine the best compromised solution.•Effects of various input parameters on two objectives are reported.
This paper proposes a general method to optimize the structure and load current for a segmented thermoelectric generator (TEG) module, where the bismuth telluride is selected as the cold side material, and the skutterudite is selected as the hot side material, respectively. Two objectives, minimum semiconductor volume V′ and maximum output power P, are simultaneously considered to assess the performance of the TEG module. All the simulation models to be optimized by the multi-objective genetic algorithm are established and solved by finite element method, where the Thomson effect, in conjunction with Peltier effect, Joule heating, and Fourier heat conduction are simultaneously considered. In order to achieve the ultimate optimal design, TOPSIS (technique for order preference by similarity to an ideal solution) is employed to determine the best compromise solution. The results of Pareto solutions show that V′ varies from 432 mm³ to 3868 mm³, while P varies from 5.523 W to 56.293 W, respectively. Meanwhile, optimal design variables are investigated to provide practical guidance for the industrial applications. The mechanism of performance improvement has also been explained in this work by comparing the optimal segmented TEG and the skutterudite TEG.
Author Ge, Ya
Sun, Henan
Liu, Wei
Liu, Zhichun
Author_xml – sequence: 1
  givenname: Ya
  surname: Ge
  fullname: Ge, Ya
– sequence: 2
  givenname: Zhichun
  surname: Liu
  fullname: Liu, Zhichun
  email: zcliu@hust.edu.cn
– sequence: 3
  givenname: Henan
  surname: Sun
  fullname: Sun, Henan
– sequence: 4
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
BookMark eNqNkc1u1TAQhS1UJG4Lb8AiEhs2CXYS_4QFEqr4kyp1A2vLsSepo8S-2E6lvgMPzdxeVl0AK4_H3zljzbkkFyEGIOQ1ow2jTLxbGgiQ5oempUw1lDV0GJ6RA1Oyq4VU_IIcaCdozfu-fUEuc14opVwNw4H8uj0Wv5m1cpD9HKo4VabKMG8QCriq3EHaIqxgS_K2mk9zTImpGk3G5xiQSAC18yjIPgZ0CvsGCGOV_bavpmC7MsFVeCm-juOCbv4eHt0Kupp1jsmXu-0leT6ZNcOrP-cV-fH50_frr_XN7Zdv1x9vattTWmojx2mUUjhhWugcHyxXoxKjA2MV9gfBKeslYkZAP8E4ia6dHNZCyJGJ7oq8PfseU_y5Qy5689nCupoAcc-65bLvJOPiP1DKO6UUFQzRN0_QJe4JN3Ki8EtcDi1Fqj9TNsWcE0z6mDCA9KAZ1ac09aLPaepTmpoyjWmi7P0TmfXlcbUlGb_-S_zhLAZc6r2HpLP1ECw4nzAL7aL_u8FvTm7DSg
CitedBy_id crossref_primary_10_1016_j_energy_2024_130574
crossref_primary_10_3390_en16114473
crossref_primary_10_1016_j_enconman_2021_114529
crossref_primary_10_1016_j_energy_2019_07_179
crossref_primary_10_3390_en15082944
crossref_primary_10_1016_j_enconman_2020_112744
crossref_primary_10_1016_j_energy_2023_128294
crossref_primary_10_1016_j_energy_2023_126824
crossref_primary_10_1016_j_energy_2021_123032
crossref_primary_10_1080_15435075_2023_2200438
crossref_primary_10_1016_j_anucene_2024_110750
crossref_primary_10_1007_s11664_019_07351_y
crossref_primary_10_1016_j_ceramint_2024_10_371
crossref_primary_10_1007_s11664_022_10072_4
crossref_primary_10_1016_j_tsep_2023_102245
crossref_primary_10_1016_j_ijthermalsci_2020_106787
crossref_primary_10_1007_s42114_022_00471_w
crossref_primary_10_1016_j_ecmx_2025_101221
crossref_primary_10_1016_j_applthermaleng_2023_122298
crossref_primary_10_3233_JCM_226874
crossref_primary_10_1016_j_apenergy_2019_04_103
crossref_primary_10_1038_s41524_025_01769_1
crossref_primary_10_1016_j_cep_2021_108369
crossref_primary_10_1002_er_6467
crossref_primary_10_1016_j_jpowsour_2019_04_099
crossref_primary_10_1016_j_applthermaleng_2022_119797
crossref_primary_10_1016_j_energy_2021_119967
crossref_primary_10_1016_j_energy_2025_134469
crossref_primary_10_3390_pr11051498
crossref_primary_10_1016_j_heliyon_2023_e13590
crossref_primary_10_3390_math11061326
crossref_primary_10_1088_1742_6596_1982_1_012185
crossref_primary_10_1002_adem_202301609
crossref_primary_10_1016_j_egyr_2019_12_011
crossref_primary_10_3390_en17051016
crossref_primary_10_1016_j_applthermaleng_2024_123098
crossref_primary_10_1038_s41467_021_23944_w
crossref_primary_10_1016_j_applthermaleng_2024_124101
crossref_primary_10_1016_j_apenergy_2025_126358
crossref_primary_10_1080_15567036_2024_2386372
crossref_primary_10_1007_s11182_022_02497_5
crossref_primary_10_1007_s40243_024_00293_4
crossref_primary_10_1016_j_compstruct_2019_111484
crossref_primary_10_1016_j_energy_2019_01_003
crossref_primary_10_1016_j_energy_2025_135046
crossref_primary_10_52254_1857_0070_2022_1_53_03
crossref_primary_10_1002_er_6416
crossref_primary_10_1016_j_applthermaleng_2022_119518
crossref_primary_10_1016_j_tsep_2020_100817
crossref_primary_10_1002_er_5960
crossref_primary_10_1016_j_ijthermalsci_2019_106133
crossref_primary_10_1016_j_apenergy_2020_115296
crossref_primary_10_1016_j_energy_2021_122934
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125638
crossref_primary_10_3390_en17092094
crossref_primary_10_1016_j_apenergy_2021_116952
crossref_primary_10_1016_j_apenergy_2023_121709
crossref_primary_10_1016_j_energy_2023_130195
crossref_primary_10_3390_en17071692
crossref_primary_10_1016_j_egypro_2019_01_157
crossref_primary_10_1007_s40745_021_00334_z
crossref_primary_10_1016_j_apenergy_2021_117800
crossref_primary_10_1016_j_energy_2023_127784
crossref_primary_10_1680_jnaen_22_00033
crossref_primary_10_1016_j_applthermaleng_2019_114236
crossref_primary_10_1016_j_enconman_2022_116259
crossref_primary_10_1007_s10973_021_10807_1
crossref_primary_10_1016_j_renene_2022_07_124
crossref_primary_10_3390_en12142832
crossref_primary_10_1016_j_energy_2019_05_077
crossref_primary_10_1016_j_enconman_2020_113387
crossref_primary_10_1016_j_enconman_2021_114754
crossref_primary_10_1016_j_energy_2023_128307
crossref_primary_10_1016_j_renene_2022_09_091
crossref_primary_10_3390_en11071770
crossref_primary_10_3390_e21100929
crossref_primary_10_1016_j_applthermaleng_2018_11_038
crossref_primary_10_1155_2024_9921066
crossref_primary_10_1016_j_apenergy_2022_118943
crossref_primary_10_1016_j_renene_2021_11_016
crossref_primary_10_1016_j_energy_2022_125175
crossref_primary_10_3390_en12030414
crossref_primary_10_1007_s11664_020_08163_1
crossref_primary_10_1016_j_applthermaleng_2024_124685
crossref_primary_10_1016_j_heliyon_2022_e12348
crossref_primary_10_1016_j_tsep_2025_103444
crossref_primary_10_1016_j_enconman_2019_01_064
crossref_primary_10_1016_j_apenergy_2023_122216
crossref_primary_10_1016_j_energy_2021_121220
crossref_primary_10_3390_en12030385
crossref_primary_10_1016_j_enconman_2018_08_095
crossref_primary_10_1016_j_energy_2018_06_067
crossref_primary_10_1016_j_egyai_2025_100534
crossref_primary_10_1016_j_apenergy_2020_115075
crossref_primary_10_1016_j_applthermaleng_2023_121790
crossref_primary_10_1016_j_energy_2022_125889
Cites_doi 10.1016/j.ijhydene.2016.11.021
10.3390/ma7042577
10.1016/j.energy.2016.01.092
10.1016/j.enconman.2016.11.043
10.1016/j.energy.2014.04.082
10.1063/1.1689396
10.1016/0360-8352(96)00037-X
10.1016/j.enconman.2012.08.022
10.1109/4235.996017
10.1016/0305-0548(93)90109-V
10.1016/j.energy.2014.11.080
10.1016/j.ijheatmasstransfer.2015.10.051
10.1016/j.ijheatmasstransfer.2015.01.107
10.1016/j.energy.2014.02.018
10.1016/j.enconman.2015.09.068
10.1016/j.energy.2015.02.063
10.1039/C4CP01582G
10.1016/j.energy.2015.08.044
10.1016/j.apenergy.2011.07.033
10.1016/j.apenergy.2007.10.005
10.1016/j.solmat.2015.10.040
10.1103/PhysRevB.80.115329
10.1016/j.apenergy.2004.12.003
10.1016/j.ijheatmasstransfer.2016.05.118
10.1016/j.apenergy.2017.01.002
10.1063/1.348408
10.1016/j.jpowsour.2008.12.067
10.1016/j.mseb.2014.02.005
10.1016/j.apenergy.2011.06.006
10.1063/1.362507
10.1103/PhysRevLett.91.148301
10.1016/j.apenergy.2014.05.048
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Mar 15, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 15, 2018
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2018.01.099
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

AGRICOLA
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 1069
ExternalDocumentID 10_1016_j_energy_2018_01_099
S0360544218301178
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c400t-a7bfb776d6a2e3d59c58b86bdeac87769650147a7ba6e4febf632fd6e4667b163
ISICitedReferencesCount 103
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429391100082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 10:18:46 EDT 2025
Sun Sep 28 10:32:22 EDT 2025
Wed Aug 13 02:57:38 EDT 2025
Tue Nov 18 22:18:47 EST 2025
Sat Nov 29 07:23:26 EST 2025
Fri Feb 23 02:46:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Numerical simulation
Multi-objective optimization
Thermoelectric generator
Genetic algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-a7bfb776d6a2e3d59c58b86bdeac87769650147a7ba6e4febf632fd6e4667b163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2065057920
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2574371566
proquest_miscellaneous_2053888061
proquest_journals_2065057920
crossref_primary_10_1016_j_energy_2018_01_099
crossref_citationtrail_10_1016_j_energy_2018_01_099
elsevier_sciencedirect_doi_10_1016_j_energy_2018_01_099
PublicationCentury 2000
PublicationDate 2018-03-15
PublicationDateYYYYMMDD 2018-03-15
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhang, Fan, Niu, Jiao, Diao, Du (bib19) 2015; 106
Liu, Zhu, Ge, Shan, Zeng, Liu (bib22) 2017; 190
Hsu, Huang, Chu, Yu, Yao (bib33) 2011; 88
Snyder, Ursell (bib13) 2003; 91
Deb, Pratap, Agarwal, Meyarivan (bib30) 2002; 6
Chen, Li, Sun, Wu (bib35) 2008; 85
Ming, Yang, Huang, Wu, Li, Liu (bib7) 2017; 132
Zhang, Jiao, Niu, Diao, Du, Tian (bib20) 2016; 93
Goldsmid (bib8) 2014; 7
Tan, Wang, Tang (bib29) 2014; vol. 43
Vining, Laskow, Hanson, Van Der Beck, Gorsuch (bib10) 1991; 69
Chen, Yan, Wu (bib36) 1996; 79
Seebeck (bib1) 1821
Manikandan, Kaushik (bib25) 2016; 100
Arora, Kaushik, Arora (bib23) 2015; 91
Fraisse, Ramousse, Sgorlon, Goupil (bib24) 2013; 65
Chen, Li, Sun, Wu (bib5) 2005; 82
Meng, Zhang, Wang (bib21) 2014; 71
Xiao, Yang, Li, Zhai, Zhang (bib11) 2012; 93
Tian, Sun, Jia, Liang, Shu, Wang (bib16) 2015; 84
Madenci, Guven (bib37) 2006
Ge, Liu, Liu (bib26) 2016; 101
Ming, Yang, Wu, Xiang, Huang, Cheng (bib18) 2017; 42
Candadai, Kumar, Barshilia (bib4) 2016; 145
Meng, Chen, Sun, Yang (bib3) 2014; 66
Ming, Wu, Peng, Tao (bib17) 2015; 80
Hwang, Lai, Liu (bib27) 1993; 20
Yeniay (bib32) 2005; 10
Menon, Yee (bib6) 2016
Liang, Sun, Tian, Shu, Wang, Wang (bib12) 2014; 130
Snyder (bib14) 2004; 84
Kim, Kikuchi, Itoh, Iida, Taya (bib15) 2014; 185
Niu, Yu, Diao, Li, Jiao, Du (bib34) 2015; 85
Yang, Hao, Wang, Lan, He, Minnich (bib28) 2009; 80
Salvador, Cho, Ye, Moczygemba, Thompson, Sharp (bib9) 2014; 16
Michalewicz, Dasgupta, Le Riche, Schoenauer (bib31) 1996; 30
Niu, Yu, Wang (bib2) 2009; 188
Ge (10.1016/j.energy.2018.01.099_bib26) 2016; 101
Niu (10.1016/j.energy.2018.01.099_bib34) 2015; 85
Niu (10.1016/j.energy.2018.01.099_bib2) 2009; 188
Liu (10.1016/j.energy.2018.01.099_bib22) 2017; 190
Manikandan (10.1016/j.energy.2018.01.099_bib25) 2016; 100
Yeniay (10.1016/j.energy.2018.01.099_bib32) 2005; 10
Deb (10.1016/j.energy.2018.01.099_bib30) 2002; 6
Meng (10.1016/j.energy.2018.01.099_bib21) 2014; 71
Zhang (10.1016/j.energy.2018.01.099_bib20) 2016; 93
Meng (10.1016/j.energy.2018.01.099_bib3) 2014; 66
Ming (10.1016/j.energy.2018.01.099_bib18) 2017; 42
Zhang (10.1016/j.energy.2018.01.099_bib19) 2015; 106
Goldsmid (10.1016/j.energy.2018.01.099_bib8) 2014; 7
Vining (10.1016/j.energy.2018.01.099_bib10) 1991; 69
Snyder (10.1016/j.energy.2018.01.099_bib14) 2004; 84
Tian (10.1016/j.energy.2018.01.099_bib16) 2015; 84
Kim (10.1016/j.energy.2018.01.099_bib15) 2014; 185
Chen (10.1016/j.energy.2018.01.099_bib35) 2008; 85
Ming (10.1016/j.energy.2018.01.099_bib17) 2015; 80
Snyder (10.1016/j.energy.2018.01.099_bib13) 2003; 91
Seebeck (10.1016/j.energy.2018.01.099_bib1) 1821
Liang (10.1016/j.energy.2018.01.099_bib12) 2014; 130
Salvador (10.1016/j.energy.2018.01.099_bib9) 2014; 16
Chen (10.1016/j.energy.2018.01.099_bib36) 1996; 79
Hwang (10.1016/j.energy.2018.01.099_bib27) 1993; 20
Michalewicz (10.1016/j.energy.2018.01.099_bib31) 1996; 30
Ming (10.1016/j.energy.2018.01.099_bib7) 2017; 132
Yang (10.1016/j.energy.2018.01.099_bib28) 2009; 80
Madenci (10.1016/j.energy.2018.01.099_bib37) 2006
Fraisse (10.1016/j.energy.2018.01.099_bib24) 2013; 65
Arora (10.1016/j.energy.2018.01.099_bib23) 2015; 91
Xiao (10.1016/j.energy.2018.01.099_bib11) 2012; 93
Tan (10.1016/j.energy.2018.01.099_bib29) 2014; vol. 43
Menon (10.1016/j.energy.2018.01.099_bib6) 2016
Hsu (10.1016/j.energy.2018.01.099_bib33) 2011; 88
Candadai (10.1016/j.energy.2018.01.099_bib4) 2016; 145
Chen (10.1016/j.energy.2018.01.099_bib5) 2005; 82
References_xml – volume: 66
  start-page: 965
  year: 2014
  end-page: 972
  ident: bib3
  article-title: Thermoelectric power generation driven by blast furnace slag flushing water
  publication-title: Energy
– volume: 16
  start-page: 12510
  year: 2014
  end-page: 12520
  ident: bib9
  article-title: Conversion efficiency of skutterudite-based thermoelectric modules
  publication-title: Phys Chem Chem Phys
– volume: 106
  start-page: 510
  year: 2015
  end-page: 519
  ident: bib19
  article-title: A comprehensive design method for segmented thermoelectric generator
  publication-title: Energy Convers Manag
– volume: 84
  start-page: 121
  year: 2015
  end-page: 130
  ident: bib16
  article-title: Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine
  publication-title: Energy
– volume: 69
  start-page: 4333
  year: 1991
  end-page: 4340
  ident: bib10
  article-title: Thermoelectric properties of pressure-sintered Si0.8Ge 0.2 thermoelectric alloys
  publication-title: J Appl Phys
– volume: 10
  start-page: 45
  year: 2005
  end-page: 56
  ident: bib32
  article-title: Penalty function methods for constrained optimization with genetic algorithms
  publication-title: Math Comput Appl
– start-page: 119
  year: 2016
  ident: bib6
  article-title: Design of a polymer thermoelectric generator using radial architecture
  publication-title: J Appl Phys
– volume: 145
  start-page: 333
  year: 2016
  end-page: 341
  ident: bib4
  article-title: Performance evaluation of a natural convective-cooled concentration solar thermoelectric generator coupled with a spectrally selective high temperature absorber coating
  publication-title: Sol Energy Mater Sol Cells
– volume: 132
  start-page: 261
  year: 2017
  end-page: 271
  ident: bib7
  article-title: Analytical and numerical investigation on a new compact thermoelectric generator
  publication-title: Energy Convers Manag
– volume: 185
  start-page: 45
  year: 2014
  end-page: 52
  ident: bib15
  article-title: Design of segmented thermoelectric generator based on cost-effective and light-weight thermoelectric alloys
  publication-title: Mater Sci Eng B Solid-State Mater Adv Technol
– volume: 84
  start-page: 2436
  year: 2004
  end-page: 2438
  ident: bib14
  article-title: Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators
  publication-title: Appl Phys Lett
– volume: 101
  start-page: 981
  year: 2016
  end-page: 987
  ident: bib26
  article-title: Multi-objective genetic optimization of the heat transfer for tube inserted with porous media
  publication-title: Int J Heat Mass Transf
– volume: 93
  start-page: 1034
  year: 2016
  end-page: 1037
  ident: bib20
  article-title: Power and efficiency factors for comprehensive evaluation of thermoelectric generator materials
  publication-title: Int J Heat Mass Transf
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib30
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: Evol Comput IEEE Trans
– volume: 80
  start-page: 1
  year: 2009
  end-page: 5
  ident: bib28
  article-title: Solubility study of Yb in n -type skutterudites Ybx Co4 Sb12 and their enhanced thermoelectric properties
  publication-title: Phys Rev B Condens Matter Mater Phys
– volume: 85
  start-page: 12
  year: 2015
  end-page: 32
  ident: bib34
  article-title: Elucidating modeling aspects of thermoelectric generator
  publication-title: Int J Heat Mass Transf
– volume: 20
  start-page: 889
  year: 1993
  end-page: 899
  ident: bib27
  article-title: A new approach for multiple objective decision making
  publication-title: Comput Oper Res
– volume: 91
  start-page: 148301/1
  year: 2003
  end-page: 148301/4
  ident: bib13
  article-title: Thermoelectric efficiency and compatibility
  publication-title: Phys Rev Lett
– volume: 80
  start-page: 388
  year: 2015
  end-page: 399
  ident: bib17
  article-title: Thermal analysis on a segmented thermoelectric generator
  publication-title: Energy
– volume: 93
  start-page: 33
  year: 2012
  end-page: 38
  ident: bib11
  article-title: Thermal design and management for performance optimization of solar thermoelectric generator
  publication-title: Appl Energy
– volume: 85
  start-page: 641
  year: 2008
  end-page: 649
  ident: bib35
  article-title: Performance optimization for a two-stage thermoelectric heat-pump with internal and external irreversibilities
  publication-title: Appl Energy
– volume: 79
  start-page: 8823
  year: 1996
  end-page: 8828
  ident: bib36
  article-title: The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator
  publication-title: J Appl Phys
– volume: 82
  start-page: 300
  year: 2005
  end-page: 312
  ident: bib5
  article-title: Performance optimization of a two-stage semiconductor thermoelectric-generator
  publication-title: Appl Energy
– year: 2006
  ident: bib37
  article-title: The finite element method and applications in engineering using ANSYS®
– volume: 188
  start-page: 621
  year: 2009
  end-page: 626
  ident: bib2
  article-title: Experimental study on low-temperature waste heat thermoelectric generator
  publication-title: J Power Sources
– volume: 100
  start-page: 227
  year: 2016
  end-page: 237
  ident: bib25
  article-title: The influence of Thomson effect in the performance optimization of a two stage thermoelectric generator
  publication-title: Energy
– volume: 30
  start-page: 851
  year: 1996
  end-page: 870
  ident: bib31
  article-title: Evolutionary algorithms for constrained engineering problems
  publication-title: Comput Ind Eng
– volume: 71
  start-page: 367
  year: 2014
  end-page: 376
  ident: bib21
  article-title: Multi-objective and multi-parameter optimization of a thermoelectric generator module
  publication-title: Energy
– volume: 190
  start-page: 540
  year: 2017
  end-page: 552
  ident: bib22
  article-title: Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method
  publication-title: Appl Energy
– volume: 7
  start-page: 2577
  year: 2014
  end-page: 2592
  ident: bib8
  article-title: Bismuth telluride and its alloys as materials for thermoelectric generation
  publication-title: Mater (Basel)
– volume: 91
  start-page: 242
  year: 2015
  end-page: 254
  ident: bib23
  article-title: Multi-objective and multi-parameter optimization of two-stage thermoelectric generator in electrically series and parallel configurations through NSGA-II
  publication-title: Energy
– volume: 42
  start-page: 3521
  year: 2017
  end-page: 3535
  ident: bib18
  article-title: Numerical analysis on the thermal behavior of a segmented thermoelectric generator
  publication-title: Int J Hydrogen Energy
– volume: 130
  start-page: 190
  year: 2014
  end-page: 199
  ident: bib12
  article-title: Comparison and parameter optimization of a two-stage thermoelectric generator using high temperature exhaust of internal combustion engine
  publication-title: Appl Energy
– volume: vol. 43
  start-page: 1712
  year: 2014
  end-page: 1717
  ident: bib29
  publication-title: Thermoelectric performance optimization in p -type Ce y Fe 3 CoSb 12 skutterudites
– volume: 65
  start-page: 351
  year: 2013
  end-page: 356
  ident: bib24
  article-title: Comparison of different modeling approaches for thermoelectric elements
  publication-title: Energy Convers Manag
– year: 1821
  ident: bib1
  article-title: Ueber den Magnetismus der galvanischen Kette. Berlin
– volume: 88
  start-page: 5173
  year: 2011
  end-page: 5179
  ident: bib33
  article-title: An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module
  publication-title: Appl Energy
– volume: 42
  start-page: 3521
  year: 2017
  ident: 10.1016/j.energy.2018.01.099_bib18
  article-title: Numerical analysis on the thermal behavior of a segmented thermoelectric generator
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.021
– volume: 7
  start-page: 2577
  year: 2014
  ident: 10.1016/j.energy.2018.01.099_bib8
  article-title: Bismuth telluride and its alloys as materials for thermoelectric generation
  publication-title: Mater (Basel)
  doi: 10.3390/ma7042577
– volume: 100
  start-page: 227
  year: 2016
  ident: 10.1016/j.energy.2018.01.099_bib25
  article-title: The influence of Thomson effect in the performance optimization of a two stage thermoelectric generator
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.092
– volume: 132
  start-page: 261
  year: 2017
  ident: 10.1016/j.energy.2018.01.099_bib7
  article-title: Analytical and numerical investigation on a new compact thermoelectric generator
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.11.043
– volume: 71
  start-page: 367
  year: 2014
  ident: 10.1016/j.energy.2018.01.099_bib21
  article-title: Multi-objective and multi-parameter optimization of a thermoelectric generator module
  publication-title: Energy
  doi: 10.1016/j.energy.2014.04.082
– volume: 84
  start-page: 2436
  year: 2004
  ident: 10.1016/j.energy.2018.01.099_bib14
  article-title: Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1689396
– volume: 30
  start-page: 851
  year: 1996
  ident: 10.1016/j.energy.2018.01.099_bib31
  article-title: Evolutionary algorithms for constrained engineering problems
  publication-title: Comput Ind Eng
  doi: 10.1016/0360-8352(96)00037-X
– volume: 65
  start-page: 351
  year: 2013
  ident: 10.1016/j.energy.2018.01.099_bib24
  article-title: Comparison of different modeling approaches for thermoelectric elements
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2012.08.022
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.energy.2018.01.099_bib30
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: Evol Comput IEEE Trans
  doi: 10.1109/4235.996017
– volume: 20
  start-page: 889
  year: 1993
  ident: 10.1016/j.energy.2018.01.099_bib27
  article-title: A new approach for multiple objective decision making
  publication-title: Comput Oper Res
  doi: 10.1016/0305-0548(93)90109-V
– volume: 80
  start-page: 388
  year: 2015
  ident: 10.1016/j.energy.2018.01.099_bib17
  article-title: Thermal analysis on a segmented thermoelectric generator
  publication-title: Energy
  doi: 10.1016/j.energy.2014.11.080
– volume: vol. 43
  start-page: 1712
  year: 2014
  ident: 10.1016/j.energy.2018.01.099_bib29
– volume: 10
  start-page: 45
  year: 2005
  ident: 10.1016/j.energy.2018.01.099_bib32
  article-title: Penalty function methods for constrained optimization with genetic algorithms
  publication-title: Math Comput Appl
– volume: 93
  start-page: 1034
  year: 2016
  ident: 10.1016/j.energy.2018.01.099_bib20
  article-title: Power and efficiency factors for comprehensive evaluation of thermoelectric generator materials
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.10.051
– volume: 85
  start-page: 12
  year: 2015
  ident: 10.1016/j.energy.2018.01.099_bib34
  article-title: Elucidating modeling aspects of thermoelectric generator
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.01.107
– volume: 66
  start-page: 965
  year: 2014
  ident: 10.1016/j.energy.2018.01.099_bib3
  article-title: Thermoelectric power generation driven by blast furnace slag flushing water
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.018
– year: 2006
  ident: 10.1016/j.energy.2018.01.099_bib37
– volume: 106
  start-page: 510
  year: 2015
  ident: 10.1016/j.energy.2018.01.099_bib19
  article-title: A comprehensive design method for segmented thermoelectric generator
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.09.068
– volume: 84
  start-page: 121
  year: 2015
  ident: 10.1016/j.energy.2018.01.099_bib16
  article-title: Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine
  publication-title: Energy
  doi: 10.1016/j.energy.2015.02.063
– volume: 16
  start-page: 12510
  year: 2014
  ident: 10.1016/j.energy.2018.01.099_bib9
  article-title: Conversion efficiency of skutterudite-based thermoelectric modules
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C4CP01582G
– volume: 91
  start-page: 242
  year: 2015
  ident: 10.1016/j.energy.2018.01.099_bib23
  article-title: Multi-objective and multi-parameter optimization of two-stage thermoelectric generator in electrically series and parallel configurations through NSGA-II
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.044
– volume: 88
  start-page: 5173
  year: 2011
  ident: 10.1016/j.energy.2018.01.099_bib33
  article-title: An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.07.033
– volume: 85
  start-page: 641
  year: 2008
  ident: 10.1016/j.energy.2018.01.099_bib35
  article-title: Performance optimization for a two-stage thermoelectric heat-pump with internal and external irreversibilities
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2007.10.005
– volume: 145
  start-page: 333
  year: 2016
  ident: 10.1016/j.energy.2018.01.099_bib4
  article-title: Performance evaluation of a natural convective-cooled concentration solar thermoelectric generator coupled with a spectrally selective high temperature absorber coating
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2015.10.040
– volume: 80
  start-page: 1
  year: 2009
  ident: 10.1016/j.energy.2018.01.099_bib28
  article-title: Solubility study of Yb in n -type skutterudites Ybx Co4 Sb12 and their enhanced thermoelectric properties
  publication-title: Phys Rev B Condens Matter Mater Phys
  doi: 10.1103/PhysRevB.80.115329
– volume: 82
  start-page: 300
  year: 2005
  ident: 10.1016/j.energy.2018.01.099_bib5
  article-title: Performance optimization of a two-stage semiconductor thermoelectric-generator
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2004.12.003
– volume: 101
  start-page: 981
  year: 2016
  ident: 10.1016/j.energy.2018.01.099_bib26
  article-title: Multi-objective genetic optimization of the heat transfer for tube inserted with porous media
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2016.05.118
– volume: 190
  start-page: 540
  year: 2017
  ident: 10.1016/j.energy.2018.01.099_bib22
  article-title: Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.002
– volume: 69
  start-page: 4333
  year: 1991
  ident: 10.1016/j.energy.2018.01.099_bib10
  article-title: Thermoelectric properties of pressure-sintered Si0.8Ge 0.2 thermoelectric alloys
  publication-title: J Appl Phys
  doi: 10.1063/1.348408
– volume: 188
  start-page: 621
  year: 2009
  ident: 10.1016/j.energy.2018.01.099_bib2
  article-title: Experimental study on low-temperature waste heat thermoelectric generator
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.12.067
– start-page: 119
  year: 2016
  ident: 10.1016/j.energy.2018.01.099_bib6
  article-title: Design of a polymer thermoelectric generator using radial architecture
  publication-title: J Appl Phys
– year: 1821
  ident: 10.1016/j.energy.2018.01.099_bib1
– volume: 185
  start-page: 45
  year: 2014
  ident: 10.1016/j.energy.2018.01.099_bib15
  article-title: Design of segmented thermoelectric generator based on cost-effective and light-weight thermoelectric alloys
  publication-title: Mater Sci Eng B Solid-State Mater Adv Technol
  doi: 10.1016/j.mseb.2014.02.005
– volume: 93
  start-page: 33
  year: 2012
  ident: 10.1016/j.energy.2018.01.099_bib11
  article-title: Thermal design and management for performance optimization of solar thermoelectric generator
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.06.006
– volume: 79
  start-page: 8823
  year: 1996
  ident: 10.1016/j.energy.2018.01.099_bib36
  article-title: The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator
  publication-title: J Appl Phys
  doi: 10.1063/1.362507
– volume: 91
  start-page: 148301/1
  year: 2003
  ident: 10.1016/j.energy.2018.01.099_bib13
  article-title: Thermoelectric efficiency and compatibility
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.91.148301
– volume: 130
  start-page: 190
  year: 2014
  ident: 10.1016/j.energy.2018.01.099_bib12
  article-title: Comparison and parameter optimization of a two-stage thermoelectric generator using high temperature exhaust of internal combustion engine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.05.048
SSID ssj0005899
Score 2.5611935
Snippet This paper proposes a general method to optimize the structure and load current for a segmented thermoelectric generator (TEG) module, where the bismuth...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1060
SubjectTerms Algorithms
bismuth
Bismuth tellurides
cold
Computer simulation
Conduction
Conduction heating
Conductive heat transfer
Design
electric generators
Electricity generation
energy
finite element analysis
Finite element method
Genetic algorithm
Genetic algorithms
heat
Heat transfer
Industrial applications
Intermetallic compounds
Mathematical models
Multi-objective optimization
Multiple objective analysis
Numerical simulation
Ohmic dissipation
Optimization
Peltier effects
Performance assessment
Semiconductors
simulation models
Studies
Tellurides
Thermoelectric generator
Thermoelectric generators
Thermoelectricity
Title Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm
URI https://dx.doi.org/10.1016/j.energy.2018.01.099
https://www.proquest.com/docview/2065057920
https://www.proquest.com/docview/2053888061
https://www.proquest.com/docview/2574371566
Volume 147
WOSCitedRecordID wos000429391100082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKhwQvEwwmygYyEuKl8pTm6jxOqOOiqkOig_IUxYmzpmqT0jRTfwQ_hJ_J8SVuu8EGD6hSFDmOk_Z8Pef4XBF63eOO51hxSFiShcS1U0qYHbskZVkCH1D4E1nEdRAMh3Q8Dj-1Wj-bXJirWVAUdL0OF_-V1DAGxBaps_9AbrMoDMA5EB2OQHY4_hXhz4EJzIXrRcZmqPzHil_K4psyWHI5L1XzmzwRDZS5dLR3hThLletgyTlJRdV_VbGjW9TKrTPrVvlct_uSTgcZjUhKNlVcU64mC8DOLstlvprMd-z-KstQlDddq4h6Y4N4J62q34yEGOS1dJpM8mRSG_R-rgslKIutOCI18yvPt80XPZnPpxI4lU3N5NV82eJ8jm8Rz1Vlt0644sw0cAhIVm-HdatqnZr5wu7W-q1UUAaK6QmXX1TE81FZq1W1Ztotwj08j84uBoNo1B-P3iy-E9GfTPjxdbOWe2jPDryQttHe6Yf--OMmnIjKXqXm1Zs0TRlLePPBf1KDrikEUssZPUL7enuCTxWsHqMWLw7QgyZ7vTpAh_1NZiRM1KKheoJ-aNxhhTtcZjjGBnd4F3fY4A5L3OGywDdwhw3u8AZ3GHCHr-EOa9xhg7un6OKsP3r7nuhWHyQBIbIiccAyFgR-6sc2d1IvTDzKqM9S0AsojIe-8H8HMC32uZtxlvmOnaVw7vsBgz3FIWoXZcGfIexloOUmtstjD9ZOGeWOlcEm30moyznvdZDT_PJRouvgi3Yss6gJeJxGil6RoFdk9SKgVwcRc9dC1YG5Y37QEDXSuqzSUSMA5R13HjcYiDRbqeC6LywJoW110CtzGSSBcO_FBS9rMQeUFxDHfu-WOR7sGAJhs3l--2OO0MPNv_UYtVfLmr9A95OrVV4tX2rw_wKtt-iR
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+a+segmented+thermoelectric+generator+based+on+three-dimensional+numerical+simulation+and+multi-objective+genetic+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Ge%2C+Ya&rft.au=Liu%2C+Zhichun&rft.au=Sun%2C+Henan&rft.au=Liu%2C+Wei&rft.date=2018-03-15&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=147&rft.spage=1060&rft_id=info:doi/10.1016%2Fj.energy.2018.01.099&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon