Intrusion detection in cyber-physical systems using a generic and domain specific deep autoencoder model

The rapid growth of network-related services in the last decade has produced a huge amount of sensitive data on the internet. But networks are very much prone to intrusions where unauthorized users attempt to access sensitive information and even disrupt the system. Building a competent network intr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & electrical engineering Jg. 91; S. 107044
Hauptverfasser: Thakur, Soumyadeep, Chakraborty, Anuran, De, Rajonya, Kumar, Neeraj, Sarkar, Ram
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier Ltd 01.05.2021
Elsevier BV
Schlagworte:
ISSN:0045-7906, 1879-0755
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The rapid growth of network-related services in the last decade has produced a huge amount of sensitive data on the internet. But networks are very much prone to intrusions where unauthorized users attempt to access sensitive information and even disrupt the system. Building a competent network intrusion detection system (IDS) is necessary to prevent such attacks. IDSs generally use machine learning algorithms for classifying the attacks. But the features used for classification are not always suitable or sufficient. Besides, the number of intrusions is much less than the number of non-intrusions. Hence naive approaches may fail to provide acceptable performance due to this class imbalance. To counter this problem, in this paper, we propose a model that extracts useful features from the given features and then uses a deep learning algorithm to classify the intrusions. It is to be noted that underlying data points cannot be thought of as sampled from the same distribution, rather from two different distributions - one generic to all network intrusions, and the other specific to the domain. Keeping this fact in mind, we propose a unique Generic-Specific autoencoder architecture where the generic one learns the features that are common across all forms of network intrusions, and the specific ones learn features that are pertaining only to that domain. The model has been evaluated on the CICIDS2017 dataset, which is the largest dataset of this type available online, and we have set new benchmark results on this dataset. Source code of this work is available at: https://github.com/SoumyadeepThakur/Intrusion-AE
AbstractList The rapid growth of network-related services in the last decade has produced a huge amount of sensitive data on the internet. But networks are very much prone to intrusions where unauthorized users attempt to access sensitive information and even disrupt the system. Building a competent network intrusion detection system (IDS) is necessary to prevent such attacks. IDSs generally use machine learning algorithms for classifying the attacks. But the features used for classification are not always suitable or sufficient. Besides, the number of intrusions is much less than the number of non-intrusions. Hence naive approaches may fail to provide acceptable performance due to this class imbalance. To counter this problem, in this paper, we propose a model that extracts useful features from the given features and then uses a deep learning algorithm to classify the intrusions. It is to be noted that underlying data points cannot be thought of as sampled from the same distribution, rather from two different distributions - one generic to all network intrusions, and the other specific to the domain. Keeping this fact in mind, we propose a unique Generic-Specific autoencoder architecture where the generic one learns the features that are common across all forms of network intrusions, and the specific ones learn features that are pertaining only to that domain. The model has been evaluated on the CICIDS2017 dataset, which is the largest dataset of this type available online, and we have set new benchmark results on this dataset. Source code of this work is available at: https://github.com/SoumyadeepThakur/Intrusion-AE
ArticleNumber 107044
Author Kumar, Neeraj
Sarkar, Ram
Thakur, Soumyadeep
De, Rajonya
Chakraborty, Anuran
Author_xml – sequence: 1
  givenname: Soumyadeep
  surname: Thakur
  fullname: Thakur, Soumyadeep
  email: sthakur@cse.iitb.ac.in
  organization: Department of Computer Science and Engineering, Indian Institute of Technology, Powai, Mumbai 400076, India
– sequence: 2
  givenname: Anuran
  surname: Chakraborty
  fullname: Chakraborty, Anuran
  organization: Department of Computer Science and Engineering, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata 700032, India
– sequence: 3
  givenname: Rajonya
  surname: De
  fullname: De, Rajonya
  organization: Department of Computer Science and Engineering, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata 700032, India
– sequence: 4
  givenname: Neeraj
  surname: Kumar
  fullname: Kumar, Neeraj
  email: neeraj.kumar@thapar.edu
  organization: Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology (Deemed University), Patiala, Punjab, India
– sequence: 5
  givenname: Ram
  surname: Sarkar
  fullname: Sarkar, Ram
  organization: Department of Computer Science and Engineering, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata 700032, India
BookMark eNqNkV9rIyEUxWXJQpNuv4PLPk9WZxz_PJUS2m6h0Jf2WYzeSQ0zOlVTyLevIftQ-tQX9R7OORd-rtAixAAI_aZkTQnlf_drG6cZRrAQduuWtLTqgjD2Ay2pFKohou8XaEkI6xuhCL9Aq5z3pM6cyiV6fQglHbKPATsoYMvp5QO2xy2kZn49Zm_NiPMxF5gyrs6wwwbvIEDyFpvgsIuTqYk8g_VD1RzAjM2hRAg2Okh4quf4C_0czJjh6v99iV7ubp83_5rHp_uHzc1jYxkhpZHQKXCcgeFOCrO1TDInaDsoGBRjarBb7qDjVrUKOtPaoRfblhPJlRNyMN0l-nPunVN8O0Aueh8PKdSVuu072SkpqagudXbZFHNOMOg5-cmko6ZEn8Dqvf4EVp_A6jPYmr3-krW-mBO4kowfv9WwOTdABfHuIelsfaUFzqf6BdpF_42WD_CfoPo
CitedBy_id crossref_primary_10_1007_s10586_022_03614_2
crossref_primary_10_1002_ett_4561
crossref_primary_10_3390_app12146875
crossref_primary_10_1109_ACCESS_2023_3332213
crossref_primary_10_3389_fenvs_2022_974291
crossref_primary_10_1080_1206212X_2023_2275084
crossref_primary_10_1007_s11042_021_11271_7
crossref_primary_10_1016_j_jss_2023_111633
crossref_primary_10_1186_s40537_021_00544_5
crossref_primary_10_1155_2022_9169266
crossref_primary_10_1002_ett_5029
crossref_primary_10_3390_fi16060200
crossref_primary_10_1016_j_jfranklin_2024_106774
crossref_primary_10_1002_acs_3855
crossref_primary_10_1007_s10207_024_00896_y
crossref_primary_10_1002_cpe_7134
crossref_primary_10_1002_cpe_7552
crossref_primary_10_1016_j_cose_2023_103210
crossref_primary_10_48084_etasr_11034
crossref_primary_10_1002_cjce_70021
crossref_primary_10_48084_etasr_11113
crossref_primary_10_1080_23742917_2024_2430037
crossref_primary_10_3390_electronics12153283
crossref_primary_10_1016_j_eswa_2022_118476
crossref_primary_10_1016_j_cose_2024_104169
crossref_primary_10_1155_2022_2076987
crossref_primary_10_1016_j_compeleceng_2022_108232
crossref_primary_10_1016_j_compeleceng_2024_109863
crossref_primary_10_1109_ACCESS_2021_3097247
crossref_primary_10_1016_j_eij_2024_100600
crossref_primary_10_3233_JIFS_236400
crossref_primary_10_1016_j_compeleceng_2023_108676
crossref_primary_10_1007_s10586_024_04288_8
crossref_primary_10_1016_j_compeleceng_2022_108156
crossref_primary_10_1016_j_measurement_2021_110145
crossref_primary_10_1155_2022_8030510
crossref_primary_10_1007_s11571_022_09780_8
crossref_primary_10_3390_jsan12010003
Cites_doi 10.1016/j.asoc.2018.07.052
10.1145/1961189.1961199
10.1109/DCOSS.2019.00059
10.1007/s10618-009-0131-8
10.4108/eai.3-12-2015.2262516
10.1016/j.eswa.2017.08.002
10.23919/ICACT.2018.8323687
10.1109/ICCSN.2016.7586590
10.1016/j.jnca.2004.01.003
10.1109/WINCOM.2016.7777224
10.14722/ndss.2018.23204
10.1016/j.eswa.2009.05.029
10.13052/jsn2445-9739.2017.009
10.1109/TETCI.2017.2772792
10.1007/s00521-015-1964-2
10.1109/JSYST.2013.2257594
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV May 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV May 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compeleceng.2021.107044
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
ExternalDocumentID 10_1016_j_compeleceng_2021_107044
S0045790621000628
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7SC
7SP
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c400t-8e39ed64ea6d87abc484d712f9ef9449fcb6de36c929e3a2cf57b260869d78fa3
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000691871700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7906
IngestDate Fri Jul 25 07:47:07 EDT 2025
Tue Nov 18 22:16:23 EST 2025
Sat Nov 29 07:30:42 EST 2025
Sun Apr 06 06:54:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
CICIDS2017 dataset
Autoencoder
Class imbalance
Network intrusion
Intrusion detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-8e39ed64ea6d87abc484d712f9ef9449fcb6de36c929e3a2cf57b260869d78fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1016/j.compeleceng.2021.107044
PQID 2538398817
PQPubID 2045266
ParticipantIDs proquest_journals_2538398817
crossref_primary_10_1016_j_compeleceng_2021_107044
crossref_citationtrail_10_1016_j_compeleceng_2021_107044
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2021_107044
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & electrical engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References F. Farahnakian and J. Heikkonen, “A deep auto-encoder based approach for intrusion detection system,” 2018, doi: 10.23919/ICACT.2018.8323688.
Aksu, Aydin (bib0025) 2019
Tsai, Hsu, Lin, Lin (bib0016) 2009; 36
Hühn, Hüllermeier (bib0022) 2009; 19
Panda, Patra (bib0015) 2007
Ustebay, Turgut, Aydin (bib0017) 2019
Mukkamala, Sung, Abraham (bib0006) 2005; 28
A. Ahmim, L. Maglaras, M. A. Ferrag, M. Derdour, and H. Janicke, “A novel hierarchical intrusion detection system based on decision tree and rules-based models,” 2019, pp. 228–233, doi: 10.1109/dcoss.2019.00059.
Aksu, Üstebay, Aydin, Atmaca (bib0023) 2018; 935
B. Dong and X. Wang, “Comparison deep learning method to traditional methods using for network intrusion detection,” 2016, doi: 10.1109/ICCSN.2016.7586590.
Chang, Lin (bib0021) 2011; 2
De Gregorio, Giordano (bib0019) Nov. 2018; 72
Jiang (bib0024) 2018
Han, Xie, Chen, Ling (bib0001) 2014; 8
Aslahi-Shahri (bib0004) 2016
Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: an ensemble of autoencoders for online network intrusion detection,” 2018, doi: 10.14722/ndss.2018.23204.
Sharafaldin, Gharib, Lashkari, Ghorbani (bib0003) 2017; 2017
Shone, Ngoc, Phai, Shi (bib0002) 2018; 2
Adnan, Islam (bib0020) 2017; 89
Gupta, Bhatt, Gupta, Kayode, Tosun (bib0010) 2020
McDole, Abdelsalam, Gupta, Mittal (bib0008) 2020; 2020
Gupta, Benson, Patwa, Sandhu (bib0009) 2020
Sun, Ye, Yan, Su, Wang (bib0005) 2018
Q. Niyaz, W. Sun, A. Y. Javaid, and M. Alam, “A deep learning approach for network intrusion detection system,” 2015, doi: 10.4108/eai.3-12-2015.2262516.
T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep learning approach for network intrusion detection in software defined networking,” 2016, doi: 10.1109/WINCOM.2016.7777224.
Sharafaldin (10.1016/j.compeleceng.2021.107044_bib0003) 2017; 2017
Aksu (10.1016/j.compeleceng.2021.107044_bib0025) 2019
Gupta (10.1016/j.compeleceng.2021.107044_bib0010) 2020
Gupta (10.1016/j.compeleceng.2021.107044_bib0009) 2020
Panda (10.1016/j.compeleceng.2021.107044_bib0015) 2007
Aslahi-Shahri (10.1016/j.compeleceng.2021.107044_bib0004) 2016
10.1016/j.compeleceng.2021.107044_bib0007
McDole (10.1016/j.compeleceng.2021.107044_bib0008) 2020; 2020
Mukkamala (10.1016/j.compeleceng.2021.107044_bib0006) 2005; 28
Ustebay (10.1016/j.compeleceng.2021.107044_bib0017) 2019
Aksu (10.1016/j.compeleceng.2021.107044_bib0023) 2018; 935
Han (10.1016/j.compeleceng.2021.107044_bib0001) 2014; 8
Adnan (10.1016/j.compeleceng.2021.107044_bib0020) 2017; 89
Hühn (10.1016/j.compeleceng.2021.107044_bib0022) 2009; 19
Tsai (10.1016/j.compeleceng.2021.107044_bib0016) 2009; 36
Sun (10.1016/j.compeleceng.2021.107044_bib0005) 2018
10.1016/j.compeleceng.2021.107044_bib0018
10.1016/j.compeleceng.2021.107044_bib0012
De Gregorio (10.1016/j.compeleceng.2021.107044_bib0019) 2018; 72
10.1016/j.compeleceng.2021.107044_bib0013
Jiang (10.1016/j.compeleceng.2021.107044_bib0024) 2018
Chang (10.1016/j.compeleceng.2021.107044_bib0021) 2011; 2
10.1016/j.compeleceng.2021.107044_bib0011
Shone (10.1016/j.compeleceng.2021.107044_bib0002) 2018; 2
10.1016/j.compeleceng.2021.107044_bib0014
References_xml – reference: Q. Niyaz, W. Sun, A. Y. Javaid, and M. Alam, “A deep learning approach for network intrusion detection system,” 2015, doi: 10.4108/eai.3-12-2015.2262516.
– volume: 36
  start-page: 11994
  year: 2009
  end-page: 12000
  ident: bib0016
  article-title: Intrusion detection by machine learning: a review
  publication-title: Expert Syst Appl
– reference: T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep learning approach for network intrusion detection in software defined networking,” 2016, doi: 10.1109/WINCOM.2016.7777224.
– volume: 2
  year: 2011
  ident: bib0021
  article-title: LIBSVM: A Library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
– start-page: 1565
  year: 2018
  end-page: 1569
  ident: bib0024
  article-title: ALDD: A Hybrid Traffic-User Behavior Detection Method for Application Layer DDoS
  publication-title: Proceedings of the 17th ieee international conference on trust, security and privacy in computing and communications and 12th IEEE international conference on big data science and engineering, trustcom/BigDataSE
– start-page: 198
  year: 2020
  end-page: 208
  ident: bib0010
  article-title: Access Control Model for Google Cloud IoT
  publication-title: Proceedings of the IEEE 6th Internationl conference on big data security on cloud (BigDataSecurity), IEEE internationl conference on high performance and smart computing, (HPSC) and IEEE internationl conference on intelligent data and security (IDS)
– reference: Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: an ensemble of autoencoders for online network intrusion detection,” 2018, doi: 10.14722/ndss.2018.23204.
– year: 2007
  ident: bib0015
  article-title: Network intrusion detection using naïve bayes
  publication-title: IJCSNS Int J Comput Sci Netw Secur
– volume: 2020
  start-page: 64
  year: 2020
  end-page: 79
  ident: bib0008
  article-title: Analyzing CNN based behavioural malware detection techniques on cloud IaaS
  publication-title: Cloud Comput CLOUD
– reference: A. Ahmim, L. Maglaras, M. A. Ferrag, M. Derdour, and H. Janicke, “A novel hierarchical intrusion detection system based on decision tree and rules-based models,” 2019, pp. 228–233, doi: 10.1109/dcoss.2019.00059.
– start-page: 1
  year: 2020
  ident: bib0009
  article-title: Secure V2V and V2I communication in intelligent transportation using cloudlets
  publication-title: IEEE Trans Serv Comput
– start-page: 77
  year: 2019
  end-page: 80
  ident: bib0025
  article-title: Detecting port scan attempts with comparative analysis of deep learning and support vector machine algorithms
  publication-title: Proceedings of the international congress on big data, deep learning and fighting cyber terrorism, IBIGDELFT
– start-page: 41
  year: 2018
  end-page: 46
  ident: bib0005
  article-title: Wrapper feature selection based on lightning attachment procedure optimization and support vector machine for intrusion detection
  publication-title: Proceedings of the IEEE 4th international symposium on wireless systems within the international conferences on intelligent data acquisition and advanced computing systems, IDAACS-SWS
– volume: 19
  start-page: 293
  year: 2009
  end-page: 319
  ident: bib0022
  article-title: FURIA: An algorithm for unordered fuzzy rule induction
  publication-title: Data Min Knowl Discov
– reference: B. Dong and X. Wang, “Comparison deep learning method to traditional methods using for network intrusion detection,” 2016, doi: 10.1109/ICCSN.2016.7586590.
– reference: F. Farahnakian and J. Heikkonen, “A deep auto-encoder based approach for intrusion detection system,” 2018, doi: 10.23919/ICACT.2018.8323688.
– volume: 935
  start-page: 141
  year: 2018
  end-page: 149
  ident: bib0023
  article-title: Intrusion detection with comparative analysis of supervised learning techniques and fisher score feature selection algorithm
  publication-title: Commun Comput Inf Sci
– volume: 2017
  start-page: 177
  year: 2017
  end-page: 200
  ident: bib0003
  article-title: Towards a reliable intrusion detection benchmark dataset
  publication-title: Softw Netw
– volume: 89
  start-page: 389
  year: 2017
  end-page: 403
  ident: bib0020
  article-title: Forest PA: Constructing a decision forest by penalizing attributes used in previous trees
  publication-title: Expert Syst Appl
– volume: 2
  start-page: 41
  year: 2018
  end-page: 50
  ident: bib0002
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Trans Emerg Top Comput Intell
– volume: 28
  start-page: 167
  year: 2005
  end-page: 182
  ident: bib0006
  article-title: Intrusion detection using an ensemble of intelligent paradigms
  publication-title: J Netw Comput Appl
– start-page: 71
  year: 2019
  end-page: 76
  ident: bib0017
  article-title: Intrusion detection system with recursive feature elimination by using random forest and deep learning classifier
  publication-title: Proceedings of the Internati
– volume: 8
  start-page: 1052
  year: 2014
  end-page: 1062
  ident: bib0001
  article-title: Intrusion detection in cyber-physical systems: techniques and challenges
  publication-title: IEEE Syst J
– year: 2016
  ident: bib0004
  article-title: A hybrid method consisting of GA and SVM for intrusion detection system
  publication-title: Neural Comput Appl
– volume: 72
  start-page: 338
  year: Nov. 2018
  end-page: 354
  ident: bib0019
  article-title: An experimental evaluation of weightless neural networks for multi-class classification
  publication-title: Appl Soft Comput J
– volume: 72
  start-page: 338
  year: 2018
  ident: 10.1016/j.compeleceng.2021.107044_bib0019
  article-title: An experimental evaluation of weightless neural networks for multi-class classification
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2018.07.052
– volume: 2
  issue: 3
  year: 2011
  ident: 10.1016/j.compeleceng.2021.107044_bib0021
  article-title: LIBSVM: A Library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– start-page: 41
  year: 2018
  ident: 10.1016/j.compeleceng.2021.107044_bib0005
  article-title: Wrapper feature selection based on lightning attachment procedure optimization and support vector machine for intrusion detection
– ident: 10.1016/j.compeleceng.2021.107044_bib0018
  doi: 10.1109/DCOSS.2019.00059
– volume: 19
  start-page: 293
  issue: 3
  year: 2009
  ident: 10.1016/j.compeleceng.2021.107044_bib0022
  article-title: FURIA: An algorithm for unordered fuzzy rule induction
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-009-0131-8
– ident: 10.1016/j.compeleceng.2021.107044_bib0013
  doi: 10.4108/eai.3-12-2015.2262516
– volume: 89
  start-page: 389
  year: 2017
  ident: 10.1016/j.compeleceng.2021.107044_bib0020
  article-title: Forest PA: Constructing a decision forest by penalizing attributes used in previous trees
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.08.002
– ident: 10.1016/j.compeleceng.2021.107044_bib0011
  doi: 10.23919/ICACT.2018.8323687
– start-page: 71
  year: 2019
  ident: 10.1016/j.compeleceng.2021.107044_bib0017
  article-title: Intrusion detection system with recursive feature elimination by using random forest and deep learning classifier
– ident: 10.1016/j.compeleceng.2021.107044_bib0007
  doi: 10.1109/ICCSN.2016.7586590
– volume: 28
  start-page: 167
  issue: 2
  year: 2005
  ident: 10.1016/j.compeleceng.2021.107044_bib0006
  article-title: Intrusion detection using an ensemble of intelligent paradigms
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2004.01.003
– ident: 10.1016/j.compeleceng.2021.107044_bib0014
  doi: 10.1109/WINCOM.2016.7777224
– start-page: 77
  year: 2019
  ident: 10.1016/j.compeleceng.2021.107044_bib0025
  article-title: Detecting port scan attempts with comparative analysis of deep learning and support vector machine algorithms
– ident: 10.1016/j.compeleceng.2021.107044_bib0012
  doi: 10.14722/ndss.2018.23204
– volume: 935
  start-page: 141
  year: 2018
  ident: 10.1016/j.compeleceng.2021.107044_bib0023
  article-title: Intrusion detection with comparative analysis of supervised learning techniques and fisher score feature selection algorithm
  publication-title: Commun Comput Inf Sci
– volume: 2020
  start-page: 64
  year: 2020
  ident: 10.1016/j.compeleceng.2021.107044_bib0008
  article-title: Analyzing CNN based behavioural malware detection techniques on cloud IaaS
  publication-title: Cloud Comput CLOUD
– start-page: 198
  year: 2020
  ident: 10.1016/j.compeleceng.2021.107044_bib0010
  article-title: Access Control Model for Google Cloud IoT
– volume: 36
  start-page: 11994
  issue: 10
  year: 2009
  ident: 10.1016/j.compeleceng.2021.107044_bib0016
  article-title: Intrusion detection by machine learning: a review
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.05.029
– volume: 2017
  start-page: 177
  issue: 1
  year: 2017
  ident: 10.1016/j.compeleceng.2021.107044_bib0003
  article-title: Towards a reliable intrusion detection benchmark dataset
  publication-title: Softw Netw
  doi: 10.13052/jsn2445-9739.2017.009
– volume: 2
  start-page: 41
  issue: 1
  year: 2018
  ident: 10.1016/j.compeleceng.2021.107044_bib0002
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Trans Emerg Top Comput Intell
  doi: 10.1109/TETCI.2017.2772792
– start-page: 1565
  year: 2018
  ident: 10.1016/j.compeleceng.2021.107044_bib0024
  article-title: ALDD: A Hybrid Traffic-User Behavior Detection Method for Application Layer DDoS
– year: 2007
  ident: 10.1016/j.compeleceng.2021.107044_bib0015
  article-title: Network intrusion detection using naïve bayes
  publication-title: IJCSNS Int J Comput Sci Netw Secur
– year: 2016
  ident: 10.1016/j.compeleceng.2021.107044_bib0004
  article-title: A hybrid method consisting of GA and SVM for intrusion detection system
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1964-2
– volume: 8
  start-page: 1052
  issue: 4
  year: 2014
  ident: 10.1016/j.compeleceng.2021.107044_bib0001
  article-title: Intrusion detection in cyber-physical systems: techniques and challenges
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2013.2257594
– start-page: 1
  year: 2020
  ident: 10.1016/j.compeleceng.2021.107044_bib0009
  article-title: Secure V2V and V2I communication in intelligent transportation using cloudlets
  publication-title: IEEE Trans Serv Comput
SSID ssj0004618
Score 2.4309797
Snippet The rapid growth of network-related services in the last decade has produced a huge amount of sensitive data on the internet. But networks are very much prone...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107044
SubjectTerms Algorithms
Autoencoder
CICIDS2017 dataset
Class imbalance
Classification
Cyber-physical systems
Data points
Datasets
Deep learning
Feature extraction
Intrusion detection
Intrusion detection systems
Machine learning
Network intrusion
Source code
Title Intrusion detection in cyber-physical systems using a generic and domain specific deep autoencoder model
URI https://dx.doi.org/10.1016/j.compeleceng.2021.107044
https://www.proquest.com/docview/2538398817
Volume 91
WOSCitedRecordID wos000691871700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKhxA8IK5iMJCR2NMU1NxqR-JlYq0YqgpCHeqb5diOtrKloZdp_V38Qc6JncsmhsoDL1GV1Inr76t9fHLOdwh5l4AZKk2GHncZelGUcE_GGfNYjxkVxWkWW53ZERuP-XSafO10flW5MJfnLM_51VVS_Feo4RyAjamz_wB3fVM4AZ8BdDgC7HDcCvjjHPMoEFVtVkZVwYxqk5qFV1SwWAXn5cG69BVIrKRcBtWjH13PLyS0wCRMDCSC-5jiQK5XcxS9RO2JsnxO26ytakMsSybZ0jrlY0wjd9iEoMgfa1vta76-2Ei8-40gA9gSbGy05XrRsPeo9L1-k7N5vqkXkzpEfAxPkbO2EyPwm5BB61mrs2u-tyfrCNU0e04p287PnGHOlVX2rSZwW-7LzcD-H9cF66KYIawFDgL8-vfYD7jCelaA8roW9_iLGJ6MRmIymE72w2Hx08NCZfhCfz88sqS5Q3YCFie8S3YOjwfTz610XN8aAK7_98jbJqzwlh7cZhbdMBBKq2fyiDx02xV6aGn2mHRM_oQ8aIlYPiWnNeFoTTh6ltPrhKOOcLQkHJXUEY4C4aglHK0IR5EStEU4WhLuGTkZDiYfP3mufoenYGVYedyEidH9yMi-5kymKuKRZn6QJSZLYFrIVNrXJuwrMNFNKAOVxSyF_TXvJ5rxTIbPSTef5-YFoTJSLI5S-I4OI40vczVspbVMQwUbEB3sEl4Nn1BO3B5rrJyLKopxJlojL3DkhR35XRLUTQur8LJNow8VRsKZqtYEFcC4bZrvVbgKN3UsRQC2R5hw7rOXf7_8itxv_kN7pAsgm9fkrrpcnS0XbxwbfwPlAMY5
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrusion+detection+in+cyber-physical+systems+using+a+generic+and+domain+specific+deep+autoencoder+model&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Thakur%2C+Soumyadeep&rft.au=Chakraborty%2C+Anuran&rft.au=De%2C+Rajonya&rft.au=Kumar%2C+Neeraj&rft.date=2021-05-01&rft.pub=Elsevier+BV&rft.issn=0045-7906&rft.eissn=1879-0755&rft.volume=91&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compeleceng.2021.107044&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon