Extending Brickell–Davenport theorem to non-perfect secret sharing schemes
One important result in secret sharing is the Brickell–Davenport theorem: every ideal perfect secret sharing scheme defines a matroid that is uniquely determined by the access structure. We present a generalization of the Brickell–Davenport theorem to the general case, in which non-perfect schemes a...
Uloženo v:
| Vydáno v: | Designs, codes, and cryptography Ročník 74; číslo 2; s. 495 - 510 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.02.2015
|
| Témata: | |
| ISSN: | 0925-1022, 1573-7586 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | One important result in secret sharing is the Brickell–Davenport theorem: every ideal perfect secret sharing scheme defines a matroid that is uniquely determined by the access structure. We present a generalization of the Brickell–Davenport theorem to the general case, in which non-perfect schemes are also considered. After analyzing that result under a new point of view and identifying its combinatorial nature, we present a characterization of the (not necessarily perfect) secret sharing schemes that are associated with matroids. Some optimality properties of such schemes are discussed. |
|---|---|
| ISSN: | 0925-1022 1573-7586 |
| DOI: | 10.1007/s10623-013-9858-8 |