Long Short-Term Memory Autoencoder and Extreme Gradient Boosting-Based Factory Energy Management Framework for Power Consumption Forecasting
Electricity consumption prediction is crucial for the operation, strategic planning, and maintenance of power grid infrastructure. The effective management of power systems depends on accurately predicting electricity usage patterns and intensity. This study aims to enhance the operational efficienc...
Uloženo v:
| Vydáno v: | Energies (Basel) Ročník 17; číslo 15; s. 3666 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.08.2024
|
| Témata: | |
| ISSN: | 1996-1073, 1996-1073 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Electricity consumption prediction is crucial for the operation, strategic planning, and maintenance of power grid infrastructure. The effective management of power systems depends on accurately predicting electricity usage patterns and intensity. This study aims to enhance the operational efficiency of power systems and minimize environmental impact by predicting mid to long-term electricity consumption in industrial facilities, particularly in forging processes, and detecting anomalies in energy consumption. We propose an ensemble model combining Extreme Gradient Boosting (XGBoost) and a Long Short-Term Memory Autoencoder (LSTM-AE) to accurately forecast power consumption. This approach leverages the strengths of both models to improve prediction accuracy and responsiveness. The dataset includes power consumption data from forging processes in manufacturing plants, as well as system load and System Marginal Price data. During data preprocessing, Expectation Maximization Principal Component Analysis was applied to address missing values and select significant features, optimizing the model. The proposed method achieved a Mean Absolute Error of 0.020, a Mean Squared Error of 0.021, a Coefficient of Determination of 0.99, and a Symmetric Mean Absolute Percentage Error of 4.24, highlighting its superior predictive performance and low relative error. These findings underscore the model’s reliability and accuracy for integration into Energy Management Systems for real-time data processing and mid to long-term energy planning, facilitating sustainable energy use and informed decision making in industrial settings. |
|---|---|
| AbstractList | Electricity consumption prediction is crucial for the operation, strategic planning, and maintenance of power grid infrastructure. The effective management of power systems depends on accurately predicting electricity usage patterns and intensity. This study aims to enhance the operational efficiency of power systems and minimize environmental impact by predicting mid to long-term electricity consumption in industrial facilities, particularly in forging processes, and detecting anomalies in energy consumption. We propose an ensemble model combining Extreme Gradient Boosting (XGBoost) and a Long Short-Term Memory Autoencoder (LSTM-AE) to accurately forecast power consumption. This approach leverages the strengths of both models to improve prediction accuracy and responsiveness. The dataset includes power consumption data from forging processes in manufacturing plants, as well as system load and System Marginal Price data. During data preprocessing, Expectation Maximization Principal Component Analysis was applied to address missing values and select significant features, optimizing the model. The proposed method achieved a Mean Absolute Error of 0.020, a Mean Squared Error of 0.021, a Coefficient of Determination of 0.99, and a Symmetric Mean Absolute Percentage Error of 4.24, highlighting its superior predictive performance and low relative error. These findings underscore the model’s reliability and accuracy for integration into Energy Management Systems for real-time data processing and mid to long-term energy planning, facilitating sustainable energy use and informed decision making in industrial settings. |
| Audience | Academic |
| Author | Jeong, Jongpil Hwang, Yejin Lee, Younjeong Moon, Yeeun |
| Author_xml | – sequence: 1 givenname: Yeeun orcidid: 0009-0007-8885-6813 surname: Moon fullname: Moon, Yeeun – sequence: 2 givenname: Younjeong orcidid: 0009-0007-7180-5876 surname: Lee fullname: Lee, Younjeong – sequence: 3 givenname: Yejin surname: Hwang fullname: Hwang, Yejin – sequence: 4 givenname: Jongpil orcidid: 0000-0002-4061-9532 surname: Jeong fullname: Jeong, Jongpil |
| BookMark | eNptkd1qGzEQhZeSQtM0N30CQe8Km-pvf3TpGDsNOKTQ9HoZa0dbuV6Nq5VJ_Q596MpxSUupBiExfOdo0HldnAUKWBRvBb9SyvAPGEQjKlXX9YviXBhTl4I36uyv-6vicpo2PC-lhFLqvPi5ojCwz18ppvIB48jucKR4YLN9IgyWeowMQs8WP1LEEdlNhN5jSOyaaEo-DOU1TNizJdh01C0CxuHA7iDAkPkMLiOM-EjxG3MU2Sd6zI5zCtN-3CVPgS0pooUnrzfFSwfbCS9_nxfFl-XiYf6xXN3f3M5nq9JqzlMJtZSqF6DXxjhdWYPKwdrqRhmpECvtXKsbydeSQ42OO5C6cQaNVVXbOq0uituTb0-w6XbRjxAPHYHvnhoUhw5i8naLXa_bGtsKnUXQRmPLa5RtLxuxNo73bfZ6d_LaRfq-xyl1G9rHkMfvFDe5pDRH6upEDZBNfXCUIthcPY7e5hidz_1Zy3UlZN5Z8P4ksJGmKaJ7HlPw7ph29yftDPN_YOsTHH83v-K3_5P8Aq45r4s |
| CitedBy_id | crossref_primary_10_1007_s40032_025_01238_0 crossref_primary_10_1016_j_knosys_2025_114300 crossref_primary_10_1177_14727978251366502 crossref_primary_10_1080_21681015_2025_2481302 crossref_primary_10_3390_jsan13050060 crossref_primary_10_3390_pr13082560 crossref_primary_10_1109_ACCESS_2025_3556540 crossref_primary_10_3390_ma17205056 |
| Cites_doi | 10.1016/j.jclepro.2012.12.012 10.3390/en10081168 10.1016/j.energy.2024.131259 10.1016/j.jclepro.2020.125556 10.1038/s41597-022-01357-8 10.1016/j.chemolab.2020.104063 10.1016/j.engappai.2022.104856 10.1016/j.eswa.2014.03.053 10.1016/j.rser.2015.11.067 10.1016/j.cpc.2021.107844 10.1016/j.energy.2018.12.208 10.3390/en10081186 10.1023/A:1008334909089 10.3390/en13153764 10.1016/j.rser.2023.113405 10.1109/IEEM.2014.7058728 10.1016/j.apenergy.2019.114131 10.1016/j.enbuild.2022.112705 10.1109/ACCESS.2022.3157941 10.1080/00031305.2017.1380080 10.1145/2939672.2939785 10.1109/ACCESS.2019.2932769 10.1016/j.rser.2020.109792 10.3390/en13081881 10.1016/j.epsr.2023.109507 10.1142/S0218001496000530 10.1007/s12652-018-1022-x 10.1016/j.enconman.2023.116709 10.1023/B:AIRE.0000045502.10941.a9 10.3390/w15071265 10.1016/j.energy.2021.120480 10.20944/preprints202309.1191.v1 10.1016/j.segan.2024.101336 10.1016/j.apenergy.2024.123194 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en17153666 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_d486e85efcea494e806e28d271b9f0d8 A804512451 10_3390_en17153666 |
| GeographicLocations | South Korea |
| GeographicLocations_xml | – name: South Korea |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c400t-a6223d1a4b99f45c9e3fabc473923ee54ff84720b20a6ef0fa247f9e9c3588f43 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001287167300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:42:52 EDT 2025 Mon Jun 30 17:27:46 EDT 2025 Tue Nov 04 18:17:22 EST 2025 Sat Nov 29 07:19:53 EST 2025 Tue Nov 18 21:52:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-a6223d1a4b99f45c9e3fabc473923ee54ff84720b20a6ef0fa247f9e9c3588f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4061-9532 0009-0007-7180-5876 0009-0007-8885-6813 |
| OpenAccessLink | https://doaj.org/article/d486e85efcea494e806e28d271b9f0d8 |
| PQID | 3090902298 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d486e85efcea494e806e28d271b9f0d8 proquest_journals_3090902298 gale_infotracacademiconefile_A804512451 crossref_primary_10_3390_en17153666 crossref_citationtrail_10_3390_en17153666 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Lee (ref_14) 2016; 56 Hodge (ref_24) 2004; 22 Li (ref_2) 2024; 296 (ref_15) 2021; 291 Zhang (ref_6) 2023; 222 Bruha (ref_22) 1996; 10 ref_35 Ahmed (ref_28) 2020; 124 Roweis (ref_9) 1997; 10 ref_11 ref_10 Zhang (ref_5) 2016; 51 Khan (ref_13) 2023; 279 ref_19 Wang (ref_38) 2023; 278 ref_39 Vikhorev (ref_12) 2013; 43 Wu (ref_16) 2018; 10 Zhang (ref_21) 2020; 203 Hu (ref_31) 2023; 182 Imani (ref_32) 2021; 227 Lee (ref_44) 2022; 9 Wang (ref_25) 2019; 7 Somu (ref_33) 2020; 261 Kotsiantis (ref_26) 2006; 1 Lakshminarayan (ref_23) 1999; 11 Zhou (ref_8) 2024; 38 Lee (ref_3) 2023; 18 ref_47 ref_45 ref_43 Ibrahim (ref_46) 2024; 105 ref_42 ref_40 Alasadi (ref_20) 2017; 12 Taylor (ref_36) 2018; 72 Samet (ref_1) 2014; 41 Ferrara (ref_30) 2014; 228 ref_27 Tan (ref_41) 2022; 112 Zhu (ref_37) 2024; 364 Li (ref_18) 2021; 70 ref_4 Alghamdi (ref_17) 2022; 10 ref_7 Pereira (ref_29) 2021; 263 Hu (ref_34) 2019; 170 |
| References_xml | – volume: 43 start-page: 103 year: 2013 ident: ref_12 article-title: An advanced energy management framework to promote energy awareness publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2012.12.012 – ident: ref_39 doi: 10.3390/en10081168 – volume: 296 start-page: 131259 year: 2024 ident: ref_2 article-title: An advanced framework for net electricity consumption prediction: Incorporating novel machine learning models and optimization algorithms publication-title: Energy doi: 10.1016/j.energy.2024.131259 – volume: 291 start-page: 125556 year: 2021 ident: ref_15 article-title: Adaptive predictive control for peripheral equipment management to enhance energy efficiency in smart manufacturing systems publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.125556 – ident: ref_11 – volume: 9 start-page: 227 year: 2022 ident: ref_44 article-title: Datasets on South Korean manufacturing factories’ electricity consumption and demand response participation publication-title: Sci. Data doi: 10.1038/s41597-022-01357-8 – volume: 203 start-page: 104063 year: 2020 ident: ref_21 article-title: Noise reduction in the spectral domain of hyperspectral images using denoising autoencoder methods publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.104063 – volume: 112 start-page: 104856 year: 2022 ident: ref_41 article-title: Multi-node load forecasting based on multi-task learning with modal feature extraction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104856 – volume: 41 start-page: 6047 year: 2014 ident: ref_1 article-title: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.03.053 – volume: 56 start-page: 760 year: 2016 ident: ref_14 article-title: Energy savings by Energy Management Systems: A Review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.11.067 – volume: 263 start-page: 107844 year: 2021 ident: ref_29 article-title: HEP-frame: Improving the efficiency of pipelined data transformation & filtering for scientific analyses publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.107844 – volume: 228 start-page: 1 year: 2014 ident: ref_30 article-title: Nonlinear dynamics in a Solow model with delay and non-convex technology publication-title: Appl. Math. Comput. – volume: 70 start-page: 1 year: 2021 ident: ref_18 article-title: Grid-constrained data cleansing method for enhanced bus load forecasting publication-title: IEEE Trans. Instrum. Meas. – ident: ref_42 – volume: 105 start-page: 1 year: 2024 ident: ref_46 article-title: A hybrid model of CNN and LSTM autoencoder-based short-term PV power generation forecasting publication-title: Electr. Eng. – ident: ref_35 – volume: 170 start-page: 1215 year: 2019 ident: ref_34 article-title: Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process publication-title: Energy doi: 10.1016/j.energy.2018.12.208 – volume: 51 start-page: 589 year: 2016 ident: ref_5 article-title: Research on power load forecasting based on the improved Elman neural network publication-title: Chem. Eng. Trans. – ident: ref_40 doi: 10.3390/en10081186 – volume: 11 start-page: 259 year: 1999 ident: ref_23 article-title: Imputation of Missing Data in Industrial Databases publication-title: Appl. Intell. doi: 10.1023/A:1008334909089 – ident: ref_27 doi: 10.3390/en13153764 – volume: 182 start-page: 113405 year: 2023 ident: ref_31 article-title: Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.113405 – volume: 1 start-page: 111 year: 2006 ident: ref_26 article-title: Data preprocessing for supervised learning publication-title: Int. J. Comput. Sci. – ident: ref_10 doi: 10.1109/IEEM.2014.7058728 – volume: 261 start-page: 114131 year: 2020 ident: ref_33 article-title: A hybrid model for building energy consumption forecasting using long short term memory networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114131 – volume: 279 start-page: 112705 year: 2023 ident: ref_13 article-title: Towards intelligent building energy management: AI-based framework for power consumption and generation forecasting publication-title: Energy Build. doi: 10.1016/j.enbuild.2022.112705 – volume: 10 start-page: 626 year: 1997 ident: ref_9 article-title: EM algorithms for PCA and SPCA publication-title: Adv. Neural Inf. Process. Syst. – volume: 10 start-page: 29149 year: 2022 ident: ref_17 article-title: A survey of preprocessing methods used for analysis of big data originated from smart grids publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3157941 – volume: 12 start-page: 4102 year: 2017 ident: ref_20 article-title: Review of data preprocessing techniques in data mining publication-title: J. Eng. Appl. Sci. – volume: 72 start-page: 37 year: 2018 ident: ref_36 article-title: Forecasting at Scale publication-title: Am. Stat. doi: 10.1080/00031305.2017.1380080 – ident: ref_43 doi: 10.1145/2939672.2939785 – volume: 7 start-page: 107964 year: 2019 ident: ref_25 article-title: Progress in outlier detection techniques: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932769 – volume: 124 start-page: 109792 year: 2020 ident: ref_28 article-title: A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109792 – ident: ref_4 doi: 10.3390/en13081881 – volume: 222 start-page: 109507 year: 2023 ident: ref_6 article-title: A CNN and LSTM-based multi-task learning architecture for short and medium-term electricity load forecasting publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2023.109507 – volume: 10 start-page: 939 year: 1996 ident: ref_22 article-title: Comparison of various routines for unknown attribute value processing: The covering paradigm publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001496000530 – volume: 10 start-page: 969 year: 2018 ident: ref_16 article-title: Energy-efficiency-oriented scheduling in smart manufacturing publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-018-1022-x – ident: ref_45 – volume: 18 start-page: 7 year: 2023 ident: ref_3 article-title: Optimization of Energy Consumption Prediction Model of Food Factory based on LSTM for Application to FEMS publication-title: J. Environ. Therm. Eng. – ident: ref_19 – volume: 278 start-page: 116709 year: 2023 ident: ref_38 article-title: An improved Wavenet network for multi-step-ahead wind energy forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2023.116709 – volume: 22 start-page: 85 year: 2004 ident: ref_24 article-title: A survey of outlier detection methodologies publication-title: Artif. Intell. Rev. doi: 10.1023/B:AIRE.0000045502.10941.a9 – ident: ref_47 doi: 10.3390/w15071265 – volume: 227 start-page: 120480 year: 2021 ident: ref_32 article-title: Electrical load-temperature CNN for residential load forecasting publication-title: Energy doi: 10.1016/j.energy.2021.120480 – ident: ref_7 doi: 10.20944/preprints202309.1191.v1 – volume: 38 start-page: 101336 year: 2024 ident: ref_8 article-title: Regional short-term load forecasting method based on power load characteristics of different industries publication-title: Sustain. Energy Grids Netw. doi: 10.1016/j.segan.2024.101336 – volume: 364 start-page: 123194 year: 2024 ident: ref_37 article-title: GGNet: A novel graph structure for power forecasting in renewable power plants considering temporal lead-lag correlations publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.123194 |
| SSID | ssj0000331333 |
| Score | 2.4159896 |
| Snippet | Electricity consumption prediction is crucial for the operation, strategic planning, and maintenance of power grid infrastructure. The effective management of... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3666 |
| SubjectTerms | deep learning Electric power systems electricity consumption prediction Energy consumption Energy efficiency Energy management systems Energy use extreme gradient boosting Factories factory energy management system Green technology Infrastructure (Economics) long short-term memory autoencoder Manufacturing Marketing research South Korea |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWg5UAPfKMuFGQJJMQhamI7iX1Cu9UuHMpqBUXqLXLscUFCSdlNEf0P_GhmvN5dDsCFQy6OFTnyeOZ5_PyGsZdtIXwtC0RuQUNGkt1ZCzZk2Aq28nVbtlEy_7Sez_X5uVmkhNsq0So3PjE6at87ypEfy9wQhVAY_ebyW0ZVo-h0NZXQuMn2SakM7Xx_Mp0vPmyzLLmUuAmTa11Sifv7Y-iKGld5FWURd5EoCvb_zS3HWDO7-7-jvMfuJJTJx2uzuM9uQPeAHfymPfiQ_Tztuwv-8TPC7-wM3TN_T5zbaz6-GnoSt_Sw5LbzfPpjoBQif7uM5LCBT_p-RVzpbIIB0PNZLNhzzafxEiHf0Wn4bMP74giM-YLKsfGTeOMzuilOVUGdjd96xD7Npmcn77JUmiFzuOiHzFYIK3xhVWtMUKUzIINtnaoRbkmAUoWAYU_krchtBSEPVqg6GDBOlloHJR-zva7v4JBx7ZxDjCYKUJXSxtp4tkuy8S2CIZOP2OvNNDUu6ZZT-YyvDe5faEqb3ZSO2Itt38u1Wscfe01otrc9SGE7NvTLiyYt2MYrXYEuITiwyijQeQVCe1EXrQm51yP2imylIT-Aw3E2XWfAnyJFrWasSblH4DNiRxtbaZKDWDU7Q3ny79dP2W2BOGrNOTxie8PyCp6xW-778GW1fJ7s_RdZVwxC priority: 102 providerName: ProQuest |
| Title | Long Short-Term Memory Autoencoder and Extreme Gradient Boosting-Based Factory Energy Management Framework for Power Consumption Forecasting |
| URI | https://www.proquest.com/docview/3090902298 https://doaj.org/article/d486e85efcea494e806e28d271b9f0d8 |
| Volume | 17 |
| WOSCitedRecordID | wos001287167300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ4QAH1PIQC21lCSTEIWpiO4l93K2ygNRdRVCkcor8GBcklKDdFNELv6A_mrGT7e4BxIVDcrCsyPG8Picz3xDyymTMlTxD5OYlJIGyOzGgfYKjoAtXmtxEyvyzcrmUFxeq3mn1FXLCBnrgYeNOnJAFyBy8BS2UAJkWwKRjZWaUT10s801LtXOYij6Yczx88YGPlOO5_gTarETrLiId4jYCRaL-v7njGGPm--ThCA7pdFjUAbkD7SPyYIcy8DG5OevaS_rxC6Lm5By9Kl2EVNlrOr3qu8BJ6WBFdeto9bMPX_7o21XM6erprOvWIcU5mWHccnQe--xc0yrW_tFtFgydb9K1KOJZWocuavQ0FmpG70JDM0-r47OekE_z6vz0XTJ2VEgs2mqf6ALRgMu0MEp5kVsF3GtjRYkoiQPkwnuMViw1LNUF-NRrJkqvQFmeS-kFf0r22q6FZ4RKay1CK5aBKIRUWsdfsoHt3SCGUemEvNnscmNHuvHQ9eJbg8eOIJFmK5EJeXk79_tAsvHHWbMgrNsZgRg7DqC6NKO6NP9Slwl5HUTdBPPF5Vg9ViHgSwUirGYqA-EOw2tCDjfa0Ix2vW54qkIiK1Py-f9YzQtynyFIGhIKD8lev7qCI3LP_ui_rlfH5O6sWtYfjqNq433xq8Kx-v2i_vwbTZkCCA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwELWWLhJw4BtRWMASIMQh2sR2EvuAULu0bLVtVYki7Z6C49gLEkqWNgv0P_Bb-I3MuEnLAbjtgUMujmUlzsvM2H7zhpBnecSKlEcQuTlpA5TsDnKrXQCtVidFmse5l8wfp9OpPD5Wsx3ys82FQVplaxO9oS4qg3vk-zxUSCFkSr4--xJg1Sg8XW1LaKxhcWRX32DJtnw1egPf9zljw8H84DBoqgoEBvBaBzoBj1hEWuRKOREbZbnTuREpRArc2lg4BxabhTkLdWJd6DQTqVNWGR5L6QSHcS-RXYFg75Dd2WgyO9ns6oScw6KPr3VQOVfhvi2jFKxK4mUYt57PFwj4mxvwvm1443-blZvkehNF094a9rfIji1vk2u_aSveIT_GVXlK332E5UUwB_dDJ8gpXtHeeV2heGdhF1SXBR18r3GLlL5dePJbTftVtUQueNAHB1_QoS9ItKIDnyRJt3QhOmx5bRQCfzrDcnP0wGe0ejNMseqp0X6su-T9hUzHPdIpq9LeJ1QaYyAGZZEViZBKa392jbL4OQR7KuySly0sMtPosmN5kM8ZrM8QQtkWQl3ydNP3bK1G8sdefUTXpgcqiPuGanGaNQYpK4RMrIytM1YLJawME8tkwdIoVy4sZJe8QGxmaOfgcYxu0jXgpVAxLOtJVCZicHXJXovNrDGAy2wLzAf_vv2EXDmcT8bZeDQ9ekiuMogZ1_zKPdKpF-f2EblsvtaflovHzb9GyYeLBvIvzxppvw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGH41OoTgwDeiMMASIMQhamI7iX1AqN1aqNZVlRjSdgqOY2-TUDLaDOh_4Bfx63jtJi0H4LYDh1wcK0qcx--H_fh5AV7kES1SFmHkZoUJnGR3kBtlA2w1KinSPM69ZP4knU7F0ZGcbcHP9iyMo1W2NtEb6qLSbo28x0LpKIRUip5taBGzvdHb8y-BqyDldlrbchoriOyb5TdM3xZvxnv4r19SOhoe7r4PmgoDgUbs1oFK0DsWkeK5lJbHWhpmVa55ilEDMybm1qL1pmFOQ5UYG1pFeWqlkZrFQljO8LlXYBtDck47sD0bH8yO1ys8IWOYALKVJipjMuyZMkrRwiReknHjBX2xgL-5BO_nRrf-5xG6DTeb6Jr0V9PhDmyZ8i7c-E1z8R78mFTlCflwimlHcIhuiRw4rvGS9C_qyol6FmZOVFmQ4ffaLZ2Sd3NPiqvJoKoWjiMeDNDxF2TkCxUtydAfniQbGhEZtXw3ggkBmbkydGTXn3T15pm4aqha-Wfdh4-XMhwPoFNWpXkIRGitMTalkeEJF1Ipv6ft5PJzDAJl2IXXLUQy3ei1u7IhnzPM2xycsg2cuvB83fd8pVLyx14Dh7R1D6cs7huq-UnWGKqs4CIxIjZWG8UlNyJMDBUFTaNc2rAQXXjlcJo5-4evo1VzjAM_yimJZX3hFIsoXl3YaXGaNYZxkW1A-ujft5_BNURvNhlP9x_DdYqh5Ip2uQOden5hnsBV_bU-W8yfNtOOwKfLxvEv91hyfw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+Short-Term+Memory+Autoencoder+and+Extreme+Gradient+Boosting-Based+Factory+Energy+Management+Framework+for+Power+Consumption+Forecasting&rft.jtitle=Energies+%28Basel%29&rft.au=Moon%2C+Yeeun&rft.au=Lee%2C+Younjeong&rft.au=Hwang%2C+Yejin&rft.au=Jeong%2C+Jongpil&rft.date=2024-08-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=17&rft.issue=15&rft.spage=3666&rft_id=info:doi/10.3390%2Fen17153666&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en17153666 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |