Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and degradation pathway
•Heterogeneous AOP and photocatalysis were coupled for efficient degradation of TC.•The introduction of PS effectively suppressed the recombination of charge carries.•Photogenerated electron can activate PS to generate SO4−• radicals.•The degradation pathways for TC are investigated through LC-MS te...
Gespeichert in:
| Veröffentlicht in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Jg. 369; S. 745 - 757 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.08.2019
|
| Schlagworte: | |
| ISSN: | 1385-8947, 1873-3212 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Heterogeneous AOP and photocatalysis were coupled for efficient degradation of TC.•The introduction of PS effectively suppressed the recombination of charge carries.•Photogenerated electron can activate PS to generate SO4−• radicals.•The degradation pathways for TC are investigated through LC-MS technique.
In this work, a Fe-based metal organic frameworks (MIL-88A) has been synthesized through a hydrothermal method and adopted as a high-efficiency catalyst for photocatalysis (PC) coupled with sulfate radical-based advanced oxidation processes (SR-AOPs) to degrade tetracycline hydrochloride (TC-HCl) under visible light irradiation. The effects of MIL-88A/persulfate (PS) molar ratio, initial solution pH and catalyst dosage were studied. The results indicated that the combining of the photocatalysis and SR-AOPs could remarkably enhance TC degradation and 200 mg/L 100 mL TC could be degraded completely at 0.25 g/L MIL-88A, unadjusted pH value and 4 mM PS in 80 mins. The results of scavenging experiments and ESR analysis demonstrated that SO4−• and •O2– radicals were the predominant radicals for the TC degradation. The significant improvement of degradation rate in MIL-88A/PS/Vis process is attributed to the following two factors: (1) as a photocatalyst, MIL-88A could be excited by visible light, therefore photogenerated electrons (e−) on the conduction band (CB) of MIL-88A could be trapped by PS to generate SO4−• radicals. In this process, PS acted as an electron acceptor and the electron/hole recombination was suppressed leading to the enhanced photocatalyst efficiency; (2) The PS can be activated not only by photoelectrons but also Fe (III) in MIL-88A leads to the generation of SO4−• radicals more rapidly and easily. A possible mechanism and degradation pathway for TC was proposed based on the trapping/ESR experiments and liquid chromatography-mass spectrometry (LC-MS) analysis. This work proposed a new idea and method in combining two oxidation processes in degradation of organic pollutants thus could be potentially used in environmental purification. |
|---|---|
| AbstractList | •Heterogeneous AOP and photocatalysis were coupled for efficient degradation of TC.•The introduction of PS effectively suppressed the recombination of charge carries.•Photogenerated electron can activate PS to generate SO4−• radicals.•The degradation pathways for TC are investigated through LC-MS technique.
In this work, a Fe-based metal organic frameworks (MIL-88A) has been synthesized through a hydrothermal method and adopted as a high-efficiency catalyst for photocatalysis (PC) coupled with sulfate radical-based advanced oxidation processes (SR-AOPs) to degrade tetracycline hydrochloride (TC-HCl) under visible light irradiation. The effects of MIL-88A/persulfate (PS) molar ratio, initial solution pH and catalyst dosage were studied. The results indicated that the combining of the photocatalysis and SR-AOPs could remarkably enhance TC degradation and 200 mg/L 100 mL TC could be degraded completely at 0.25 g/L MIL-88A, unadjusted pH value and 4 mM PS in 80 mins. The results of scavenging experiments and ESR analysis demonstrated that SO4−• and •O2– radicals were the predominant radicals for the TC degradation. The significant improvement of degradation rate in MIL-88A/PS/Vis process is attributed to the following two factors: (1) as a photocatalyst, MIL-88A could be excited by visible light, therefore photogenerated electrons (e−) on the conduction band (CB) of MIL-88A could be trapped by PS to generate SO4−• radicals. In this process, PS acted as an electron acceptor and the electron/hole recombination was suppressed leading to the enhanced photocatalyst efficiency; (2) The PS can be activated not only by photoelectrons but also Fe (III) in MIL-88A leads to the generation of SO4−• radicals more rapidly and easily. A possible mechanism and degradation pathway for TC was proposed based on the trapping/ESR experiments and liquid chromatography-mass spectrometry (LC-MS) analysis. This work proposed a new idea and method in combining two oxidation processes in degradation of organic pollutants thus could be potentially used in environmental purification. |
| Author | Zhang, Ying Chen, Xin Zhou, Jiabin Wang, Luo Cai, Weiquan |
| Author_xml | – sequence: 1 givenname: Ying surname: Zhang fullname: Zhang, Ying organization: School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China – sequence: 2 givenname: Jiabin surname: Zhou fullname: Zhou, Jiabin email: jbzhou@swpu.edu.cn organization: School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China – sequence: 3 givenname: Xin surname: Chen fullname: Chen, Xin organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China – sequence: 4 givenname: Luo surname: Wang fullname: Wang, Luo organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China – sequence: 5 givenname: Weiquan surname: Cai fullname: Cai, Weiquan email: cccaiwq@gzhu.edu.cn organization: School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China |
| BookMark | eNp9kctu3CAUhlGUSrm0D5AdL-ApF19wu6pGnbRSoizarhE-HI8ZOWABSeuHy7uVSbKousgKdND3__BxQU598EjIFWcbznj78bABPGwE4_2GyTJSJ-Scq05WUnBxWvZSNZXq6-6MXKR0YIy1Pe_PydM2PCyz83saRjphxhj26DE8JGrso_GAloY_zprsgqdLDIApYTn0li5TyAFMNvOaXKLOUxxHBw59phb30bxSJTljjgZWKE1Ip9WWnGkO0Vmkw0p3WA0mlabbu136RH-sHuPepezgmIiQn-v-jVxMnn6b9T15N5o54YfX9ZL82n39uf1W3dxdf99-uamgZixXhtvWdkyCEGbspUQOTWuaUXWiwVaqmgsYBtVwgTVgi7JuB1ULkEZ1jRlaeUn4Sy7EkFLEUS_R3Zu4as700b8-6OJfH_1rJstIFab7jwGXn29fVLj5TfLzC4nlSY8Oo05HqeUrXCwytA3uDfovNy6n_w |
| CitedBy_id | crossref_primary_10_1016_j_jes_2022_05_045 crossref_primary_10_1016_j_cej_2020_126346 crossref_primary_10_1016_j_apsusc_2023_157881 crossref_primary_10_1016_j_foodchem_2023_136607 crossref_primary_10_1007_s10924_020_02038_6 crossref_primary_10_1016_j_apmt_2025_102640 crossref_primary_10_1016_j_seppur_2025_133341 crossref_primary_10_1007_s10853_024_09438_2 crossref_primary_10_3390_molecules29163875 crossref_primary_10_3390_separations12080222 crossref_primary_10_1016_j_mtsust_2023_100525 crossref_primary_10_1016_j_seppur_2020_117936 crossref_primary_10_1016_j_cclet_2022_02_058 crossref_primary_10_1016_j_cej_2025_160545 crossref_primary_10_3390_catal14070453 crossref_primary_10_5004_dwt_2022_28596 crossref_primary_10_1016_j_seppur_2022_121758 crossref_primary_10_1016_j_diamond_2024_110852 crossref_primary_10_1016_j_cej_2022_141063 crossref_primary_10_1002_cctc_202000634 crossref_primary_10_1016_j_apsusc_2023_157771 crossref_primary_10_1016_j_eng_2025_03_033 crossref_primary_10_1002_sstr_202100115 crossref_primary_10_1016_j_watres_2025_124017 crossref_primary_10_1016_j_cej_2020_125009 crossref_primary_10_1016_j_jwpe_2025_107012 crossref_primary_10_1134_S2635167621040066 crossref_primary_10_1016_j_apcatb_2021_119877 crossref_primary_10_1016_j_chemosphere_2020_129365 crossref_primary_10_1016_j_electacta_2021_138434 crossref_primary_10_1016_j_crgsc_2025_100462 crossref_primary_10_1016_j_cej_2024_152510 crossref_primary_10_1016_j_cej_2019_122411 crossref_primary_10_1016_j_jpcs_2023_111299 crossref_primary_10_1016_j_apsusc_2021_151549 crossref_primary_10_1016_j_envres_2021_111736 crossref_primary_10_1016_j_seppur_2021_120124 crossref_primary_10_1016_j_cej_2021_128940 crossref_primary_10_1016_j_cej_2023_142532 crossref_primary_10_1016_j_micromeso_2022_112241 crossref_primary_10_1016_j_jcis_2025_138217 crossref_primary_10_1016_j_chemosphere_2020_129236 crossref_primary_10_1016_j_envres_2025_122759 crossref_primary_10_1016_j_jece_2020_103762 crossref_primary_10_1016_j_seppur_2021_120246 crossref_primary_10_1016_j_seppur_2022_120568 crossref_primary_10_1016_j_mtchem_2024_102248 crossref_primary_10_5004_dwt_2021_27716 crossref_primary_10_1016_j_envres_2023_116842 crossref_primary_10_1016_j_algal_2024_103452 crossref_primary_10_1016_j_ibiod_2020_104965 crossref_primary_10_1002_slct_202001670 crossref_primary_10_1016_j_jwpe_2024_104822 crossref_primary_10_1007_s11164_024_05451_x crossref_primary_10_1016_j_jorganchem_2021_122070 crossref_primary_10_1016_j_chemosphere_2023_137857 crossref_primary_10_1002_cptc_202500065 crossref_primary_10_1016_j_inoche_2023_111655 crossref_primary_10_1016_j_jpcs_2025_112969 crossref_primary_10_1016_j_jallcom_2024_176967 crossref_primary_10_1016_j_envres_2023_115998 crossref_primary_10_1016_j_jece_2023_111190 crossref_primary_10_1016_j_molstruc_2025_143629 crossref_primary_10_1016_j_cej_2019_122608 crossref_primary_10_1039_D5RA03247D crossref_primary_10_1039_D0QI00050G crossref_primary_10_1016_j_chemosphere_2024_143240 crossref_primary_10_1016_j_cej_2021_134054 crossref_primary_10_1007_s11270_024_07302_2 crossref_primary_10_1016_j_jpcs_2020_109698 crossref_primary_10_1016_j_cej_2022_136514 crossref_primary_10_1016_j_seppur_2023_125078 crossref_primary_10_1016_j_jhazmat_2022_128299 crossref_primary_10_1016_j_surfin_2024_105188 crossref_primary_10_1016_j_jcis_2024_03_191 crossref_primary_10_1016_j_cej_2020_126020 crossref_primary_10_1016_j_jwpe_2022_103151 crossref_primary_10_1007_s11356_022_19806_7 crossref_primary_10_1016_j_molstruc_2022_134486 crossref_primary_10_1002_aic_70035 crossref_primary_10_1039_D5CC02843D crossref_primary_10_1016_j_gee_2025_01_002 crossref_primary_10_1016_j_colsurfa_2021_126599 crossref_primary_10_1016_j_dwt_2025_101263 crossref_primary_10_1016_j_jece_2024_114945 crossref_primary_10_1016_j_jssc_2020_121200 crossref_primary_10_1016_j_jcrysgro_2025_128217 crossref_primary_10_1016_j_jwpe_2019_100918 crossref_primary_10_1016_j_cej_2024_148588 crossref_primary_10_1016_j_mcat_2025_115187 crossref_primary_10_1016_j_cej_2020_125044 crossref_primary_10_1016_j_cej_2020_127259 crossref_primary_10_1016_j_cej_2024_150759 crossref_primary_10_1016_j_jssc_2022_123431 crossref_primary_10_1039_D3RA00729D crossref_primary_10_3390_membranes13040369 crossref_primary_10_1016_j_cej_2024_150514 crossref_primary_10_1016_j_cej_2021_134190 crossref_primary_10_1016_j_molliq_2025_126920 crossref_primary_10_1016_j_memsci_2023_121855 crossref_primary_10_3389_fenvs_2024_1467797 crossref_primary_10_1016_j_materresbull_2022_111789 crossref_primary_10_1016_j_cej_2025_159739 crossref_primary_10_1016_j_jece_2022_107964 crossref_primary_10_1016_j_carbpol_2022_119969 crossref_primary_10_1016_j_apsusc_2021_150144 crossref_primary_10_1016_j_cclet_2021_08_008 crossref_primary_10_1016_j_watres_2021_117819 crossref_primary_10_1016_j_jece_2025_116192 crossref_primary_10_1016_j_ceramint_2020_10_019 crossref_primary_10_1016_j_psep_2022_06_020 crossref_primary_10_1016_j_apcatb_2021_120229 crossref_primary_10_3390_polym13020226 crossref_primary_10_1039_D0RA07487J crossref_primary_10_1016_j_jece_2023_111153 crossref_primary_10_1039_D5CY00234F crossref_primary_10_1016_j_jhazmat_2020_122938 crossref_primary_10_1016_j_catcom_2023_106798 crossref_primary_10_1016_j_scitotenv_2022_159795 crossref_primary_10_1016_j_jcis_2020_01_074 crossref_primary_10_1038_s41598_022_10563_8 crossref_primary_10_1016_j_cplett_2020_137431 crossref_primary_10_1016_j_apsusc_2024_159943 crossref_primary_10_1016_j_mssp_2021_106096 crossref_primary_10_1002_cjce_24550 crossref_primary_10_1016_j_scitotenv_2021_146483 crossref_primary_10_1016_j_ceramint_2022_12_254 crossref_primary_10_1016_j_ces_2025_122434 crossref_primary_10_1039_D2EW00810F crossref_primary_10_1016_j_apcatb_2019_118548 crossref_primary_10_1016_j_molliq_2023_123476 crossref_primary_10_1016_j_molstruc_2024_140321 crossref_primary_10_1016_j_jece_2022_109204 crossref_primary_10_1016_j_jece_2023_110705 crossref_primary_10_1016_j_inoche_2024_113708 crossref_primary_10_1007_s11356_022_21808_4 crossref_primary_10_1007_s11356_022_21556_5 crossref_primary_10_1016_j_jcis_2022_09_104 crossref_primary_10_1002_aoc_7994 crossref_primary_10_1002_adma_202307795 crossref_primary_10_1002_advs_202302503 crossref_primary_10_1016_j_seppur_2023_123257 crossref_primary_10_1016_j_materresbull_2024_113192 crossref_primary_10_1016_j_envres_2022_112937 crossref_primary_10_1016_j_jphotochem_2023_114893 crossref_primary_10_1016_j_ccr_2022_214562 crossref_primary_10_1016_j_cej_2023_142021 crossref_primary_10_1039_D4SC02850C crossref_primary_10_1016_j_cej_2022_139271 crossref_primary_10_1016_j_colsurfa_2021_127123 crossref_primary_10_1016_j_surfin_2024_105399 crossref_primary_10_1061_JHTRBP_HZENG_1357 crossref_primary_10_1016_j_jece_2024_114227 crossref_primary_10_1016_j_chemosphere_2023_141010 crossref_primary_10_1016_j_jcis_2023_06_095 crossref_primary_10_1016_j_ecoenv_2020_110661 crossref_primary_10_1016_j_jcis_2022_02_003 crossref_primary_10_1016_j_jhazmat_2021_125809 crossref_primary_10_1016_j_jtice_2021_08_002 crossref_primary_10_1016_j_chemosphere_2021_133072 crossref_primary_10_1016_j_jece_2021_105134 crossref_primary_10_1007_s11356_022_22770_x crossref_primary_10_1007_s10570_021_03717_w crossref_primary_10_1016_j_cej_2022_134947 crossref_primary_10_1016_j_jcis_2024_06_029 crossref_primary_10_1016_j_jhazmat_2023_131847 crossref_primary_10_1016_j_jpcs_2024_112372 crossref_primary_10_1007_s11705_022_2152_4 crossref_primary_10_1007_s11356_021_18285_6 crossref_primary_10_1016_j_psep_2020_08_016 crossref_primary_10_1016_j_apcatb_2022_122243 crossref_primary_10_1016_j_cej_2021_132495 crossref_primary_10_1007_s10904_022_02291_3 crossref_primary_10_1016_j_seppur_2024_127555 crossref_primary_10_1016_j_seppur_2022_120729 crossref_primary_10_1039_D3RA00345K crossref_primary_10_1007_s10562_022_04145_6 crossref_primary_10_1016_j_apsusc_2023_157478 crossref_primary_10_1016_j_chemosphere_2020_129501 crossref_primary_10_1016_j_inoche_2025_114164 crossref_primary_10_1016_j_matchemphys_2023_128870 crossref_primary_10_1016_j_cej_2020_126877 crossref_primary_10_1016_j_seppur_2021_118334 crossref_primary_10_1016_j_seta_2022_102451 crossref_primary_10_5004_dwt_2023_29389 crossref_primary_10_1016_j_jcis_2020_12_042 crossref_primary_10_1016_j_surfin_2022_102302 crossref_primary_10_1016_j_jhazmat_2020_122500 crossref_primary_10_1016_j_cej_2021_131166 crossref_primary_10_1016_j_apcatb_2023_122655 crossref_primary_10_1007_s11356_022_24474_8 crossref_primary_10_1016_j_cej_2021_133213 crossref_primary_10_1016_j_jpowsour_2024_234586 crossref_primary_10_1016_j_jpowsour_2025_236942 crossref_primary_10_1002_cssc_202400254 crossref_primary_10_3390_nano12111891 crossref_primary_10_1002_smll_202500670 crossref_primary_10_1016_j_cej_2023_145740 crossref_primary_10_1016_j_jcis_2024_04_163 crossref_primary_10_1016_j_jenvman_2023_118440 crossref_primary_10_1007_s00339_021_04528_3 crossref_primary_10_1016_j_chemosphere_2022_134257 crossref_primary_10_1002_aoc_70023 crossref_primary_10_1016_j_seppur_2023_125598 crossref_primary_10_1016_j_clay_2019_105273 crossref_primary_10_1016_j_cej_2020_127863 crossref_primary_10_1016_j_cplett_2022_139944 crossref_primary_10_1016_j_cej_2023_141378 crossref_primary_10_1089_ees_2023_0034 crossref_primary_10_1039_D5DT00688K crossref_primary_10_1016_j_chemosphere_2022_135113 crossref_primary_10_1007_s11270_024_07097_2 crossref_primary_10_1016_j_colsurfa_2020_125933 crossref_primary_10_1016_j_seppur_2022_120733 crossref_primary_10_1016_j_poly_2021_115216 crossref_primary_10_1016_j_seppur_2024_128977 crossref_primary_10_1016_j_jallcom_2022_165438 crossref_primary_10_1016_j_jece_2025_115942 crossref_primary_10_1016_j_microc_2020_105249 crossref_primary_10_1016_j_colsurfa_2022_129530 crossref_primary_10_1016_j_seppur_2021_119691 crossref_primary_10_1016_j_seppur_2024_130927 crossref_primary_10_1016_j_seppur_2021_118486 crossref_primary_10_1557_s43578_024_01331_7 crossref_primary_10_1016_j_seppur_2021_119216 crossref_primary_10_1016_j_cej_2021_132178 crossref_primary_10_1016_j_psep_2021_03_038 crossref_primary_10_1080_01411594_2024_2348687 crossref_primary_10_1007_s10853_024_09697_z crossref_primary_10_1016_j_seppur_2022_122706 crossref_primary_10_1007_s11356_023_28819_9 crossref_primary_10_1007_s10854_019_02266_0 crossref_primary_10_1016_j_jece_2024_114201 crossref_primary_10_1016_j_seppur_2021_119223 crossref_primary_10_1039_D5CY00412H crossref_primary_10_1002_aoc_7629 crossref_primary_10_3390_toxics12010070 crossref_primary_10_1016_j_colsurfa_2020_124623 crossref_primary_10_1016_j_jece_2022_107675 crossref_primary_10_1016_j_seppur_2023_124294 crossref_primary_10_3389_fchem_2019_00943 crossref_primary_10_1007_s11244_022_01616_3 crossref_primary_10_1016_j_cej_2024_149259 crossref_primary_10_1016_j_jhazmat_2022_129772 crossref_primary_10_1016_j_cej_2024_154836 crossref_primary_10_1016_j_micromeso_2021_111297 crossref_primary_10_1016_j_seppur_2022_121965 crossref_primary_10_1016_j_clay_2020_105694 crossref_primary_10_1016_j_jece_2025_115324 crossref_primary_10_1016_j_jwpe_2024_106579 crossref_primary_10_1016_j_surfin_2024_104210 crossref_primary_10_3390_molecules28186662 crossref_primary_10_1016_j_jwpe_2024_106691 crossref_primary_10_1016_j_jhazmat_2020_122315 crossref_primary_10_1016_j_cej_2024_154140 crossref_primary_10_1016_j_jssc_2024_124589 crossref_primary_10_1016_j_solidstatesciences_2023_107163 crossref_primary_10_1016_j_inoche_2022_109959 crossref_primary_10_3390_pr11123323 crossref_primary_10_1016_j_cej_2022_139545 crossref_primary_10_1016_j_colsurfa_2024_134586 crossref_primary_10_1016_j_cej_2022_139669 crossref_primary_10_1038_s41598_024_58761_w crossref_primary_10_1016_j_aca_2023_342112 crossref_primary_10_1016_j_hazadv_2023_100385 crossref_primary_10_1016_j_ccr_2023_215558 crossref_primary_10_1016_j_inoche_2024_112100 crossref_primary_10_1016_j_jece_2025_117630 crossref_primary_10_1016_j_jece_2023_110681 crossref_primary_10_1039_D5NJ01396H crossref_primary_10_1016_j_jhazmat_2020_124628 crossref_primary_10_1016_j_jwpe_2021_102122 crossref_primary_10_1016_j_chemosphere_2021_133230 crossref_primary_10_1016_j_enchem_2022_100078 crossref_primary_10_1016_j_apcatb_2023_122832 crossref_primary_10_1016_j_jmst_2023_05_018 crossref_primary_10_1016_j_jssc_2023_124051 crossref_primary_10_1016_j_scitotenv_2019_133962 crossref_primary_10_1016_j_colsurfa_2024_134114 crossref_primary_10_1002_slct_202404183 crossref_primary_10_1016_j_jallcom_2024_174085 crossref_primary_10_1002_app_52724 crossref_primary_10_1007_s11356_023_29685_1 crossref_primary_10_1016_j_jhazmat_2020_123423 crossref_primary_10_1016_j_ceramint_2019_11_058 crossref_primary_10_1016_j_jallcom_2025_180832 crossref_primary_10_1016_j_surfin_2022_101843 crossref_primary_10_1016_j_jiec_2020_04_012 crossref_primary_10_1088_1361_6528_abc20c crossref_primary_10_1016_j_cej_2021_133741 crossref_primary_10_1016_j_envres_2021_112037 crossref_primary_10_1016_j_chemosphere_2021_132135 crossref_primary_10_1016_j_seppur_2023_124526 crossref_primary_10_1515_revce_2023_0029 crossref_primary_10_1016_j_jece_2025_117531 crossref_primary_10_1016_j_jece_2025_118740 crossref_primary_10_1016_j_cej_2020_124615 crossref_primary_10_1016_j_mssp_2025_109894 crossref_primary_10_1016_S1872_2067_24_60003_3 crossref_primary_10_1039_D3EN00332A crossref_primary_10_1016_j_apsusc_2020_148662 crossref_primary_10_1016_j_jmst_2025_02_009 crossref_primary_10_1039_D0CY01478H crossref_primary_10_1039_D4QI01449A crossref_primary_10_1016_j_chemosphere_2022_135811 crossref_primary_10_1016_j_cej_2021_129122 crossref_primary_10_5004_dwt_2023_29780 crossref_primary_10_1016_j_apsusc_2023_159227 crossref_primary_10_1016_j_jclepro_2024_140885 crossref_primary_10_1016_j_mcat_2022_112730 crossref_primary_10_1002_aesr_202500123 crossref_primary_10_1016_j_seppur_2021_119632 crossref_primary_10_1016_j_ccr_2023_215506 crossref_primary_10_1016_j_jcis_2025_137504 crossref_primary_10_1016_j_jhazmat_2021_127247 crossref_primary_10_1016_j_apcatb_2019_118465 crossref_primary_10_1080_09593330_2021_1903564 crossref_primary_10_1016_j_jece_2025_116979 crossref_primary_10_1016_j_jssc_2021_122643 crossref_primary_10_1016_j_cherd_2025_09_024 crossref_primary_10_1016_j_jcis_2024_12_158 crossref_primary_10_1016_j_chemosphere_2022_134893 crossref_primary_10_1016_j_jclepro_2022_134118 crossref_primary_10_1080_09593330_2023_2283049 crossref_primary_10_1016_j_apcatb_2025_125615 crossref_primary_10_3390_nano12172945 crossref_primary_10_3390_nano9111567 crossref_primary_10_1016_j_seppur_2022_120901 crossref_primary_10_1016_j_apmt_2020_100821 crossref_primary_10_1016_j_jcis_2022_11_079 crossref_primary_10_1016_j_apsusc_2022_152547 crossref_primary_10_1016_j_colsurfa_2022_130116 crossref_primary_10_1016_j_colsurfa_2022_130475 crossref_primary_10_1016_j_ecoenv_2024_116324 crossref_primary_10_1016_j_seppur_2024_127122 crossref_primary_10_1016_j_mtchem_2022_101209 crossref_primary_10_1080_09593330_2023_2283054 crossref_primary_10_1016_j_cej_2021_129148 crossref_primary_10_1002_aic_17654 crossref_primary_10_1016_j_envres_2021_112192 crossref_primary_10_1515_revic_2021_0039 crossref_primary_10_1016_j_jhazmat_2021_127103 crossref_primary_10_1016_j_seppur_2020_118007 crossref_primary_10_1016_j_scitotenv_2021_145776 crossref_primary_10_1016_j_jssc_2021_122741 crossref_primary_10_3390_catal12020221 crossref_primary_10_1016_j_coco_2021_100985 crossref_primary_10_1016_j_envres_2022_112956 crossref_primary_10_1016_j_cej_2019_123350 crossref_primary_10_1016_j_jwpe_2023_103916 crossref_primary_10_1016_j_watres_2021_117259 crossref_primary_10_1007_s10098_024_02748_8 crossref_primary_10_1016_j_cej_2021_132217 crossref_primary_10_1134_S0018143924701625 crossref_primary_10_1016_j_apcatb_2022_121872 crossref_primary_10_1016_j_apsusc_2023_158249 crossref_primary_10_1016_j_jcis_2021_06_157 crossref_primary_10_1016_j_jclepro_2025_146219 crossref_primary_10_1016_j_jhazmat_2021_127698 crossref_primary_10_1016_j_cplett_2019_136817 crossref_primary_10_1016_j_apt_2020_09_011 crossref_primary_10_3390_nano12050811 crossref_primary_10_1007_s11356_024_32677_4 crossref_primary_10_1016_j_ccr_2021_213874 crossref_primary_10_1016_j_jes_2021_05_011 crossref_primary_10_1016_j_watres_2021_117141 crossref_primary_10_1002_slct_202204538 crossref_primary_10_1016_j_jece_2023_109754 crossref_primary_10_1016_j_jhazmat_2024_134993 crossref_primary_10_1016_j_physb_2024_416616 crossref_primary_10_1016_j_jallcom_2025_182939 crossref_primary_10_3390_catal12101137 crossref_primary_10_1016_j_jssc_2023_124220 crossref_primary_10_1016_j_jece_2023_110159 crossref_primary_10_1016_j_jtice_2020_03_011 crossref_primary_10_1002_jccs_202400289 crossref_primary_10_1002_advs_202406381 crossref_primary_10_3390_catal12111293 crossref_primary_10_1016_j_cej_2022_136439 crossref_primary_10_1007_s42765_023_00360_x crossref_primary_10_1007_s10904_025_03848_8 crossref_primary_10_1016_j_cep_2024_109979 crossref_primary_10_1016_j_jece_2025_117580 crossref_primary_10_1016_j_cej_2020_126185 crossref_primary_10_1016_j_jenvman_2024_122735 crossref_primary_10_1016_j_jhazmat_2020_124461 crossref_primary_10_1016_j_jhazmat_2021_125256 crossref_primary_10_1016_j_seppur_2022_122554 crossref_primary_10_1016_j_cej_2021_129743 crossref_primary_10_3390_app15095182 crossref_primary_10_1016_j_jenvman_2022_115662 crossref_primary_10_1016_j_jece_2024_112843 crossref_primary_10_1016_j_cclet_2020_07_043 crossref_primary_10_1016_j_jece_2024_112838 crossref_primary_10_1016_j_cej_2020_127260 crossref_primary_10_1016_j_cej_2021_129621 crossref_primary_10_1002_smll_202309822 crossref_primary_10_1016_j_seppur_2022_121347 crossref_primary_10_1016_j_chemosphere_2022_135082 crossref_primary_10_1016_j_ceramint_2021_08_335 crossref_primary_10_1016_j_jece_2024_112875 crossref_primary_10_1016_j_jwpe_2023_103718 crossref_primary_10_1016_j_cej_2020_126085 crossref_primary_10_1016_j_envres_2022_113326 crossref_primary_10_1016_j_surfin_2025_106299 crossref_primary_10_1016_j_cej_2023_148233 crossref_primary_10_1016_j_surfin_2024_104521 crossref_primary_10_1016_j_jece_2023_110020 crossref_primary_10_1016_j_seppur_2022_122450 crossref_primary_10_1016_j_psep_2023_01_069 crossref_primary_10_1016_j_chemosphere_2024_143071 crossref_primary_10_1016_j_jwpe_2022_103373 crossref_primary_10_1002_admt_202300760 crossref_primary_10_1002_clen_202200299 crossref_primary_10_1016_j_jece_2024_114801 crossref_primary_10_1016_j_cej_2021_128674 crossref_primary_10_1016_j_jhazmat_2021_127651 crossref_primary_10_1016_j_jece_2021_106920 crossref_primary_10_1016_j_jscs_2024_101871 crossref_primary_10_1016_j_seppur_2022_122337 crossref_primary_10_1016_j_jhazmat_2021_127887 crossref_primary_10_3390_pr9091644 crossref_primary_10_1016_j_scitotenv_2024_171885 crossref_primary_10_1039_D2EW00353H crossref_primary_10_1016_j_cej_2019_123418 crossref_primary_10_1016_j_seppur_2025_134912 crossref_primary_10_1016_j_jclepro_2022_131808 crossref_primary_10_1016_j_jpowsour_2022_231220 crossref_primary_10_1016_j_jenvman_2022_115327 crossref_primary_10_1016_j_apcatb_2020_118591 crossref_primary_10_1016_j_jece_2025_117782 crossref_primary_10_1016_j_apcatb_2024_123790 crossref_primary_10_1016_j_chemosphere_2023_139546 crossref_primary_10_1016_j_jhazmat_2021_127640 crossref_primary_10_1016_j_ijbiomac_2021_01_184 crossref_primary_10_1016_j_cherd_2024_06_042 crossref_primary_10_3390_nano14131071 crossref_primary_10_1016_j_jssc_2023_124419 crossref_primary_10_1016_j_foodchem_2022_133360 crossref_primary_10_1016_j_ijbiomac_2024_132953 crossref_primary_10_1016_j_colsurfa_2023_132353 crossref_primary_10_1007_s12010_025_05238_9 crossref_primary_10_1016_j_cej_2023_141810 crossref_primary_10_1016_j_esi_2025_01_003 crossref_primary_10_1016_j_cej_2020_124916 crossref_primary_10_1016_j_optmat_2021_111260 crossref_primary_10_1016_j_cej_2019_122692 crossref_primary_10_1016_j_seppur_2024_130015 crossref_primary_10_1016_j_psep_2025_107524 crossref_primary_10_1016_j_seppur_2024_130495 crossref_primary_10_1016_j_est_2025_115928 crossref_primary_10_1016_j_apsusc_2022_153586 crossref_primary_10_1016_j_jenvman_2024_123991 crossref_primary_10_1016_j_cej_2021_128454 crossref_primary_10_1016_j_optmat_2023_113729 crossref_primary_10_1016_j_jhazmat_2021_127503 crossref_primary_10_1016_j_jhazmat_2021_127866 crossref_primary_10_1016_j_apcatb_2019_118282 crossref_primary_10_1016_j_envint_2023_108158 crossref_primary_10_1016_j_envres_2024_120656 crossref_primary_10_1016_j_molliq_2024_125119 crossref_primary_10_1016_j_solidstatesciences_2024_107700 crossref_primary_10_1016_j_apsusc_2023_158199 crossref_primary_10_1016_j_seppur_2019_116249 crossref_primary_10_1016_j_cej_2019_123636 crossref_primary_10_1016_j_mtsust_2024_101033 crossref_primary_10_1016_j_surfin_2025_106091 crossref_primary_10_1016_j_jclepro_2022_130734 crossref_primary_10_1016_j_chemosphere_2023_140306 crossref_primary_10_1016_j_cej_2022_140994 crossref_primary_10_1016_j_susmat_2025_e01441 crossref_primary_10_1016_j_ica_2019_119334 crossref_primary_10_1016_j_jallcom_2024_177589 crossref_primary_10_1016_j_apsusc_2022_154429 crossref_primary_10_1016_j_jallcom_2021_163400 crossref_primary_10_1016_j_molliq_2019_111063 crossref_primary_10_1016_j_scitotenv_2021_152351 crossref_primary_10_1016_j_colsurfa_2021_126412 crossref_primary_10_1016_j_jpcs_2022_111053 crossref_primary_10_1016_j_cej_2022_136020 crossref_primary_10_1016_j_cclet_2023_109341 crossref_primary_10_1016_j_jece_2023_110587 crossref_primary_10_1016_j_envres_2021_112242 crossref_primary_10_1016_j_mssp_2025_109456 crossref_primary_10_1016_j_jwpe_2025_108445 crossref_primary_10_1016_j_jallcom_2021_161582 crossref_primary_10_1016_j_jece_2024_112941 crossref_primary_10_1080_14328917_2023_2245621 crossref_primary_10_1016_j_materresbull_2020_110806 crossref_primary_10_1016_j_cej_2022_138326 crossref_primary_10_1016_j_jhazmat_2023_131343 crossref_primary_10_1016_j_carbon_2025_120001 crossref_primary_10_1016_j_psep_2025_106778 crossref_primary_10_3390_catal13111440 crossref_primary_10_1016_j_apcatb_2023_123262 crossref_primary_10_1016_j_cej_2021_133932 crossref_primary_10_1016_j_jallcom_2024_175279 crossref_primary_10_1016_j_seppur_2023_125822 crossref_primary_10_1039_D2NJ03259G |
| Cites_doi | 10.1016/j.cplett.2018.06.006 10.1016/j.apcata.2017.09.021 10.1039/C6RA16549D 10.1016/j.jallcom.2018.10.383 10.1016/j.jcat.2017.05.017 10.1016/j.chemosphere.2018.08.117 10.1016/j.cej.2016.04.028 10.1016/j.cej.2013.08.029 10.1016/j.apsusc.2017.06.325 10.1016/j.cattod.2016.10.020 10.1007/s00244-001-0017-2 10.1016/j.jhazmat.2010.05.063 10.1039/C5CC07004J 10.1021/ja206936e 10.1007/s10853-018-3090-x 10.1016/j.cej.2017.09.117 10.1016/j.jcis.2011.01.015 10.1016/j.apcatb.2017.03.034 10.1016/j.apcatb.2018.02.011 10.1039/C5RA24155C 10.1016/j.colsurfa.2018.11.062 10.1016/j.cej.2012.09.027 10.1016/j.jcis.2017.01.060 10.1016/j.colsurfa.2010.11.050 10.1039/C3CS60472A 10.1039/C3DT52574K 10.1016/j.cej.2016.08.046 10.1016/j.cej.2017.09.022 10.1039/c1jm13645c 10.1007/s10854-018-9629-4 10.1016/j.apcatb.2010.02.013 10.1039/C6RA28224E 10.1016/j.cej.2017.06.139 10.1016/j.cej.2017.12.108 10.1016/j.apsusc.2015.05.041 10.1016/j.mssp.2018.10.012 10.1039/c1ee01240a 10.1016/j.cej.2017.08.114 10.1039/C5RA01447F 10.1016/j.cej.2017.09.158 10.1016/j.apcatb.2017.09.020 10.1016/j.watres.2015.01.012 10.1039/C6RA00695G 10.1021/cr200190s 10.1016/j.apcatb.2010.05.004 10.1039/C5RA13684A 10.1016/j.watres.2018.03.030 10.1021/acs.est.8b00959 10.1016/j.jhazmat.2016.10.019 10.1039/C6CY02355J 10.1016/j.chemosphere.2016.02.055 10.1016/j.apcatb.2016.12.001 10.1021/es503741d 10.1016/j.cej.2016.12.093 10.1016/j.jcis.2018.02.067 10.1007/s10853-017-1779-x 10.1039/c3ce41453a 10.1016/j.jallcom.2018.11.070 10.1016/j.jhazmat.2015.11.043 10.1016/j.apcatb.2016.09.005 10.1016/j.cej.2015.09.001 10.1016/j.chemosphere.2018.03.116 10.1016/j.apcatb.2015.06.001 10.1021/es404118q 10.1039/C6RA24429G 10.1039/C2DT32073H |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cej.2019.03.108 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3212 |
| EndPage | 757 |
| ExternalDocumentID | 10_1016_j_cej_2019_03_108 S1385894719305741 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABXDB ACLOT ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP CITATION EFKBS FEDTE FGOYB HVGLF HZ~ R2- SEW ZY4 ~HD |
| ID | FETCH-LOGICAL-c400t-a1d6d703c22af933e1c56a5f8725e638412cbb8512e4ce6e346b842c3a875ab63 |
| ISICitedReferencesCount | 552 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463344800073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1385-8947 |
| IngestDate | Sat Nov 29 07:01:06 EST 2025 Tue Nov 18 21:49:35 EST 2025 Fri Feb 23 02:34:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | MIL-88A Tetracycline hydrochloride (TC-HCl) Advanced oxidation processes (AOPs) Photocatalyst Degradation pathway |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c400t-a1d6d703c22af933e1c56a5f8725e638412cbb8512e4ce6e346b842c3a875ab63 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_cej_2019_03_108 crossref_citationtrail_10_1016_j_cej_2019_03_108 elsevier_sciencedirect_doi_10_1016_j_cej_2019_03_108 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-01 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Liu, Zhu, Zhao, Deng, Ma, Wang, Liu, Wang (b0035) 2017; 314 Eswar, Singh, Madras (b0050) 2018; 332 Sculley, Yuan, Zhou (b0155) 2011; 4 Yang, Lin, Yang, Ng, Ye, Lin (b0025) 2017; 322 Cai, Wei, Li, Liu, Zhou, Han (b0265) 2019; 563 Gao, Li, Li, Yao, Zhang (b0185) 2017; 202 Liu, Huang, Zhang, Tang, Wang, Wang, Wu (b0180) 2018; 221 Cheng, Zeng, Huang, Lai, Xu, Zhang, Liu (b0075) 2016; 284 Khan, Bae, Jung (b0045) 2010; 181 Yang, Pignatello, Ma, Mitch (b0070) 2014; 48 Cui, Li, Cen, Sun, Lee, Dong (b0100) 2017; 352 Liu, Zhou, Hu, Zhou, Cai (b0120) 2018; 29 Gia-Thanh, Minh-Hao, Trong-On (b0245) 2013; 15 Halling-Sorensen, Sengelov, Tjornelund (b0305) 2002; 42 Zheng, Bai, Guan, Wang, Suo (b0060) 2016; 6 Matzek, Carter (b0080) 2016; 151 Deng, Zhao, Luo, Luo, Dionysiou (b0315) 2018; 333 Zhou, Yang, Yu (b0255) 2011; 379 Pu, Ma, Wan, Wang, Wang, Brusseau (b0230) 2017; 7 Cui, Li, Gao, Dong, Chen (b0105) 2017; 284 Zhu, Xu (b0140) 2014; 43 Hu, Qin, Wang, Shao, Su (b0160) 2015; 51 Lin, Chang, Hsu (b0200) 2015; 5 Chen, Ma, Yang, Wang, Lv, Ren (b0325) 2017; 307 Vuong, Pham, Do (b0250) 2013; 42 Zhang, Zhou, Chen, Feng, Cai (b0095) 2019; 777 Zhang, Zhou, Feng, Chen, Hu (b0145) 2018; 212 Zhou, Cheng, Yu, Liu (b0225) 2011; 21 Yun, Lee, Kim, Park, Lee (b0280) 2018; 52 Avetta, Pensato, Minella, Malandrino, Maurino, Minero, Hanna, Vione (b0085) 2015; 49 Liu, Hou, Li, Hu, Yu (b0335) 2016; 6 Zhou, Zhang, Cheng, Yu (b0220) 2012; 211 Shamaila, Sajjad, Chen, Zhang (b0275) 2011; 356 Qin, Li, Xu, Guo, Zhang (b0235) 2015; 179 Wang, Wan, Ma, Wang, Pu, Guan (b0195) 2016; 6 Zhang, Zhou, Cai, Zhou, Li (b0170) 2018; 430 Pu, Guan, Ma, Wan, Wang, Brusseau, Chi (b0285) 2018; 549 Herney-Ramirez, Vicente, Madeira (b0290) 2010; 98 Sha, Zhong, Wu, Liu, Sheng (b0150) 2016; 6 Antoniou, de la Cruz, Dionysiou (b0130) 2010; 96 Sun, Zhou, Cai, Zhao, Yuan (b0260) 2015; 349 Lu, Guan, Peng, Li, Zheng (b0040) 2015; 42 Liu, Kong, Yuan, Zhao, Zhu, Sun, Xie (b0005) 2018; 331 Hu, Zhou, Zhang, Liu, Zhou, Cai (b0125) 2018; 706 Liu, He, Fu, Dionysiou (b0300) 2016; 305 Wang, Jia, Wang, Chen, Fang, Dong, Zeng, Li, Yang, Yuan (b0020) 2018; 519 Zhou, Zhou, Hu, Wang (b0110) 2019; 90 Wang, Xiao, Zhu, Yin, Wang (b0320) 2017; 7 Li, Sculley, Zhou (b0165) 2012; 112 Horcajada, Salles, Wuttke, Devic, Heurtaux, Maurin, Vimont, Daturi, David, Magnier, Stock, Filinchuk, Popov, Riekel, Ferey, Serre (b0240) 2011; 133 Abejon, De Cazes, Belleville, Sanchez-Marcano (b0030) 2015; 73 Cai, Gu, Jin, Zhou (b0270) 2019; 777 Gao, Yu, Liu, Deng, Wang, Huang, Wang (b0175) 2017; 330 Hong, Li, Yin, Li, Zhang, Mao, Fan, Gu, Shi (b0010) 2018; 338 Ji, Shi, Dong, Wen, Jiang, Lu (b0065) 2016; 298 Liu, Zhou, Zhou (b0115) 2019; 54 Feng, Cheri, Jiang (b0205) 2017; 494 Wang, Zhi, Zhou, He, Zhang (b0015) 2018; 137 Zhang, Zhou, Li, Feng (b0210) 2018; 53 Yu, Gu, Lu, Xue, Zhang, Xu, Qiu, Sui (b0090) 2018; 333 Wang, Zhou, Zhang, Yu, Cai (b0215) 2013; 233 Xie, Feng, Wang, Chen, Zhang, Zeng, Lv, Liu (b0310) 2018; 229 Jia, Kang, Zhang, Wang, Yang, Sun, Habibi, Zhang (b0135) 2017; 204 Zhang, Shi, Xu, Chen, Song (b0295) 2018; 202 Yan, Yan, Wu, Shi, Hua (b0055) 2015; 5 Xu, Ma, Ke, Peng, Xu, Shen, Zhu, Qiu, Yuan (b0190) 2014; 43 Barhoumi, Olvera-Vargas, Oturan, Huguenot, Gadri, Ammar, Brillas, Oturan (b0330) 2017; 209 Liu (10.1016/j.cej.2019.03.108_b0005) 2018; 331 Lu (10.1016/j.cej.2019.03.108_b0040) 2015; 42 Antoniou (10.1016/j.cej.2019.03.108_b0130) 2010; 96 Cai (10.1016/j.cej.2019.03.108_b0265) 2019; 563 Qin (10.1016/j.cej.2019.03.108_b0235) 2015; 179 Barhoumi (10.1016/j.cej.2019.03.108_b0330) 2017; 209 Zhou (10.1016/j.cej.2019.03.108_b0220) 2012; 211 Hu (10.1016/j.cej.2019.03.108_b0160) 2015; 51 Zhou (10.1016/j.cej.2019.03.108_b0225) 2011; 21 Zhou (10.1016/j.cej.2019.03.108_b0110) 2019; 90 Liu (10.1016/j.cej.2019.03.108_b0335) 2016; 6 Xu (10.1016/j.cej.2019.03.108_b0190) 2014; 43 Liu (10.1016/j.cej.2019.03.108_b0180) 2018; 221 Cui (10.1016/j.cej.2019.03.108_b0105) 2017; 284 Cui (10.1016/j.cej.2019.03.108_b0100) 2017; 352 Wang (10.1016/j.cej.2019.03.108_b0215) 2013; 233 Feng (10.1016/j.cej.2019.03.108_b0205) 2017; 494 Zhou (10.1016/j.cej.2019.03.108_b0255) 2011; 379 Wang (10.1016/j.cej.2019.03.108_b0320) 2017; 7 Eswar (10.1016/j.cej.2019.03.108_b0050) 2018; 332 Halling-Sorensen (10.1016/j.cej.2019.03.108_b0305) 2002; 42 Sculley (10.1016/j.cej.2019.03.108_b0155) 2011; 4 Li (10.1016/j.cej.2019.03.108_b0165) 2012; 112 Deng (10.1016/j.cej.2019.03.108_b0315) 2018; 333 Abejon (10.1016/j.cej.2019.03.108_b0030) 2015; 73 Vuong (10.1016/j.cej.2019.03.108_b0250) 2013; 42 Herney-Ramirez (10.1016/j.cej.2019.03.108_b0290) 2010; 98 Cheng (10.1016/j.cej.2019.03.108_b0075) 2016; 284 Zhu (10.1016/j.cej.2019.03.108_b0140) 2014; 43 Horcajada (10.1016/j.cej.2019.03.108_b0240) 2011; 133 Yu (10.1016/j.cej.2019.03.108_b0090) 2018; 333 Zheng (10.1016/j.cej.2019.03.108_b0060) 2016; 6 Wang (10.1016/j.cej.2019.03.108_b0015) 2018; 137 Shamaila (10.1016/j.cej.2019.03.108_b0275) 2011; 356 Pu (10.1016/j.cej.2019.03.108_b0285) 2018; 549 Lin (10.1016/j.cej.2019.03.108_b0200) 2015; 5 Gia-Thanh (10.1016/j.cej.2019.03.108_b0245) 2013; 15 Liu (10.1016/j.cej.2019.03.108_b0300) 2016; 305 Cai (10.1016/j.cej.2019.03.108_b0270) 2019; 777 Pu (10.1016/j.cej.2019.03.108_b0230) 2017; 7 Zhang (10.1016/j.cej.2019.03.108_b0210) 2018; 53 Liu (10.1016/j.cej.2019.03.108_b0115) 2019; 54 Chen (10.1016/j.cej.2019.03.108_b0325) 2017; 307 Hu (10.1016/j.cej.2019.03.108_b0125) 2018; 706 Zhang (10.1016/j.cej.2019.03.108_b0145) 2018; 212 Xie (10.1016/j.cej.2019.03.108_b0310) 2018; 229 Yang (10.1016/j.cej.2019.03.108_b0070) 2014; 48 Zhang (10.1016/j.cej.2019.03.108_b0170) 2018; 430 Liu (10.1016/j.cej.2019.03.108_b0120) 2018; 29 Sun (10.1016/j.cej.2019.03.108_b0260) 2015; 349 Wang (10.1016/j.cej.2019.03.108_b0020) 2018; 519 Zhang (10.1016/j.cej.2019.03.108_b0295) 2018; 202 Gao (10.1016/j.cej.2019.03.108_b0175) 2017; 330 Yang (10.1016/j.cej.2019.03.108_b0025) 2017; 322 Jia (10.1016/j.cej.2019.03.108_b0135) 2017; 204 Liu (10.1016/j.cej.2019.03.108_b0035) 2017; 314 Avetta (10.1016/j.cej.2019.03.108_b0085) 2015; 49 Zhang (10.1016/j.cej.2019.03.108_b0095) 2019; 777 Hong (10.1016/j.cej.2019.03.108_b0010) 2018; 338 Yan (10.1016/j.cej.2019.03.108_b0055) 2015; 5 Gao (10.1016/j.cej.2019.03.108_b0185) 2017; 202 Wang (10.1016/j.cej.2019.03.108_b0195) 2016; 6 Sha (10.1016/j.cej.2019.03.108_b0150) 2016; 6 Khan (10.1016/j.cej.2019.03.108_b0045) 2010; 181 Yun (10.1016/j.cej.2019.03.108_b0280) 2018; 52 Matzek (10.1016/j.cej.2019.03.108_b0080) 2016; 151 Ji (10.1016/j.cej.2019.03.108_b0065) 2016; 298 |
| References_xml | – volume: 6 start-page: 82977 year: 2016 end-page: 82983 ident: b0150 article-title: Nontoxic and renewable metal-organic framework based on alpha-cyclodextrin with efficient drug delivery publication-title: Rsc Adv. – volume: 4 start-page: 2721 year: 2011 end-page: 2735 ident: b0155 article-title: The current status of hydrogen storage in metal-organic frameworks-updated publication-title: Energy Environ. Sci. – volume: 73 start-page: 118 year: 2015 end-page: 131 ident: b0030 article-title: Large-scale enzymatic membrane reactors for tetracycline degradation in WWTP effluents publication-title: Water Res. – volume: 6 start-page: 112502 year: 2016 end-page: 112511 ident: b0195 article-title: Metal-organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of Orange G through persulfate activation publication-title: Rsc Adv. – volume: 209 start-page: 637 year: 2017 end-page: 647 ident: b0330 article-title: Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro-Fenton process with solid catalyst chalcopyrite publication-title: Appl. Catal. B: Environ. – volume: 229 start-page: 96 year: 2018 end-page: 104 ident: b0310 article-title: Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline publication-title: Appl. Catal. B: Environ. – volume: 29 start-page: 14906 year: 2018 end-page: 14917 ident: b0120 article-title: In situ facile fabrication of Z-scheme leaf-like beta-Bi2O3/g-C3N4 nanosheets composites with enhanced visible light photoactivity publication-title: J. Mater. Sci.-Mater. Electronics – volume: 151 start-page: 178 year: 2016 end-page: 188 ident: b0080 article-title: Activated persulfate for organic chemical degradation: a review publication-title: Chemosphere – volume: 6 start-page: 35216 year: 2016 end-page: 35227 ident: b0335 article-title: Heterogeneous degradation of tetracycline by magnetic Ag/AgCl/modified zeolite X-persulfate system under visible light publication-title: Rsc Adv. – volume: 112 start-page: 869 year: 2012 end-page: 932 ident: b0165 article-title: Metal-Organic Frameworks for Separations publication-title: Chem. Rev. – volume: 7 start-page: 1129 year: 2017 end-page: 1140 ident: b0230 article-title: Activation performance and mechanism of a novel heterogeneous persulfate catalyst: metal-organic frameworkMIL-53(Fe) with Fe-II/Fe-III mixed-valence coordinatively unsaturated iron center publication-title: Catal. Sci. Technol. – volume: 379 start-page: 102 year: 2011 end-page: 108 ident: b0255 article-title: Facile fabrication of mesoporous MgO microspheres and their enhanced adsorption performance for phosphate from aqueous solutions publication-title: Colloids Surfaces a-Physicochem. Eng. Aspects – volume: 202 start-page: 165 year: 2017 end-page: 174 ident: b0185 article-title: Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate publication-title: Appl. Catal. B: Environ. – volume: 5 start-page: 90255 year: 2015 end-page: 90264 ident: b0055 article-title: Microwave-assisted synthesis of monoclinic-tetragonal BiVO4 heterojunctions with enhanced visible-light-driven photocatalytic degradation of tetracycline publication-title: Rsc Adv. – volume: 204 start-page: 537 year: 2017 end-page: 547 ident: b0135 article-title: Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment publication-title: Appl. Catal. B: Environ. – volume: 494 start-page: 32 year: 2017 end-page: 37 ident: b0205 article-title: In-situ ethylenediamine-assisted synthesis of a magnetic iron-based metal -organic framework MIL-53(Fe) for visible light photocatalysis publication-title: J. Colloid. Interf. Sci. – volume: 333 start-page: 122 year: 2018 end-page: 131 ident: b0090 article-title: Degradation of phenanthrene in aqueous solution by a persulfate/percarbonate system activated with CA chelated-Fe(II) publication-title: Chem. Eng. J. – volume: 322 start-page: 525 year: 2017 end-page: 531 ident: b0025 article-title: Degradation of tetracycline by immobilized laccase and the proposed transformation pathway publication-title: J. Hazard. Mater. – volume: 6 start-page: 4101 year: 2016 end-page: 4107 ident: b0060 article-title: Degradation of tetracycline hydrochloride by heterogeneous Fenton-like reaction using Fe@Bacillus subtilis publication-title: Rsc Adv. – volume: 53 start-page: 3149 year: 2018 end-page: 3162 ident: b0210 article-title: Photodegradation pathway of rhodamine B with novel Au nanorods @ ZnO microspheres driven by visible light irradiation publication-title: J. Mater. Sci. – volume: 98 start-page: 10 year: 2010 end-page: 26 ident: b0290 article-title: Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review publication-title: Appl. Catal. B: Environ. – volume: 5 start-page: 32520 year: 2015 end-page: 32530 ident: b0200 article-title: Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water publication-title: Rsc Adv. – volume: 43 start-page: 3792 year: 2014 end-page: 3798 ident: b0190 article-title: Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye publication-title: Dalton Trans. – volume: 307 start-page: 15 year: 2017 end-page: 23 ident: b0325 article-title: Aqueous tetracycline degradation by H2O2 alone: Removal and transformation pathway publication-title: Chem. Eng. J. – volume: 777 start-page: 109 year: 2019 end-page: 118 ident: b0095 article-title: MOF-derived C-doped ZnO composites for enhanced photocatalytic performance under visible light publication-title: J. Alloys Compd. – volume: 133 start-page: 17839 year: 2011 end-page: 17847 ident: b0240 article-title: How Linker's Modification Controls Swelling Properties of Highly Flexible Iron(III) Dicarboxylates MIL-88 publication-title: JACS – volume: 42 start-page: 81 year: 2015 end-page: 86 ident: b0040 article-title: Ion-exchange modification of TiO_2 nanotubes and visible-light-driven photocatalytic degradation of tetracycline publication-title: J. Beijing Univ. Chem. Technol. Nat. Sci. Edition – volume: 179 start-page: 500 year: 2015 end-page: 508 ident: b0235 article-title: Organic-acid-directed assembly of iron-carbon oxides nanoparticles on coordinatively unsaturated metal sites of MIL-101 for green photochemical oxidation publication-title: Appl. Catal. B: Environ. – volume: 21 start-page: 19353 year: 2011 end-page: 19361 ident: b0225 article-title: Hierarchically porous calcined lithium/aluminum layered double hydroxides: facile synthesis and enhanced adsorption towards fluoride in water publication-title: J. Mater. Chem. – volume: 42 start-page: 263 year: 2002 end-page: 271 ident: b0305 article-title: Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria publication-title: Arch. Environ. Con. Tox. – volume: 212 start-page: 523 year: 2018 end-page: 532 ident: b0145 article-title: Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst publication-title: Chemosphere – volume: 49 start-page: 1043 year: 2015 end-page: 1050 ident: b0085 article-title: Activation of Persulfate by Irradiated Magnetite: Implications for the Degradation of Phenol under Heterogeneous Photo-Fenton-Like Conditions publication-title: Environ. Sci. Technol. – volume: 42 start-page: 550 year: 2013 end-page: 557 ident: b0250 article-title: Synthesis and engineering porosity of a mixed metal Fe2Ni MIL-88B metal-organic framework publication-title: Dalton Trans. – volume: 96 start-page: 290 year: 2010 end-page: 298 ident: b0130 article-title: Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e(-) transfer mechanisms publication-title: Appl. Catal. B: Environ. – volume: 137 start-page: 324 year: 2018 end-page: 334 ident: b0015 article-title: Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode publication-title: Water Res. – volume: 352 start-page: 351 year: 2017 end-page: 360 ident: b0100 article-title: Steering the interlayer energy barrier and charge flow via bioriented transportation channels in g-C3N4: enhanced photocatalysis and reaction mechanism publication-title: J. Catal. – volume: 90 start-page: 112 year: 2019 end-page: 119 ident: b0110 article-title: Enhancement of adsorption and visible light photocatalytic activity of the Zn-2(+)-doped BiOBr/PVP modified microspheres for RhB publication-title: Mater. Sci. Semicond. Process. – volume: 221 start-page: 119 year: 2018 end-page: 128 ident: b0180 article-title: Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB publication-title: Appl. Catal. B: Environ. – volume: 202 start-page: 661 year: 2018 end-page: 668 ident: b0295 article-title: Degradation of tetracycline in a schorl/H2O2 system: Proposed mechanism and intermediates publication-title: Chemosphere – volume: 430 start-page: 549 year: 2018 end-page: 560 ident: b0170 article-title: Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction publication-title: Appl. Surf. Sci. – volume: 314 start-page: 59 year: 2017 end-page: 68 ident: b0035 article-title: Aqueous tetracycline degradation by coal-based carbon electrocatalytic filtration membrane: effect of nano antimony-doped tin dioxide coating publication-title: Chem. Eng. J. – volume: 54 start-page: 3294 year: 2019 end-page: 3308 ident: b0115 article-title: Facile fabrication of multi-walled carbon nanotubes (MWCNTs)/alpha-Bi2O3 nanosheets composite with enhanced photocatalytic activity for doxycycline degradation under visible light irradiation publication-title: J. Mater. Sci. – volume: 519 start-page: 273 year: 2018 end-page: 284 ident: b0020 article-title: Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs publication-title: J. Colloid. Interf. Sci. – volume: 706 start-page: 208 year: 2018 end-page: 214 ident: b0125 article-title: The formation of a direct Z-scheme Bi2O3 /MoO3 composite nanocatalyst with improved photocatalytic activity under visible light publication-title: Chem. Phys. Lett. – volume: 52 start-page: 7032 year: 2018 end-page: 7042 ident: b0280 article-title: Identifying the Nonradical Mechanism in the Peroxymonosulfate Activation Process: Singlet Oxygenation Versus Mediated Electron Transfer publication-title: Environ. Sci. Technol. – volume: 48 start-page: 2344 year: 2014 end-page: 2351 ident: b0070 article-title: Comparison of Halide Impacts on the Efficiency of Contaminant Degradation by Sulfate and Hydroxyl Radical-Based Advanced Oxidation Processes (AOPs) publication-title: Environ. Sci. Technol. – volume: 777 start-page: 1304 year: 2019 end-page: 1312 ident: b0270 article-title: CTAB-functionalized C@SiO2 double-shelled hollow microspheres with enhanced and selective adsorption performance for Cr(VI) publication-title: J. Alloys Compd. – volume: 181 start-page: 659 year: 2010 end-page: 665 ident: b0045 article-title: Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway publication-title: J. Hazard. Mater. – volume: 331 start-page: 242 year: 2018 end-page: 254 ident: b0005 article-title: Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation publication-title: Chem. Eng. J. – volume: 233 start-page: 168 year: 2013 end-page: 175 ident: b0215 article-title: Different surfactants-assisted hydrothermal synthesis of hierarchical gamma-Al2O3 and its adsorption performances for parachlorophenol publication-title: Chem. Eng. J. – volume: 43 start-page: 5468 year: 2014 end-page: 5512 ident: b0140 article-title: Metal-organic framework composites publication-title: Chem. Soc. Rev. – volume: 356 start-page: 465 year: 2011 end-page: 472 ident: b0275 article-title: WO3/BiOCl, a novel heterojunction as visible light photocatalyst publication-title: J. Colloid. Interf. Sci. – volume: 211 start-page: 153 year: 2012 end-page: 160 ident: b0220 article-title: Glycine-assisted hydrothermal synthesis and adsorption properties of crosslinked porous alpha-Fe2O3 nanomaterials for p-nitrophenol publication-title: Chem. Eng. J. – volume: 298 start-page: 225 year: 2016 end-page: 233 ident: b0065 article-title: Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution publication-title: Chem. Eng. J. – volume: 51 start-page: 17521 year: 2015 end-page: 17524 ident: b0160 article-title: A luminescent dye@MOF as a dual-emitting platform for sensing explosives publication-title: Chem. Commun. – volume: 563 start-page: 102 year: 2019 end-page: 111 ident: b0265 article-title: Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr(VI) by a mild one-step hydrothermal method from peanut hull publication-title: Colloids Surfaces a-Physicochem. Eng. Aspects – volume: 7 start-page: 21287 year: 2017 end-page: 21297 ident: b0320 article-title: Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation publication-title: Rsc Adv. – volume: 549 start-page: 82 year: 2018 end-page: 92 ident: b0285 article-title: Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution publication-title: Appl. Catal. A – volume: 15 start-page: 9694 year: 2013 end-page: 9703 ident: b0245 article-title: Direct synthesis and mechanism of the formation of mixed metal Fe2Ni-MIL-88B publication-title: Crystengcomm – volume: 330 start-page: 157 year: 2017 end-page: 165 ident: b0175 article-title: Integrated adsorption and visible-light photodegradation of aqueous clofibric acid and carbamazepine by a Fe-based metal-organic framework publication-title: Chem. Eng. J. – volume: 338 start-page: 137 year: 2018 end-page: 146 ident: b0010 article-title: Promoting visible-light-induced photocatalytic degradation of tetracycline by an efficient and stable beta-Bi2O3@g-C3N4 core/shell nanocomposite publication-title: Chem. Eng. J. – volume: 305 start-page: 229 year: 2016 end-page: 239 ident: b0300 article-title: Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate publication-title: J. Hazard. Mater. – volume: 332 start-page: 757 year: 2018 end-page: 774 ident: b0050 article-title: Photoconductive network structured copper oxide for simultaneous photoelectrocatalytic degradation of antibiotic (tetracycline) and bacteria (E. coli) publication-title: Chem. Eng. J. – volume: 349 start-page: 897 year: 2015 end-page: 903 ident: b0260 article-title: Hierarchically porous NiAl-LDH nanoparticles as highly efficient adsorbent for p-nitrophenol from water publication-title: Appl. Surf. Sci. – volume: 284 start-page: 582 year: 2016 end-page: 598 ident: b0075 article-title: Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review publication-title: Chem. Eng. J. – volume: 284 start-page: 67 year: 2017 end-page: 76 ident: b0105 article-title: Ternary Ag/AgCl-(BiO)(2)CO3 composites as high-performance visible-light plasmonic photocatalysts publication-title: Catal. Today – volume: 333 start-page: 423 year: 2018 end-page: 433 ident: b0315 article-title: Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater publication-title: Chem. Eng. J. – volume: 706 start-page: 208 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0125 article-title: The formation of a direct Z-scheme Bi2O3 /MoO3 composite nanocatalyst with improved photocatalytic activity under visible light publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2018.06.006 – volume: 549 start-page: 82 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0285 article-title: Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2017.09.021 – volume: 6 start-page: 82977 year: 2016 ident: 10.1016/j.cej.2019.03.108_b0150 article-title: Nontoxic and renewable metal-organic framework based on alpha-cyclodextrin with efficient drug delivery publication-title: Rsc Adv. doi: 10.1039/C6RA16549D – volume: 777 start-page: 109 year: 2019 ident: 10.1016/j.cej.2019.03.108_b0095 article-title: MOF-derived C-doped ZnO composites for enhanced photocatalytic performance under visible light publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.10.383 – volume: 42 start-page: 81 year: 2015 ident: 10.1016/j.cej.2019.03.108_b0040 article-title: Ion-exchange modification of TiO_2 nanotubes and visible-light-driven photocatalytic degradation of tetracycline publication-title: J. Beijing Univ. Chem. Technol. Nat. Sci. Edition – volume: 352 start-page: 351 year: 2017 ident: 10.1016/j.cej.2019.03.108_b0100 article-title: Steering the interlayer energy barrier and charge flow via bioriented transportation channels in g-C3N4: enhanced photocatalysis and reaction mechanism publication-title: J. Catal. doi: 10.1016/j.jcat.2017.05.017 – volume: 212 start-page: 523 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0145 article-title: Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.08.117 – volume: 298 start-page: 225 year: 2016 ident: 10.1016/j.cej.2019.03.108_b0065 article-title: Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.04.028 – volume: 233 start-page: 168 year: 2013 ident: 10.1016/j.cej.2019.03.108_b0215 article-title: Different surfactants-assisted hydrothermal synthesis of hierarchical gamma-Al2O3 and its adsorption performances for parachlorophenol publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.08.029 – volume: 430 start-page: 549 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0170 article-title: Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.06.325 – volume: 284 start-page: 67 year: 2017 ident: 10.1016/j.cej.2019.03.108_b0105 article-title: Ternary Ag/AgCl-(BiO)(2)CO3 composites as high-performance visible-light plasmonic photocatalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2016.10.020 – volume: 42 start-page: 263 year: 2002 ident: 10.1016/j.cej.2019.03.108_b0305 article-title: Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria publication-title: Arch. Environ. Con. Tox. doi: 10.1007/s00244-001-0017-2 – volume: 181 start-page: 659 year: 2010 ident: 10.1016/j.cej.2019.03.108_b0045 article-title: Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.05.063 – volume: 51 start-page: 17521 year: 2015 ident: 10.1016/j.cej.2019.03.108_b0160 article-title: A luminescent dye@MOF as a dual-emitting platform for sensing explosives publication-title: Chem. Commun. doi: 10.1039/C5CC07004J – volume: 133 start-page: 17839 year: 2011 ident: 10.1016/j.cej.2019.03.108_b0240 article-title: How Linker's Modification Controls Swelling Properties of Highly Flexible Iron(III) Dicarboxylates MIL-88 publication-title: JACS doi: 10.1021/ja206936e – volume: 54 start-page: 3294 year: 2019 ident: 10.1016/j.cej.2019.03.108_b0115 article-title: Facile fabrication of multi-walled carbon nanotubes (MWCNTs)/alpha-Bi2O3 nanosheets composite with enhanced photocatalytic activity for doxycycline degradation under visible light irradiation publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-3090-x – volume: 332 start-page: 757 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0050 article-title: Photoconductive network structured copper oxide for simultaneous photoelectrocatalytic degradation of antibiotic (tetracycline) and bacteria (E. coli) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.117 – volume: 356 start-page: 465 year: 2011 ident: 10.1016/j.cej.2019.03.108_b0275 article-title: WO3/BiOCl, a novel heterojunction as visible light photocatalyst publication-title: J. Colloid. Interf. Sci. doi: 10.1016/j.jcis.2011.01.015 – volume: 209 start-page: 637 year: 2017 ident: 10.1016/j.cej.2019.03.108_b0330 article-title: Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro-Fenton process with solid catalyst chalcopyrite publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.03.034 – volume: 229 start-page: 96 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0310 article-title: Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.02.011 – volume: 6 start-page: 4101 year: 2016 ident: 10.1016/j.cej.2019.03.108_b0060 article-title: Degradation of tetracycline hydrochloride by heterogeneous Fenton-like reaction using Fe@Bacillus subtilis publication-title: Rsc Adv. doi: 10.1039/C5RA24155C – volume: 563 start-page: 102 year: 2019 ident: 10.1016/j.cej.2019.03.108_b0265 article-title: Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr(VI) by a mild one-step hydrothermal method from peanut hull publication-title: Colloids Surfaces a-Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2018.11.062 – volume: 211 start-page: 153 year: 2012 ident: 10.1016/j.cej.2019.03.108_b0220 article-title: Glycine-assisted hydrothermal synthesis and adsorption properties of crosslinked porous alpha-Fe2O3 nanomaterials for p-nitrophenol publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.09.027 – volume: 494 start-page: 32 year: 2017 ident: 10.1016/j.cej.2019.03.108_b0205 article-title: In-situ ethylenediamine-assisted synthesis of a magnetic iron-based metal -organic framework MIL-53(Fe) for visible light photocatalysis publication-title: J. Colloid. Interf. Sci. doi: 10.1016/j.jcis.2017.01.060 – volume: 379 start-page: 102 year: 2011 ident: 10.1016/j.cej.2019.03.108_b0255 article-title: Facile fabrication of mesoporous MgO microspheres and their enhanced adsorption performance for phosphate from aqueous solutions publication-title: Colloids Surfaces a-Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2010.11.050 – volume: 43 start-page: 5468 year: 2014 ident: 10.1016/j.cej.2019.03.108_b0140 article-title: Metal-organic framework composites publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60472A – volume: 43 start-page: 3792 year: 2014 ident: 10.1016/j.cej.2019.03.108_b0190 article-title: Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye publication-title: Dalton Trans. doi: 10.1039/C3DT52574K – volume: 307 start-page: 15 year: 2017 ident: 10.1016/j.cej.2019.03.108_b0325 article-title: Aqueous tetracycline degradation by H2O2 alone: Removal and transformation pathway publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.046 – volume: 333 start-page: 423 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0315 article-title: Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.022 – volume: 21 start-page: 19353 year: 2011 ident: 10.1016/j.cej.2019.03.108_b0225 article-title: Hierarchically porous calcined lithium/aluminum layered double hydroxides: facile synthesis and enhanced adsorption towards fluoride in water publication-title: J. Mater. Chem. doi: 10.1039/c1jm13645c – volume: 29 start-page: 14906 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0120 article-title: In situ facile fabrication of Z-scheme leaf-like beta-Bi2O3/g-C3N4 nanosheets composites with enhanced visible light photoactivity publication-title: J. Mater. Sci.-Mater. Electronics doi: 10.1007/s10854-018-9629-4 – volume: 96 start-page: 290 year: 2010 ident: 10.1016/j.cej.2019.03.108_b0130 article-title: Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e(-) transfer mechanisms publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2010.02.013 – volume: 7 start-page: 21287 year: 2017 ident: 10.1016/j.cej.2019.03.108_b0320 article-title: Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation publication-title: Rsc Adv. doi: 10.1039/C6RA28224E – volume: 330 start-page: 157 year: 2017 ident: 10.1016/j.cej.2019.03.108_b0175 article-title: Integrated adsorption and visible-light photodegradation of aqueous clofibric acid and carbamazepine by a Fe-based metal-organic framework publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.06.139 – volume: 338 start-page: 137 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0010 article-title: Promoting visible-light-induced photocatalytic degradation of tetracycline by an efficient and stable beta-Bi2O3@g-C3N4 core/shell nanocomposite publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.108 – volume: 349 start-page: 897 year: 2015 ident: 10.1016/j.cej.2019.03.108_b0260 article-title: Hierarchically porous NiAl-LDH nanoparticles as highly efficient adsorbent for p-nitrophenol from water publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.05.041 – volume: 90 start-page: 112 year: 2019 ident: 10.1016/j.cej.2019.03.108_b0110 article-title: Enhancement of adsorption and visible light photocatalytic activity of the Zn-2(+)-doped BiOBr/PVP modified microspheres for RhB publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2018.10.012 – volume: 4 start-page: 2721 year: 2011 ident: 10.1016/j.cej.2019.03.108_b0155 article-title: The current status of hydrogen storage in metal-organic frameworks-updated publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01240a – volume: 331 start-page: 242 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0005 article-title: Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.08.114 – volume: 5 start-page: 32520 year: 2015 ident: 10.1016/j.cej.2019.03.108_b0200 article-title: Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water publication-title: Rsc Adv. doi: 10.1039/C5RA01447F – volume: 333 start-page: 122 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0090 article-title: Degradation of phenanthrene in aqueous solution by a persulfate/percarbonate system activated with CA chelated-Fe(II) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.158 – volume: 221 start-page: 119 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0180 article-title: Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.09.020 – volume: 73 start-page: 118 year: 2015 ident: 10.1016/j.cej.2019.03.108_b0030 article-title: Large-scale enzymatic membrane reactors for tetracycline degradation in WWTP effluents publication-title: Water Res. doi: 10.1016/j.watres.2015.01.012 – volume: 6 start-page: 35216 year: 2016 ident: 10.1016/j.cej.2019.03.108_b0335 article-title: Heterogeneous degradation of tetracycline by magnetic Ag/AgCl/modified zeolite X-persulfate system under visible light publication-title: Rsc Adv. doi: 10.1039/C6RA00695G – volume: 112 start-page: 869 year: 2012 ident: 10.1016/j.cej.2019.03.108_b0165 article-title: Metal-Organic Frameworks for Separations publication-title: Chem. Rev. doi: 10.1021/cr200190s – volume: 98 start-page: 10 year: 2010 ident: 10.1016/j.cej.2019.03.108_b0290 article-title: Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2010.05.004 – volume: 5 start-page: 90255 year: 2015 ident: 10.1016/j.cej.2019.03.108_b0055 article-title: Microwave-assisted synthesis of monoclinic-tetragonal BiVO4 heterojunctions with enhanced visible-light-driven photocatalytic degradation of tetracycline publication-title: Rsc Adv. doi: 10.1039/C5RA13684A – volume: 137 start-page: 324 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0015 article-title: Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode publication-title: Water Res. doi: 10.1016/j.watres.2018.03.030 – volume: 52 start-page: 7032 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0280 article-title: Identifying the Nonradical Mechanism in the Peroxymonosulfate Activation Process: Singlet Oxygenation Versus Mediated Electron Transfer publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00959 – volume: 322 start-page: 525 year: 2017 ident: 10.1016/j.cej.2019.03.108_b0025 article-title: Degradation of tetracycline by immobilized laccase and the proposed transformation pathway publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.10.019 – volume: 7 start-page: 1129 year: 2017 ident: 10.1016/j.cej.2019.03.108_b0230 article-title: Activation performance and mechanism of a novel heterogeneous persulfate catalyst: metal-organic frameworkMIL-53(Fe) with Fe-II/Fe-III mixed-valence coordinatively unsaturated iron center publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY02355J – volume: 151 start-page: 178 year: 2016 ident: 10.1016/j.cej.2019.03.108_b0080 article-title: Activated persulfate for organic chemical degradation: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.02.055 – volume: 204 start-page: 537 year: 2017 ident: 10.1016/j.cej.2019.03.108_b0135 article-title: Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.12.001 – volume: 49 start-page: 1043 year: 2015 ident: 10.1016/j.cej.2019.03.108_b0085 article-title: Activation of Persulfate by Irradiated Magnetite: Implications for the Degradation of Phenol under Heterogeneous Photo-Fenton-Like Conditions publication-title: Environ. Sci. Technol. doi: 10.1021/es503741d – volume: 314 start-page: 59 year: 2017 ident: 10.1016/j.cej.2019.03.108_b0035 article-title: Aqueous tetracycline degradation by coal-based carbon electrocatalytic filtration membrane: effect of nano antimony-doped tin dioxide coating publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.093 – volume: 519 start-page: 273 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0020 article-title: Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs publication-title: J. Colloid. Interf. Sci. doi: 10.1016/j.jcis.2018.02.067 – volume: 53 start-page: 3149 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0210 article-title: Photodegradation pathway of rhodamine B with novel Au nanorods @ ZnO microspheres driven by visible light irradiation publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1779-x – volume: 15 start-page: 9694 year: 2013 ident: 10.1016/j.cej.2019.03.108_b0245 article-title: Direct synthesis and mechanism of the formation of mixed metal Fe2Ni-MIL-88B publication-title: Crystengcomm doi: 10.1039/c3ce41453a – volume: 777 start-page: 1304 year: 2019 ident: 10.1016/j.cej.2019.03.108_b0270 article-title: CTAB-functionalized C@SiO2 double-shelled hollow microspheres with enhanced and selective adsorption performance for Cr(VI) publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.11.070 – volume: 305 start-page: 229 year: 2016 ident: 10.1016/j.cej.2019.03.108_b0300 article-title: Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.11.043 – volume: 202 start-page: 165 year: 2017 ident: 10.1016/j.cej.2019.03.108_b0185 article-title: Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.09.005 – volume: 284 start-page: 582 year: 2016 ident: 10.1016/j.cej.2019.03.108_b0075 article-title: Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.09.001 – volume: 202 start-page: 661 year: 2018 ident: 10.1016/j.cej.2019.03.108_b0295 article-title: Degradation of tetracycline in a schorl/H2O2 system: Proposed mechanism and intermediates publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.03.116 – volume: 179 start-page: 500 year: 2015 ident: 10.1016/j.cej.2019.03.108_b0235 article-title: Organic-acid-directed assembly of iron-carbon oxides nanoparticles on coordinatively unsaturated metal sites of MIL-101 for green photochemical oxidation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2015.06.001 – volume: 48 start-page: 2344 year: 2014 ident: 10.1016/j.cej.2019.03.108_b0070 article-title: Comparison of Halide Impacts on the Efficiency of Contaminant Degradation by Sulfate and Hydroxyl Radical-Based Advanced Oxidation Processes (AOPs) publication-title: Environ. Sci. Technol. doi: 10.1021/es404118q – volume: 6 start-page: 112502 year: 2016 ident: 10.1016/j.cej.2019.03.108_b0195 article-title: Metal-organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of Orange G through persulfate activation publication-title: Rsc Adv. doi: 10.1039/C6RA24429G – volume: 42 start-page: 550 year: 2013 ident: 10.1016/j.cej.2019.03.108_b0250 article-title: Synthesis and engineering porosity of a mixed metal Fe2Ni MIL-88B metal-organic framework publication-title: Dalton Trans. doi: 10.1039/C2DT32073H |
| SSID | ssj0006919 |
| Score | 2.699575 |
| Snippet | •Heterogeneous AOP and photocatalysis were coupled for efficient degradation of TC.•The introduction of PS effectively suppressed the recombination of charge... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 745 |
| SubjectTerms | Advanced oxidation processes (AOPs) Degradation pathway MIL-88A Photocatalyst Tetracycline hydrochloride (TC-HCl) |
| Title | Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and degradation pathway |
| URI | https://dx.doi.org/10.1016/j.cej.2019.03.108 |
| Volume | 369 |
| WOSCitedRecordID | wos000463344800073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3212 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006919 issn: 1385-8947 databaseCode: AIEXJ dateStart: 19970115 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWLgeQQDzF8pIPnFhl1cR5ONxW1VaAlgWpiyinyHFcNVWVVCXdbflv_DdmbMdNWUCAxKWqLNuJNF88XyYz3xDyIoVDUaaKezGXEy8EBuuJvvK9pBCBAPcb-EKLuJ4mZ2d8PE4_7F271dbCXMyTquLrdbr4r6aGMTA2ls7-hbndpjAA_8Ho8Atmh98_MvygXi3mNpd5iskuNUxVmOnqvvfX69K0UjpcmDoBZZSaF9O6qXVAR-uUoJqIVpjAfIECVSUKRzAb1SyF3EjNUqebAjtvYTJfoZDQDpWH7rE4fPd-qHPuRhusMdSi0DaFRF-wuyn2Rr4UO1-ZnZqB2qomOq0L7EUiMKfIxGRHl2Xz1ZQu2zBHGnfCHC4w_rn11XqwXmkYlyIv3VMysAUr4-3QJ7v4dFV3wyRYmcW7YZKr9Tv6uGc88nhqND-PlBnjCfNY4O_4CGb6ydhTPjEKmJYwJEZh-4ovMmGR2ZFUM0wh1GK6fp9vHa9LhxzhfeBtAJsG_ow6DPtBEqW8R_aP35yM3zpuEae6VY277_Y7vc5Y_OFCP2daHfZ0fofctq899NjA9S7ZU9U9crMjhnmffGuBS-sJ3QEubYFLHXCpAy4Fg9Nd4NKyog64tIMx3LkLXLoDXJpvaAtcisB9RTuwpQa2-nLdLS1sH5CPw5PzwWvPNhfxJLitxhN-ERfg7mQQiEnKmPJlFItowpMgUuCU4JiSeQ7vI4EKpYoVC-Och4FkAt7wRR6zh6RX1ZV6RKgPPFPAXCYCcIlhzJXE6UlecKkSvzgg_dYQmbTK-9gAZp61KZazDGyXoe2yPkPN3gPy0i1ZGNmZ300OW-tmljcbPpwBFH-97PG_LXtCbmyfr6ek1yxX6hm5Li-a8svyuQXsd_ut7zM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+of+heterogeneous+advanced+oxidation+processes+and+photocatalysis+in+efficient+degradation+of+tetracycline+hydrochloride+by+Fe-based+MOFs%3A+Synergistic+effect+and+degradation+pathway&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhang%2C+Ying&rft.au=Zhou%2C+Jiabin&rft.au=Chen%2C+Xin&rft.au=Wang%2C+Luo&rft.date=2019-08-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=369&rft.spage=745&rft.epage=757&rft_id=info:doi/10.1016%2Fj.cej.2019.03.108&rft.externalDocID=S1385894719305741 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |