Long Short-Term Memory Autoencoder and Extreme Gradient Boosting-Based Factory Energy Management Framework for Power Consumption Forecasting

Electricity consumption prediction is crucial for the operation, strategic planning, and maintenance of power grid infrastructure. The effective management of power systems depends on accurately predicting electricity usage patterns and intensity. This study aims to enhance the operational efficienc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energies (Basel) Ročník 17; číslo 15; s. 3666
Hlavní autoři: Moon, Yeeun, Lee, Younjeong, Hwang, Yejin, Jeong, Jongpil
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.08.2024
Témata:
ISSN:1996-1073, 1996-1073
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Electricity consumption prediction is crucial for the operation, strategic planning, and maintenance of power grid infrastructure. The effective management of power systems depends on accurately predicting electricity usage patterns and intensity. This study aims to enhance the operational efficiency of power systems and minimize environmental impact by predicting mid to long-term electricity consumption in industrial facilities, particularly in forging processes, and detecting anomalies in energy consumption. We propose an ensemble model combining Extreme Gradient Boosting (XGBoost) and a Long Short-Term Memory Autoencoder (LSTM-AE) to accurately forecast power consumption. This approach leverages the strengths of both models to improve prediction accuracy and responsiveness. The dataset includes power consumption data from forging processes in manufacturing plants, as well as system load and System Marginal Price data. During data preprocessing, Expectation Maximization Principal Component Analysis was applied to address missing values and select significant features, optimizing the model. The proposed method achieved a Mean Absolute Error of 0.020, a Mean Squared Error of 0.021, a Coefficient of Determination of 0.99, and a Symmetric Mean Absolute Percentage Error of 4.24, highlighting its superior predictive performance and low relative error. These findings underscore the model’s reliability and accuracy for integration into Energy Management Systems for real-time data processing and mid to long-term energy planning, facilitating sustainable energy use and informed decision making in industrial settings.
AbstractList Electricity consumption prediction is crucial for the operation, strategic planning, and maintenance of power grid infrastructure. The effective management of power systems depends on accurately predicting electricity usage patterns and intensity. This study aims to enhance the operational efficiency of power systems and minimize environmental impact by predicting mid to long-term electricity consumption in industrial facilities, particularly in forging processes, and detecting anomalies in energy consumption. We propose an ensemble model combining Extreme Gradient Boosting (XGBoost) and a Long Short-Term Memory Autoencoder (LSTM-AE) to accurately forecast power consumption. This approach leverages the strengths of both models to improve prediction accuracy and responsiveness. The dataset includes power consumption data from forging processes in manufacturing plants, as well as system load and System Marginal Price data. During data preprocessing, Expectation Maximization Principal Component Analysis was applied to address missing values and select significant features, optimizing the model. The proposed method achieved a Mean Absolute Error of 0.020, a Mean Squared Error of 0.021, a Coefficient of Determination of 0.99, and a Symmetric Mean Absolute Percentage Error of 4.24, highlighting its superior predictive performance and low relative error. These findings underscore the model’s reliability and accuracy for integration into Energy Management Systems for real-time data processing and mid to long-term energy planning, facilitating sustainable energy use and informed decision making in industrial settings.
Audience Academic
Author Jeong, Jongpil
Hwang, Yejin
Lee, Younjeong
Moon, Yeeun
Author_xml – sequence: 1
  givenname: Yeeun
  orcidid: 0009-0007-8885-6813
  surname: Moon
  fullname: Moon, Yeeun
– sequence: 2
  givenname: Younjeong
  orcidid: 0009-0007-7180-5876
  surname: Lee
  fullname: Lee, Younjeong
– sequence: 3
  givenname: Yejin
  surname: Hwang
  fullname: Hwang, Yejin
– sequence: 4
  givenname: Jongpil
  orcidid: 0000-0002-4061-9532
  surname: Jeong
  fullname: Jeong, Jongpil
BookMark eNptkd1qGzEQhZeSQtM0N30CQe8Km-pvf3TpGDsNOKTQ9HoZa0dbuV6Nq5VJ_Q596MpxSUupBiExfOdo0HldnAUKWBRvBb9SyvAPGEQjKlXX9YviXBhTl4I36uyv-6vicpo2PC-lhFLqvPi5ojCwz18ppvIB48jucKR4YLN9IgyWeowMQs8WP1LEEdlNhN5jSOyaaEo-DOU1TNizJdh01C0CxuHA7iDAkPkMLiOM-EjxG3MU2Sd6zI5zCtN-3CVPgS0pooUnrzfFSwfbCS9_nxfFl-XiYf6xXN3f3M5nq9JqzlMJtZSqF6DXxjhdWYPKwdrqRhmpECvtXKsbydeSQ42OO5C6cQaNVVXbOq0uituTb0-w6XbRjxAPHYHvnhoUhw5i8naLXa_bGtsKnUXQRmPLa5RtLxuxNo73bfZ6d_LaRfq-xyl1G9rHkMfvFDe5pDRH6upEDZBNfXCUIthcPY7e5hidz_1Zy3UlZN5Z8P4ksJGmKaJ7HlPw7ph29yftDPN_YOsTHH83v-K3_5P8Aq45r4s
CitedBy_id crossref_primary_10_1007_s40032_025_01238_0
crossref_primary_10_1016_j_knosys_2025_114300
crossref_primary_10_1177_14727978251366502
crossref_primary_10_1080_21681015_2025_2481302
crossref_primary_10_3390_jsan13050060
crossref_primary_10_3390_pr13082560
crossref_primary_10_1109_ACCESS_2025_3556540
crossref_primary_10_3390_ma17205056
Cites_doi 10.1016/j.jclepro.2012.12.012
10.3390/en10081168
10.1016/j.energy.2024.131259
10.1016/j.jclepro.2020.125556
10.1038/s41597-022-01357-8
10.1016/j.chemolab.2020.104063
10.1016/j.engappai.2022.104856
10.1016/j.eswa.2014.03.053
10.1016/j.rser.2015.11.067
10.1016/j.cpc.2021.107844
10.1016/j.energy.2018.12.208
10.3390/en10081186
10.1023/A:1008334909089
10.3390/en13153764
10.1016/j.rser.2023.113405
10.1109/IEEM.2014.7058728
10.1016/j.apenergy.2019.114131
10.1016/j.enbuild.2022.112705
10.1109/ACCESS.2022.3157941
10.1080/00031305.2017.1380080
10.1145/2939672.2939785
10.1109/ACCESS.2019.2932769
10.1016/j.rser.2020.109792
10.3390/en13081881
10.1016/j.epsr.2023.109507
10.1142/S0218001496000530
10.1007/s12652-018-1022-x
10.1016/j.enconman.2023.116709
10.1023/B:AIRE.0000045502.10941.a9
10.3390/w15071265
10.1016/j.energy.2021.120480
10.20944/preprints202309.1191.v1
10.1016/j.segan.2024.101336
10.1016/j.apenergy.2024.123194
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en17153666
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_d486e85efcea494e806e28d271b9f0d8
A804512451
10_3390_en17153666
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c400t-a6223d1a4b99f45c9e3fabc473923ee54ff84720b20a6ef0fa247f9e9c3588f43
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001287167300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:42:52 EDT 2025
Mon Jun 30 17:27:46 EDT 2025
Tue Nov 04 18:17:22 EST 2025
Sat Nov 29 07:19:53 EST 2025
Tue Nov 18 21:52:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-a6223d1a4b99f45c9e3fabc473923ee54ff84720b20a6ef0fa247f9e9c3588f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4061-9532
0009-0007-7180-5876
0009-0007-8885-6813
OpenAccessLink https://doaj.org/article/d486e85efcea494e806e28d271b9f0d8
PQID 3090902298
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_d486e85efcea494e806e28d271b9f0d8
proquest_journals_3090902298
gale_infotracacademiconefile_A804512451
crossref_primary_10_3390_en17153666
crossref_citationtrail_10_3390_en17153666
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lee (ref_14) 2016; 56
Hodge (ref_24) 2004; 22
Li (ref_2) 2024; 296
(ref_15) 2021; 291
Zhang (ref_6) 2023; 222
Bruha (ref_22) 1996; 10
ref_35
Ahmed (ref_28) 2020; 124
Roweis (ref_9) 1997; 10
ref_11
ref_10
Zhang (ref_5) 2016; 51
Khan (ref_13) 2023; 279
ref_19
Wang (ref_38) 2023; 278
ref_39
Vikhorev (ref_12) 2013; 43
Wu (ref_16) 2018; 10
Zhang (ref_21) 2020; 203
Hu (ref_31) 2023; 182
Imani (ref_32) 2021; 227
Lee (ref_44) 2022; 9
Wang (ref_25) 2019; 7
Somu (ref_33) 2020; 261
Kotsiantis (ref_26) 2006; 1
Lakshminarayan (ref_23) 1999; 11
Zhou (ref_8) 2024; 38
Lee (ref_3) 2023; 18
ref_47
ref_45
ref_43
Ibrahim (ref_46) 2024; 105
ref_42
ref_40
Alasadi (ref_20) 2017; 12
Taylor (ref_36) 2018; 72
Samet (ref_1) 2014; 41
Ferrara (ref_30) 2014; 228
ref_27
Tan (ref_41) 2022; 112
Zhu (ref_37) 2024; 364
Li (ref_18) 2021; 70
ref_4
Alghamdi (ref_17) 2022; 10
ref_7
Pereira (ref_29) 2021; 263
Hu (ref_34) 2019; 170
References_xml – volume: 43
  start-page: 103
  year: 2013
  ident: ref_12
  article-title: An advanced energy management framework to promote energy awareness
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2012.12.012
– ident: ref_39
  doi: 10.3390/en10081168
– volume: 296
  start-page: 131259
  year: 2024
  ident: ref_2
  article-title: An advanced framework for net electricity consumption prediction: Incorporating novel machine learning models and optimization algorithms
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131259
– volume: 291
  start-page: 125556
  year: 2021
  ident: ref_15
  article-title: Adaptive predictive control for peripheral equipment management to enhance energy efficiency in smart manufacturing systems
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.125556
– ident: ref_11
– volume: 9
  start-page: 227
  year: 2022
  ident: ref_44
  article-title: Datasets on South Korean manufacturing factories’ electricity consumption and demand response participation
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01357-8
– volume: 203
  start-page: 104063
  year: 2020
  ident: ref_21
  article-title: Noise reduction in the spectral domain of hyperspectral images using denoising autoencoder methods
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104063
– volume: 112
  start-page: 104856
  year: 2022
  ident: ref_41
  article-title: Multi-node load forecasting based on multi-task learning with modal feature extraction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104856
– volume: 41
  start-page: 6047
  year: 2014
  ident: ref_1
  article-title: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.03.053
– volume: 56
  start-page: 760
  year: 2016
  ident: ref_14
  article-title: Energy savings by Energy Management Systems: A Review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.067
– volume: 263
  start-page: 107844
  year: 2021
  ident: ref_29
  article-title: HEP-frame: Improving the efficiency of pipelined data transformation & filtering for scientific analyses
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.107844
– volume: 228
  start-page: 1
  year: 2014
  ident: ref_30
  article-title: Nonlinear dynamics in a Solow model with delay and non-convex technology
  publication-title: Appl. Math. Comput.
– volume: 70
  start-page: 1
  year: 2021
  ident: ref_18
  article-title: Grid-constrained data cleansing method for enhanced bus load forecasting
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_42
– volume: 105
  start-page: 1
  year: 2024
  ident: ref_46
  article-title: A hybrid model of CNN and LSTM autoencoder-based short-term PV power generation forecasting
  publication-title: Electr. Eng.
– ident: ref_35
– volume: 170
  start-page: 1215
  year: 2019
  ident: ref_34
  article-title: Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.208
– volume: 51
  start-page: 589
  year: 2016
  ident: ref_5
  article-title: Research on power load forecasting based on the improved Elman neural network
  publication-title: Chem. Eng. Trans.
– ident: ref_40
  doi: 10.3390/en10081186
– volume: 11
  start-page: 259
  year: 1999
  ident: ref_23
  article-title: Imputation of Missing Data in Industrial Databases
  publication-title: Appl. Intell.
  doi: 10.1023/A:1008334909089
– ident: ref_27
  doi: 10.3390/en13153764
– volume: 182
  start-page: 113405
  year: 2023
  ident: ref_31
  article-title: Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.113405
– volume: 1
  start-page: 111
  year: 2006
  ident: ref_26
  article-title: Data preprocessing for supervised learning
  publication-title: Int. J. Comput. Sci.
– ident: ref_10
  doi: 10.1109/IEEM.2014.7058728
– volume: 261
  start-page: 114131
  year: 2020
  ident: ref_33
  article-title: A hybrid model for building energy consumption forecasting using long short term memory networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114131
– volume: 279
  start-page: 112705
  year: 2023
  ident: ref_13
  article-title: Towards intelligent building energy management: AI-based framework for power consumption and generation forecasting
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112705
– volume: 10
  start-page: 626
  year: 1997
  ident: ref_9
  article-title: EM algorithms for PCA and SPCA
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  start-page: 29149
  year: 2022
  ident: ref_17
  article-title: A survey of preprocessing methods used for analysis of big data originated from smart grids
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3157941
– volume: 12
  start-page: 4102
  year: 2017
  ident: ref_20
  article-title: Review of data preprocessing techniques in data mining
  publication-title: J. Eng. Appl. Sci.
– volume: 72
  start-page: 37
  year: 2018
  ident: ref_36
  article-title: Forecasting at Scale
  publication-title: Am. Stat.
  doi: 10.1080/00031305.2017.1380080
– ident: ref_43
  doi: 10.1145/2939672.2939785
– volume: 7
  start-page: 107964
  year: 2019
  ident: ref_25
  article-title: Progress in outlier detection techniques: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932769
– volume: 124
  start-page: 109792
  year: 2020
  ident: ref_28
  article-title: A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.109792
– ident: ref_4
  doi: 10.3390/en13081881
– volume: 222
  start-page: 109507
  year: 2023
  ident: ref_6
  article-title: A CNN and LSTM-based multi-task learning architecture for short and medium-term electricity load forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2023.109507
– volume: 10
  start-page: 939
  year: 1996
  ident: ref_22
  article-title: Comparison of various routines for unknown attribute value processing: The covering paradigm
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001496000530
– volume: 10
  start-page: 969
  year: 2018
  ident: ref_16
  article-title: Energy-efficiency-oriented scheduling in smart manufacturing
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-018-1022-x
– ident: ref_45
– volume: 18
  start-page: 7
  year: 2023
  ident: ref_3
  article-title: Optimization of Energy Consumption Prediction Model of Food Factory based on LSTM for Application to FEMS
  publication-title: J. Environ. Therm. Eng.
– ident: ref_19
– volume: 278
  start-page: 116709
  year: 2023
  ident: ref_38
  article-title: An improved Wavenet network for multi-step-ahead wind energy forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2023.116709
– volume: 22
  start-page: 85
  year: 2004
  ident: ref_24
  article-title: A survey of outlier detection methodologies
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/B:AIRE.0000045502.10941.a9
– ident: ref_47
  doi: 10.3390/w15071265
– volume: 227
  start-page: 120480
  year: 2021
  ident: ref_32
  article-title: Electrical load-temperature CNN for residential load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120480
– ident: ref_7
  doi: 10.20944/preprints202309.1191.v1
– volume: 38
  start-page: 101336
  year: 2024
  ident: ref_8
  article-title: Regional short-term load forecasting method based on power load characteristics of different industries
  publication-title: Sustain. Energy Grids Netw.
  doi: 10.1016/j.segan.2024.101336
– volume: 364
  start-page: 123194
  year: 2024
  ident: ref_37
  article-title: GGNet: A novel graph structure for power forecasting in renewable power plants considering temporal lead-lag correlations
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.123194
SSID ssj0000331333
Score 2.4159896
Snippet Electricity consumption prediction is crucial for the operation, strategic planning, and maintenance of power grid infrastructure. The effective management of...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3666
SubjectTerms deep learning
Electric power systems
electricity consumption prediction
Energy consumption
Energy efficiency
Energy management systems
Energy use
extreme gradient boosting
Factories
factory energy management system
Green technology
Infrastructure (Economics)
long short-term memory autoencoder
Manufacturing
Marketing research
South Korea
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWg5UAPfKMuFGQJJMQhamI7iX1Cu9UuHMpqBUXqLXLscUFCSdlNEf0P_GhmvN5dDsCFQy6OFTnyeOZ5_PyGsZdtIXwtC0RuQUNGkt1ZCzZk2Aq28nVbtlEy_7Sez_X5uVmkhNsq0So3PjE6at87ypEfy9wQhVAY_ebyW0ZVo-h0NZXQuMn2SakM7Xx_Mp0vPmyzLLmUuAmTa11Sifv7Y-iKGld5FWURd5EoCvb_zS3HWDO7-7-jvMfuJJTJx2uzuM9uQPeAHfymPfiQ_Tztuwv-8TPC7-wM3TN_T5zbaz6-GnoSt_Sw5LbzfPpjoBQif7uM5LCBT_p-RVzpbIIB0PNZLNhzzafxEiHf0Wn4bMP74giM-YLKsfGTeOMzuilOVUGdjd96xD7Npmcn77JUmiFzuOiHzFYIK3xhVWtMUKUzIINtnaoRbkmAUoWAYU_krchtBSEPVqg6GDBOlloHJR-zva7v4JBx7ZxDjCYKUJXSxtp4tkuy8S2CIZOP2OvNNDUu6ZZT-YyvDe5faEqb3ZSO2Itt38u1Wscfe01otrc9SGE7NvTLiyYt2MYrXYEuITiwyijQeQVCe1EXrQm51yP2imylIT-Aw3E2XWfAnyJFrWasSblH4DNiRxtbaZKDWDU7Q3ny79dP2W2BOGrNOTxie8PyCp6xW-778GW1fJ7s_RdZVwxC
  priority: 102
  providerName: ProQuest
Title Long Short-Term Memory Autoencoder and Extreme Gradient Boosting-Based Factory Energy Management Framework for Power Consumption Forecasting
URI https://www.proquest.com/docview/3090902298
https://doaj.org/article/d486e85efcea494e806e28d271b9f0d8
Volume 17
WOSCitedRecordID wos001287167300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ4QAH1PIQC21lCSTEIWpiO4l93K2ygNRdRVCkcor8GBcklKDdFNELv6A_mrGT7e4BxIVDcrCsyPG8Picz3xDyymTMlTxD5OYlJIGyOzGgfYKjoAtXmtxEyvyzcrmUFxeq3mn1FXLCBnrgYeNOnJAFyBy8BS2UAJkWwKRjZWaUT10s801LtXOYij6Yczx88YGPlOO5_gTarETrLiId4jYCRaL-v7njGGPm--ThCA7pdFjUAbkD7SPyYIcy8DG5OevaS_rxC6Lm5By9Kl2EVNlrOr3qu8BJ6WBFdeto9bMPX_7o21XM6erprOvWIcU5mWHccnQe--xc0yrW_tFtFgydb9K1KOJZWocuavQ0FmpG70JDM0-r47OekE_z6vz0XTJ2VEgs2mqf6ALRgMu0MEp5kVsF3GtjRYkoiQPkwnuMViw1LNUF-NRrJkqvQFmeS-kFf0r22q6FZ4RKay1CK5aBKIRUWsdfsoHt3SCGUemEvNnscmNHuvHQ9eJbg8eOIJFmK5EJeXk79_tAsvHHWbMgrNsZgRg7DqC6NKO6NP9Slwl5HUTdBPPF5Vg9ViHgSwUirGYqA-EOw2tCDjfa0Ix2vW54qkIiK1Py-f9YzQtynyFIGhIKD8lev7qCI3LP_ui_rlfH5O6sWtYfjqNq433xq8Kx-v2i_vwbTZkCCA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwELWWLhJw4BtRWMASIMQh2sR2EvuAULu0bLVtVYki7Z6C49gLEkqWNgv0P_Bb-I3MuEnLAbjtgUMujmUlzsvM2H7zhpBnecSKlEcQuTlpA5TsDnKrXQCtVidFmse5l8wfp9OpPD5Wsx3ys82FQVplaxO9oS4qg3vk-zxUSCFkSr4--xJg1Sg8XW1LaKxhcWRX32DJtnw1egPf9zljw8H84DBoqgoEBvBaBzoBj1hEWuRKOREbZbnTuREpRArc2lg4BxabhTkLdWJd6DQTqVNWGR5L6QSHcS-RXYFg75Dd2WgyO9ns6oScw6KPr3VQOVfhvi2jFKxK4mUYt57PFwj4mxvwvm1443-blZvkehNF094a9rfIji1vk2u_aSveIT_GVXlK332E5UUwB_dDJ8gpXtHeeV2heGdhF1SXBR18r3GLlL5dePJbTftVtUQueNAHB1_QoS9ItKIDnyRJt3QhOmx5bRQCfzrDcnP0wGe0ejNMseqp0X6su-T9hUzHPdIpq9LeJ1QaYyAGZZEViZBKa392jbL4OQR7KuySly0sMtPosmN5kM8ZrM8QQtkWQl3ydNP3bK1G8sdefUTXpgcqiPuGanGaNQYpK4RMrIytM1YLJawME8tkwdIoVy4sZJe8QGxmaOfgcYxu0jXgpVAxLOtJVCZicHXJXovNrDGAy2wLzAf_vv2EXDmcT8bZeDQ9ekiuMogZ1_zKPdKpF-f2EblsvtaflovHzb9GyYeLBvIvzxppvw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGH41OoTgwDeiMMASIMQhamI7iX1AqN1aqNZVlRjSdgqOY2-TUDLaDOh_4Bfx63jtJi0H4LYDh1wcK0qcx--H_fh5AV7kES1SFmHkZoUJnGR3kBtlA2w1KinSPM69ZP4knU7F0ZGcbcHP9iyMo1W2NtEb6qLSbo28x0LpKIRUip5taBGzvdHb8y-BqyDldlrbchoriOyb5TdM3xZvxnv4r19SOhoe7r4PmgoDgUbs1oFK0DsWkeK5lJbHWhpmVa55ilEDMybm1qL1pmFOQ5UYG1pFeWqlkZrFQljO8LlXYBtDck47sD0bH8yO1ys8IWOYALKVJipjMuyZMkrRwiReknHjBX2xgL-5BO_nRrf-5xG6DTeb6Jr0V9PhDmyZ8i7c-E1z8R78mFTlCflwimlHcIhuiRw4rvGS9C_qyol6FmZOVFmQ4ffaLZ2Sd3NPiqvJoKoWjiMeDNDxF2TkCxUtydAfniQbGhEZtXw3ggkBmbkydGTXn3T15pm4aqha-Wfdh4-XMhwPoFNWpXkIRGitMTalkeEJF1Ipv6ft5PJzDAJl2IXXLUQy3ei1u7IhnzPM2xycsg2cuvB83fd8pVLyx14Dh7R1D6cs7huq-UnWGKqs4CIxIjZWG8UlNyJMDBUFTaNc2rAQXXjlcJo5-4evo1VzjAM_yimJZX3hFIsoXl3YaXGaNYZxkW1A-ujft5_BNURvNhlP9x_DdYqh5Ip2uQOden5hnsBV_bU-W8yfNtOOwKfLxvEv91hyfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+Short-Term+Memory+Autoencoder+and+Extreme+Gradient+Boosting-Based+Factory+Energy+Management+Framework+for+Power+Consumption+Forecasting&rft.jtitle=Energies+%28Basel%29&rft.au=Moon%2C+Yeeun&rft.au=Lee%2C+Younjeong&rft.au=Hwang%2C+Yejin&rft.au=Jeong%2C+Jongpil&rft.date=2024-08-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=17&rft.issue=15&rft.spage=3666&rft_id=info:doi/10.3390%2Fen17153666&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en17153666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon