TSxtend: A Tool for Batch Analysis of Temporal Sensor Data
Pre-processing and analysis of sensor data present several challenges due to their increasingly complex structure and lack of consistency. In this paper, we present TSxtend, a software tool that allows non-programmers to transform, clean, and analyze temporal sensor data by defining and executing pr...
Uložené v:
| Vydané v: | Energies (Basel) Ročník 16; číslo 4; s. 1581 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.02.2023
|
| Predmet: | |
| ISSN: | 1996-1073, 1996-1073 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Pre-processing and analysis of sensor data present several challenges due to their increasingly complex structure and lack of consistency. In this paper, we present TSxtend, a software tool that allows non-programmers to transform, clean, and analyze temporal sensor data by defining and executing process workflows in a declarative language. TSxtend integrates several existing techniques for temporal data partitioning, cleaning, and imputation, along with state-of-the-art machine learning algorithms for prediction and tools for experiment definition and tracking. Moreover, the modular architecture of the tool facilitates the incorporation of additional methods. The examples presented in this paper using the ASHRAE Great Energy Predictor dataset show that TSxtend is particularly effective to analyze energy data. |
|---|---|
| AbstractList | Pre-processing and analysis of sensor data present several challenges due to their increasingly complex structure and lack of consistency. In this paper, we present TSxtend, a software tool that allows non-programmers to transform, clean, and analyze temporal sensor data by defining and executing process workflows in a declarative language. TSxtend integrates several existing techniques for temporal data partitioning, cleaning, and imputation, along with state-of-the-art machine learning algorithms for prediction and tools for experiment definition and tracking. Moreover, the modular architecture of the tool facilitates the incorporation of additional methods. The examples presented in this paper using the ASHRAE Great Energy Predictor dataset show that TSxtend is particularly effective to analyze energy data. |
| Audience | Academic |
| Author | Morcillo-Jimenez, Roberto Gutiérrez-Batista, Karel Gómez-Romero, Juan |
| Author_xml | – sequence: 1 givenname: Roberto orcidid: 0000-0002-8771-5636 surname: Morcillo-Jimenez fullname: Morcillo-Jimenez, Roberto – sequence: 2 givenname: Karel orcidid: 0000-0003-2711-4625 surname: Gutiérrez-Batista fullname: Gutiérrez-Batista, Karel – sequence: 3 givenname: Juan orcidid: 0000-0003-0439-3692 surname: Gómez-Romero fullname: Gómez-Romero, Juan |
| BookMark | eNptkU1v3CAQQFGVSk3TXPoLLOVWaZPBgw3ktk3aNFKkHuI7GmNIWXnNFojU_fch3SqpqsKB0fDm8THv2dESF8fYRw7niBou3MJ7ELxT_A075lr3Kw4Sj_6K37HTnDdQByJHxGN2Odz_Km6ZLpt1M8Q4Nz6m5jMV-6NZLzTvc8hN9M3gtruYaG7u3ZIrcU2FPrC3nubsTv-sJ2z4-mW4-ra6-35ze7W-W1kBUFYkeui9FZqUlqIV2qmO00TIJ61GQtt1Tjs7Klc3YRQcWiFHrKHtPQKesNuDdoq0MbsUtpT2JlIwvxMxPRhKJdjZmVF2WrkR2l6i8BxUR5I7kh5QO9n21XV2cO1S_PnocjGb-JjqO7NppdRCaVBYqfMD9UBVGhYfSyJb5-S2wdY_96Hm11IgF1z0z9pPhwKbYs7J-ZdrcjDPrTGvrakw_APbUKiEuNRTwvy_kidMp43q |
| CitedBy_id | crossref_primary_10_3390_electronics13112156 crossref_primary_10_1007_s10489_024_05451_9 |
| Cites_doi | 10.1016/j.energy.2022.125740 10.1109/TNNLS.2021.3073016 10.1007/s10462-021-09967-1 10.1109/MSP.2018.2842096 10.1016/j.neucom.2018.03.067 10.1109/TNNLS.2018.2826721 10.1109/TWC.2022.3173262 10.1016/j.ijepes.2022.108671 10.1016/j.ijinfomgt.2020.102074 10.3390/s20061772 10.1109/JAS.2021.1003970 10.1109/ACCESS.2018.2878640 10.1016/j.ipm.2018.09.001 10.1016/j.energy.2018.09.144 10.1016/j.asoc.2022.108870 10.3390/s22093186 10.1515/9783110629453 10.1016/j.sigpro.2022.108509 10.1214/aos/1013203451 10.1007/s00170-022-09340-8 10.1016/j.softx.2020.100456 10.3390/info13060279 10.1016/j.neucom.2022.05.057 10.1016/j.knosys.2012.06.009 10.1016/j.future.2022.06.010 10.1016/j.advengsoft.2022.103266 10.1016/j.adhoc.2022.102973 10.1007/s12530-021-09404-2 10.3390/s22186913 10.1109/TETCI.2018.2829919 10.1587/transinf.2020LOP0011 10.1109/TII.2021.3130052 10.1007/BF00116251 10.1002/int.22876 10.1016/j.physa.2020.125561 10.1109/72.329697 10.1007/s11227-021-04290-6 10.1002/dac.5043 10.1109/TCSI.2022.3181975 10.3390/s19102228 10.3390/su14137720 10.1007/s10846-022-01612-5 10.1177/09720634221109087 10.1016/j.fuel.2022.125969 10.2174/2666255813666201218160223 10.1162/neco.1997.9.8.1735 10.1016/j.apenergy.2016.08.077 10.3390/su14105857 10.1016/j.gr.2022.03.015 10.1145/3484983 10.1145/2939672.2939785 10.1145/3534678.3539165 10.1007/s10100-018-0531-1 10.1109/AICAS54282.2022.9869940 10.1007/s11276-022-03060-3 10.1063/1.5079409 10.1007/s00366-020-00981-5 10.1016/j.chaos.2020.109945 10.1016/j.fuel.2022.125827 10.1016/j.cageo.2019.02.011 10.3390/s22145250 10.1016/S0031-3203(96)00142-2 10.7717/peerj-cs.856 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en16041581 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_b7598eb026734f1085a71ea7f039e726 A743141466 10_3390_en16041581 |
| GeographicLocations | Spain |
| GeographicLocations_xml | – name: Spain |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c400t-a4606fc49a8974249e851ada31d98ba3c55e9ecb8e4240b410247b340bc6f303 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000939291000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:45:18 EDT 2025 Sun Nov 09 08:49:52 EST 2025 Tue Nov 04 18:11:34 EST 2025 Sat Nov 29 07:16:13 EST 2025 Tue Nov 18 21:49:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-a4606fc49a8974249e851ada31d98ba3c55e9ecb8e4240b410247b340bc6f303 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8771-5636 0000-0003-2711-4625 0000-0003-0439-3692 |
| OpenAccessLink | https://doaj.org/article/b7598eb026734f1085a71ea7f039e726 |
| PQID | 2779489083 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b7598eb026734f1085a71ea7f039e726 proquest_journals_2779489083 gale_infotracacademiconefile_A743141466 crossref_primary_10_3390_en16041581 crossref_citationtrail_10_3390_en16041581 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Tian (ref_40) 2022; 136 Zhang (ref_10) 2021; 54 Sanyal (ref_48) 2018; 6 Munawar (ref_52) 2023; 145 Zeng (ref_82) 2022; 33 Wu (ref_77) 2021; 33 ref_13 Li (ref_17) 2019; 127 ref_12 Has (ref_56) 2021; 58 Tarek (ref_34) 2023; 74 Pan (ref_44) 2021; 8 Chakraborty (ref_78) 2018; 2 Hagan (ref_70) 1994; 5 Irfan (ref_73) 2021; 48 Christ (ref_20) 2018; 307 Ruiz (ref_8) 2022; 18 Li (ref_41) 2022; 21 Chou (ref_7) 2018; 165 Friedman (ref_28) 2001; 29 Chi (ref_53) 2023; 263 Aqdus (ref_60) 2023; 74 ref_61 Bradley (ref_31) 1997; 30 Senagi (ref_58) 2022; 78 Evans (ref_36) 2009; 5 Xu (ref_79) 2022; 136 ref_25 ref_69 ref_24 Hai (ref_54) 2023; 332 ref_68 Li (ref_51) 2023; 332 ref_67 ref_22 Ren (ref_29) 2015; 28 Nalcaci (ref_4) 2019; 27 ref_65 Reddy (ref_49) 2022; 35 ref_26 Prasannababu (ref_42) 2022; 28 Wu (ref_81) 2022; 69 Jayanthi (ref_80) 2022; 173 Pascual (ref_57) 2022; 105 Hochreiter (ref_30) 1997; 9 Quoilin (ref_19) 2016; 182 ref_71 Himeur (ref_66) 2022; 37 ref_35 Zhang (ref_11) 2022; 109 Shende (ref_15) 2022; 500 Tandon (ref_6) 2022; 24 Alonso (ref_14) 2019; 125 Rahmani (ref_46) 2022; 2022 Soga (ref_47) 2021; 104 Zaharia (ref_32) 2018; 41 ref_39 Nayakwadi (ref_64) 2021; 13 Feng (ref_50) 2022; 121 ref_37 Sakshi (ref_62) 2022; 15 Barandas (ref_23) 2020; 11 Gonzalez (ref_38) 2022; 196 ref_83 Bavithra (ref_33) 2022; 35 Paksoy (ref_3) 2012; 36 Ibrahim (ref_74) 2022; 8 Zhou (ref_72) 2021; 37 Antoniades (ref_18) 2021; 565 Quinlan (ref_27) 1986; 1 Alachiotis (ref_45) 2022; 15 Salgotra (ref_5) 2020; 138 ref_43 Vila (ref_9) 2022; 122 ref_1 Krizhevsky (ref_75) 2012; 2 Tushar (ref_2) 2018; 35 Mozafari (ref_76) 2018; 29 Herzen (ref_21) 2022; 23 Sauer (ref_63) 2022; 13 Rodrigues (ref_16) 2019; 56 Pedregosa (ref_59) 2011; 12 Cutler (ref_55) 2011; 45 |
| References_xml | – volume: 263 start-page: 125740 year: 2023 ident: ref_53 article-title: A systematic framework for the assessment of the reliability of energy supply in Integrated Energy Systems based on a quasi-steady-state model publication-title: Energy doi: 10.1016/j.energy.2022.125740 – volume: 33 start-page: 6249 year: 2021 ident: ref_77 article-title: LIAF-Net: Leaky Integrate and Analog Fire Network for Lightweight and Efficient Spatiotemporal Information Processing publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3073016 – volume: 54 start-page: 5633 year: 2021 ident: ref_10 article-title: Application of deep learning algorithms in geotechnical engineering: A short critical review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-09967-1 – volume: 35 start-page: 100 year: 2018 ident: ref_2 article-title: Internet of things for green building management: Disruptive innovations through low-cost sensor technology and artificial intelligence publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2018.2842096 – volume: 23 start-page: 1 year: 2022 ident: ref_21 article-title: Darts: User-Friendly Modern Machine Learning for Time Series publication-title: J. Mach. Learn. Res. – volume: 307 start-page: 72 year: 2018 ident: ref_20 article-title: Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh—A Python package) publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.067 – volume: 29 start-page: 6178 year: 2018 ident: ref_76 article-title: First-spike-based visual categorization using reward-modulated STDP publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2826721 – volume: 21 start-page: 9127 year: 2022 ident: ref_41 article-title: Data Partition and Rate Control for Learning and Energy Efficient Edge Intelligence publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2022.3173262 – volume: 28 start-page: 91 year: 2015 ident: ref_29 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 145 start-page: 108671 year: 2023 ident: ref_52 article-title: Coordinated integration of distributed energy resources in unit commitment publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108671 – volume: 58 start-page: 102074 year: 2021 ident: ref_56 article-title: Machine learning based system for managing energy efficiency of public sector as an approach towards smart cities publication-title: Int. J. Inf. Manag. doi: 10.1016/j.ijinfomgt.2020.102074 – ident: ref_43 doi: 10.3390/s20061772 – volume: 8 start-page: 987 year: 2021 ident: ref_44 article-title: Energy Consumption Prediction of a CNC Machining Process with Incomplete Data publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2021.1003970 – volume: 13 start-page: 1431 year: 2021 ident: ref_64 article-title: Automatic handover execution technique using machine learning algorithm for heterogeneous wireless networks publication-title: Int. J. Inf. Technol. – volume: 6 start-page: 67830 year: 2018 ident: ref_48 article-title: Improving quality of data: IoT data aggregation using device to device communications publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2878640 – ident: ref_71 – volume: 56 start-page: 61 year: 2019 ident: ref_16 article-title: SSTS: A syntactic tool for pattern search on time series publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2018.09.001 – volume: 165 start-page: 709 year: 2018 ident: ref_7 article-title: Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders publication-title: Energy doi: 10.1016/j.energy.2018.09.144 – volume: 122 start-page: 108870 year: 2022 ident: ref_9 article-title: A fuzzy-based medical system for pattern mining in a distributed environment: Application to diagnostic and co-morbidity publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108870 – ident: ref_69 doi: 10.3390/s22093186 – ident: ref_83 doi: 10.1515/9783110629453 – volume: 196 start-page: 108509 year: 2022 ident: ref_38 article-title: Low-complexity soft ML detection for generalized spatial modulation publication-title: Signal Process. doi: 10.1016/j.sigpro.2022.108509 – volume: 29 start-page: 1189 year: 2001 ident: ref_28 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 2022 start-page: 4681583 year: 2022 ident: ref_46 article-title: Internet of Things-Enabled Optimal Data Aggregation Approach for the Intelligent Surveillance Systems publication-title: Mob. Inf. Syst. – volume: 121 start-page: 503 year: 2022 ident: ref_50 article-title: Feature-based optimization method integrating sequencing and cutting parameters for minimizing energy consumption of CNC machine tools publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-022-09340-8 – volume: 11 start-page: 100456 year: 2020 ident: ref_23 article-title: TSFEL: Time Series Feature Extraction Library publication-title: SoftwareX doi: 10.1016/j.softx.2020.100456 – ident: ref_68 doi: 10.3390/info13060279 – volume: 500 start-page: 155 year: 2022 ident: ref_15 article-title: cleanTS: Automated (AutoML) Tool to Clean Univariate Time Series at Microscales publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.05.057 – volume: 36 start-page: 93 year: 2012 ident: ref_3 article-title: Swarm intelligence approaches to estimate electricity energy demand in Turkey publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.06.009 – volume: 2 start-page: 1097 year: 2012 ident: ref_75 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM – volume: 136 start-page: 294 year: 2022 ident: ref_40 article-title: FP-GNN: Adaptive FPGA accelerator for Graph Neural Networks publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2022.06.010 – volume: 173 start-page: 103266 year: 2022 ident: ref_80 article-title: Enhancing the performance of asymmetric architectures and workload characterization using LSTM learning algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2022.103266 – ident: ref_13 – volume: 74 start-page: 1413 year: 2023 ident: ref_60 article-title: Detection Collision Flows in SDN Based 5G Using Machine Learning Algorithms publication-title: Comput. Mater. Contin. – volume: 136 start-page: 102973 year: 2022 ident: ref_79 article-title: Resource allocation for UAV-aided energy harvesting-powered D2D communications: A reinforcement learning-based scheme publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2022.102973 – volume: 13 start-page: 577 year: 2022 ident: ref_63 article-title: Extreme gradient boosting model based on improved Jaya optimizer applied to forecasting energy consumption in residential buildings publication-title: Evol. Syst. doi: 10.1007/s12530-021-09404-2 – volume: 45 start-page: 157 year: 2011 ident: ref_55 article-title: Random Forests publication-title: Mach. Learn. – ident: ref_39 doi: 10.3390/s22186913 – volume: 2 start-page: 335 year: 2018 ident: ref_78 article-title: Technology Aware Training in Memristive Neuromorphic Systems for Nonideal Synaptic Crossbars publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2018.2829919 – volume: 48 start-page: 731 year: 2021 ident: ref_73 article-title: Prediction of Residential Building Energy Efficiency Performance using Deep Neural Network publication-title: IAENG Int. J. Comput. Sci. – volume: 104 start-page: 1121 year: 2021 ident: ref_47 article-title: Energy-efficient ECG signals outlier detection hardware using a sparse robust deep autoencoder publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.2020LOP0011 – volume: 18 start-page: 5738 year: 2022 ident: ref_8 article-title: Big Data Architecture for Building Energy Management Systems publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3130052 – volume: 41 start-page: 39 year: 2018 ident: ref_32 article-title: Accelerating the machine learning lifecycle with MLflow publication-title: IEEE Data Eng. Bull. – volume: 1 start-page: 81 year: 1986 ident: ref_27 article-title: Induction of Decision Trees publication-title: Mach. Learn. doi: 10.1007/BF00116251 – volume: 37 start-page: 7124 year: 2022 ident: ref_66 article-title: Recent trends of smart nonintrusive load monitoring in buildings: A review, open challenges, and future directions publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22876 – volume: 565 start-page: 125561 year: 2021 ident: ref_18 article-title: The use of scaling properties to detect relevant changes in financial time series: A new visual warning tool publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2020.125561 – volume: 5 start-page: 989 year: 1994 ident: ref_70 article-title: Training Feedforward Networks with the Marquardt Algorithm publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.329697 – volume: 78 start-page: 10480 year: 2022 ident: ref_58 article-title: Parallel construction of Random Forest on GPU publication-title: J. Supercomput. doi: 10.1007/s11227-021-04290-6 – volume: 35 start-page: e5043 year: 2022 ident: ref_33 article-title: Energy Efficient and Reliable K Best Detection Approach with Hybrid Decomposition for WiMAX Applications publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.5043 – volume: 69 start-page: 3655 year: 2022 ident: ref_81 article-title: GBC: An Energy-Efficient LSTM Accelerator With Gating Units Level Balanced Compression Strategy publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2022.3181975 – ident: ref_1 doi: 10.3390/s19102228 – ident: ref_61 doi: 10.3390/su14137720 – ident: ref_37 – volume: 35 start-page: 100776 year: 2022 ident: ref_49 article-title: Towards energy efficient Smart city services: A software defined resource management scheme for data centers publication-title: Sustain. Comput. Inform. Syst. – volume: 105 start-page: 17 year: 2022 ident: ref_57 article-title: Ornithopter Trajectory Optimization with Neural Networks and Random Forest publication-title: J. Intell. Robot. Syst. Theory Appl. doi: 10.1007/s10846-022-01612-5 – volume: 24 start-page: 373 year: 2022 ident: ref_6 article-title: Coronavirus (COVID-19): ARIMA-based Time-series Analysis to Forecast near Future and the Effect of School Reopening in India publication-title: J. Health Manag. doi: 10.1177/09720634221109087 – volume: 332 start-page: 125969 year: 2023 ident: ref_51 article-title: Machine learning-based metaheuristic optimization of an integrated biomass gasification cycle for fuel and cooling production publication-title: Fuel doi: 10.1016/j.fuel.2022.125969 – volume: 15 start-page: 1082 year: 2022 ident: ref_62 article-title: Short Term and Long term Building Electricity Consumption Prediction Using Extreme Gradient Boosting publication-title: Recent Adv. Comput. Sci. Commun. doi: 10.2174/2666255813666201218160223 – volume: 9 start-page: 1735 year: 1997 ident: ref_30 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_25 – volume: 182 start-page: 58 year: 2016 ident: ref_19 article-title: Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.08.077 – volume: 12 start-page: 2825 year: 2011 ident: ref_59 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – ident: ref_65 doi: 10.3390/su14105857 – volume: 109 start-page: 1 year: 2022 ident: ref_11 article-title: Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge publication-title: Gondwana Res. doi: 10.1016/j.gr.2022.03.015 – volume: 15 start-page: 1 year: 2022 ident: ref_45 article-title: Scalable Phylogeny Reconstruction with Disaggregated Near-memory Processing publication-title: Acm Trans. Reconfig. Technol. Syst. doi: 10.1145/3484983 – ident: ref_12 – volume: 33 start-page: 2991 year: 2022 ident: ref_82 article-title: Adaptive DRL-Based Virtual Machine Consolidation in Energy-Efficient Cloud Data Center publication-title: IEEE Trans. Parallel Distrib. Syst. – ident: ref_26 doi: 10.1145/2939672.2939785 – ident: ref_24 doi: 10.1145/3534678.3539165 – volume: 27 start-page: 1033 year: 2019 ident: ref_4 article-title: Long-term load forecasting: Models based on MARS, ANN and LR methods publication-title: Cent. Eur. J. Oper. Res. doi: 10.1007/s10100-018-0531-1 – volume: 5 start-page: 11 year: 2009 ident: ref_36 article-title: Yaml ain’t markup language (yaml™) version 1.1 publication-title: Work. Draft – volume: 74 start-page: 715 year: 2023 ident: ref_34 article-title: Wind Power Prediction Based on Machine Learning and Deep Learning Models publication-title: Comput. Mater. Contin. – ident: ref_35 doi: 10.1109/AICAS54282.2022.9869940 – volume: 28 start-page: 3563 year: 2022 ident: ref_42 article-title: Joint mobile wireless energy transmitter and data collector for rechargeable wireless sensor networks publication-title: Wirel. Netw. doi: 10.1007/s11276-022-03060-3 – volume: 125 start-page: 174504 year: 2019 ident: ref_14 article-title: Time series statistical analysis: A powerful tool to evaluate the variability of resistive switching memories publication-title: J. Appl. Phys. doi: 10.1063/1.5079409 – volume: 37 start-page: 3037 year: 2021 ident: ref_72 article-title: Teaching–learning-based metaheuristic scheme for modifying neural computing in appraising energy performance of building publication-title: Eng. Comput. doi: 10.1007/s00366-020-00981-5 – volume: 138 start-page: 109945 year: 2020 ident: ref_5 article-title: Time series analysis and forecast of the COVID-19 pandemic in India using genetic programming publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109945 – ident: ref_22 – volume: 332 start-page: 125827 year: 2023 ident: ref_54 article-title: Neural network-based optimization of hydrogen fuel production energy system with proton exchange electrolyzer supported nanomaterial publication-title: Fuel doi: 10.1016/j.fuel.2022.125827 – volume: 127 start-page: 12 year: 2019 ident: ref_17 article-title: Acycle: Time-series analysis software for paleoclimate research and education publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.02.011 – ident: ref_67 doi: 10.3390/s22145250 – volume: 30 start-page: 1145 year: 1997 ident: ref_31 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(96)00142-2 – volume: 8 start-page: e856 year: 2022 ident: ref_74 article-title: The use of statistical and machine learning tools to accurately quantify the energy performance of residential buildings publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.856 |
| SSID | ssj0000331333 |
| Score | 2.3263812 |
| Snippet | Pre-processing and analysis of sensor data present several challenges due to their increasingly complex structure and lack of consistency. In this paper, we... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1581 |
| SubjectTerms | Algorithms Artificial intelligence Batch processing Data science Decision making deep learning Electronic data processing Energy consumption Knowledge Libraries machine learning Methods pre-processing prediction Remote sensing Sensors Time series Trends |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VLQd6KBSo2D6QpSIhDtEmsRPHvaAtpSoSVCs1QuVk2c64RVpt2t2F399x4t2CBJy4RfEcnIzn8dmebwDeUIzG3OeYCMl5InyjEuszTIoUm6ox3hcdb8HXz_Liorq6UpNYHr2I1ypXPrFz1D3bc7i3TU541LQu7JiPcknrqFKUP7y_vUtCD6lw1hobajyCzUC8lQ5gc_Lpy-Tbes8l5ZwgGe9ZSjmh_RHOsjIUqVfZb3Gpo-__m5PuIs_Z0_8752ewHTNQNu6XzA5s4Ow5bP3CS_gCjuvLbm_8mI1Z3bZTRpktOyGnfcNWJCas9azuaa2m7JKwMEmcmqV5CfXZx_rDeRKbLCSOzHeZGEEQxjuhTEXQgsAYUg5mGsOzRlXWcFcUqNDZCmkwtYISEiEtp0dXeop_uzCYtTN8BUxxgcpbnqbWiKZE45GTJy0KL0ssRD6Ed6s_rF0kIA99MKaagEjQhn7QxhCO1rK3Pe3GH6VOgqLWEoEqu3vRzq91tDxtZaEqtKHTFhc-FFsYmaGRPuUKZV4O4W1Qsw4GTdNxJtYl0EcFaiw9DjmWoIBCkgcrNeto6Qv9oNW9fw_vw5PQqr6_8X0Ag-X8Bx7CY_dz-X0xfx2X6j0Mtfc5 priority: 102 providerName: ProQuest |
| Title | TSxtend: A Tool for Batch Analysis of Temporal Sensor Data |
| URI | https://www.proquest.com/docview/2779489083 https://doaj.org/article/b7598eb026734f1085a71ea7f039e726 |
| Volume | 16 |
| WOSCitedRecordID | wos000939291000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2iHvQgfuL6RUBBPBTbJm0ab7u6oqDL4hZZTyFpJygsXVmrR3-7k7arKyhevJSSziGdaWbeK8kbQo6wRkNoQ_C4YMzjNpeesQF4kQ95kmtro0q34P5G9HrJcCj7M62-3J6wWh64dtypEZFMwLhGSYxbt1deiwC0sD6TIMJKbNsXcoZMVTmYMSRfrNYjZcjrT6EIYnccPQm-VaBKqP-3dFzVmMtVstKAQ9quJ7VG5qBYJ8szkoEb5CwdVL-tz2ibpuPxiCLopB3Mp490qi9Cx5amteLUiA6QpqLFhS71Jkkvu-n5ldf0P_AyXFmlpzmyC5txqRNE_ciTAOGRzjULcpkYzbIoAgmZSQAf-oYjVuDCMLzNYoulaYvMF-MCtgmVjIO0hvm-0TyPQVtgmOSiyIoYIh62yMnUJSprtMFdi4qRQo7g3Ke-3Ncih5-2z7Uixo9WHefZTwunYl0NYGxVE1v1V2xb5NjFRbm1htPJdHNkAF_KqVaptoM_HHM9Wu5NQ6eaRfiiQoHJJpEIMnf-Yza7ZMn1mq-3bO-R-XLyCvtkMXsrn14mB2Sh0-317w6q7xCvt-9dHOtf3_YfPgBrId-Z |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fa9RAEB7qVbB98HfxtOqCivgQmmQ32WxB5GotPXo9DhqkPi27yWwrHJf27lT8o_wfnc2Pq4L61gffQjKETfbLfDObnW8AXhJHY-xiDITkPBCuVIF1EQZJiGVWGueSWrfg40iOx9npqZqswY-uFsZvq-x8Yu2oy6rwa-Q7sSTkZIoihncXl4HvGuX_rnYtNBpYHOH3b5SyLd4O92l-X8XxwYf8_WHQdhUICsLrMjCCYnZXCGUyiqUp-0AKOkxpeFSqzBpeJAkqLGyGdDG0ghhYSMvpsEgdOXy67Q1YF4T1sAfrk-Hx5NNqUSfknHI-3sigcq7CHZxFqa-Cz6LfiK_uD_A3Fqip7eDOf_ZS7sLtNoZmgwb092ANZ_dh8xdlxQewm5_Uq_u7bMDyqpoyis3ZHtHOOetkWFjlWN4Ic03ZCWXzZLFvluYh5Ncx9i3ozaoZPgKmuEDlLA9Da0SZonHIiQuSxMkUExH34U03hbpoJdR9J4-pplTKT7e-mu4-vFjZXjTCIX-02vNIWFl4se_6RDU_063v0FYmKkPre4Vx4Xy5iJERGulCrlDGaR9eexxp75JoOIVpKyvooby4lx74KFEQJZLldocj3fqqhb4C0eN_X34Otw7z45EeDcdHT2AjpnCv2b--Db3l_As-hZvF1-XnxfxZ-10w0NcMup-PdUaB |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDqHxwPdEYYAlQIiHqEnsxPEkhFq6imlTVbEI7c2ykzMgVc1oC4g_bf_dzvnoQALe9sBbFJ8iJ_fzfTi-3wG8IB-NsYsxEJLzQLhSBdZFGCQhlllpnEtq3oKPx3I6zU5P1WwLzrtaGH-ssrOJtaEuq8LvkQ9iScjJFEUMA9cei5iNJ2_Pvga-g5T_09q102ggcoQ_f1D6tnpzOCZdv4zjyUH-7n3QdhgICsLuOjCC4ndXCGUyiqspE0EKQExpeFSqzBpeJAkqLGyGNBhaQd5YSMvpskgdGX967DXYlpxynh5sjw6msw-bDZ6Qc8r_eEOJyrkKB7iIUl8Rn0W_OcG6V8DfPELt5ia3_-MPdAdutbE1GzaL4S5s4eIe3PyFcfE-7Ocn9a7_PhuyvKrmjGJ2NiJ39Jl19CyscixvCLvm7ISyfJIYm7V5APlVzH0XeotqgQ-BKS5QOcvD0BpRpmgccvIRSeJkiomI-_C6U6cuWmp13-FjrinF8qrXl6rvw_ON7FlDKPJHqZFHxUbCk4DXN6rlJ93aFG1lojK0vocYF86XkRgZoZEu5AplnPbhlceU9qaKplOYtuKCXsqTfumhjx4FuUqS3OswpVsbttKXgHr07-FncIOQpo8Pp0ePYSemKLA51r4HvfXyGz6B68X39ZfV8mm7RBjoK8bcBYyiTxs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TSxtend%3A+A+Tool+for+Batch+Analysis+of+Temporal+Sensor+Data&rft.jtitle=Energies+%28Basel%29&rft.au=Morcillo-Jimenez%2C+Roberto&rft.au=Gutierrez-Batista%2C+Karel&rft.au=Gomez-Romero%2C+Juan&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=4&rft_id=info:doi/10.3390%2Fen16041581&rft.externalDocID=A743141466 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |