The Detection of Maize Seedling Quality from UAV Images Based on Deep Learning and Voronoi Diagram Algorithms

Assessing the quality of maize seedlings is crucial for field management and germplasm evaluation. Traditional methods for evaluating seedling quality mainly rely on manual field surveys, which are not only inefficient but also highly subjective, while large-scale satellite detection often lacks suf...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 16; no. 19; p. 3548
Main Authors: Ren, Lipeng, Li, Changchun, Yang, Guijun, Zhao, Dan, Zhang, Chengjian, Xu, Bo, Feng, Haikuan, Chen, Zhida, Lin, Zhongyun, Yang, Hao
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.10.2024
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Assessing the quality of maize seedlings is crucial for field management and germplasm evaluation. Traditional methods for evaluating seedling quality mainly rely on manual field surveys, which are not only inefficient but also highly subjective, while large-scale satellite detection often lacks sufficient accuracy. To address these issues, this study proposes an innovative approach that combines the YOLO v8 object detection algorithm with Voronoi spatial analysis to rapidly evaluate maize seedling quality based on high-resolution drone imagery. The YOLO v8 model provides the maize coordinates, which are then used for Voronoi segmentation of the field after applying the Convex Hull difference method. From the generated Voronoi diagram, three key indicators are extracted: Voronoi Polygon Uniformity Index (VPUI), missing seedling rate, and repeated seedling rate to comprehensively evaluate maize seedling quality. The results show that this method effectively extracts the VPUI, missing seedling rate, and repeated seedling rate of maize in the target area. Compared to the traditional plant spacing variation coefficient, VPUI performs better in representing seedling uniformity. Additionally, the R2 for the estimated missing seedling rate and replanting rate based on the Voronoi method were 0.773 and 0.940, respectively. Compared to using the plant spacing method, the R2 increased by 0.09 and 0.544, respectively. The maize seedling quality evaluation method proposed in this study provides technical support for precision maize planting management and is of great significance for improving agricultural production efficiency and reducing labor costs.
AbstractList Assessing the quality of maize seedlings is crucial for field management and germplasm evaluation. Traditional methods for evaluating seedling quality mainly rely on manual field surveys, which are not only inefficient but also highly subjective, while large-scale satellite detection often lacks sufficient accuracy. To address these issues, this study proposes an innovative approach that combines the YOLO v8 object detection algorithm with Voronoi spatial analysis to rapidly evaluate maize seedling quality based on high-resolution drone imagery. The YOLO v8 model provides the maize coordinates, which are then used for Voronoi segmentation of the field after applying the Convex Hull difference method. From the generated Voronoi diagram, three key indicators are extracted: Voronoi Polygon Uniformity Index (VPUI), missing seedling rate, and repeated seedling rate to comprehensively evaluate maize seedling quality. The results show that this method effectively extracts the VPUI, missing seedling rate, and repeated seedling rate of maize in the target area. Compared to the traditional plant spacing variation coefficient, VPUI performs better in representing seedling uniformity. Additionally, the R2 for the estimated missing seedling rate and replanting rate based on the Voronoi method were 0.773 and 0.940, respectively. Compared to using the plant spacing method, the R2 increased by 0.09 and 0.544, respectively. The maize seedling quality evaluation method proposed in this study provides technical support for precision maize planting management and is of great significance for improving agricultural production efficiency and reducing labor costs.
Assessing the quality of maize seedlings is crucial for field management and germplasm evaluation. Traditional methods for evaluating seedling quality mainly rely on manual field surveys, which are not only inefficient but also highly subjective, while large-scale satellite detection often lacks sufficient accuracy. To address these issues, this study proposes an innovative approach that combines the YOLO v8 object detection algorithm with Voronoi spatial analysis to rapidly evaluate maize seedling quality based on high-resolution drone imagery. The YOLO v8 model provides the maize coordinates, which are then used for Voronoi segmentation of the field after applying the Convex Hull difference method. From the generated Voronoi diagram, three key indicators are extracted: Voronoi Polygon Uniformity Index (VPUI), missing seedling rate, and repeated seedling rate to comprehensively evaluate maize seedling quality. The results show that this method effectively extracts the VPUI, missing seedling rate, and repeated seedling rate of maize in the target area. Compared to the traditional plant spacing variation coefficient, VPUI performs better in representing seedling uniformity. Additionally, the R[sup.2] for the estimated missing seedling rate and replanting rate based on the Voronoi method were 0.773 and 0.940, respectively. Compared to using the plant spacing method, the R[sup.2] increased by 0.09 and 0.544, respectively. The maize seedling quality evaluation method proposed in this study provides technical support for precision maize planting management and is of great significance for improving agricultural production efficiency and reducing labor costs.
Audience Academic
Author Ren, Lipeng
Xu, Bo
Chen, Zhida
Lin, Zhongyun
Zhang, Chengjian
Yang, Hao
Zhao, Dan
Yang, Guijun
Li, Changchun
Feng, Haikuan
Author_xml – sequence: 1
  givenname: Lipeng
  surname: Ren
  fullname: Ren, Lipeng
– sequence: 2
  givenname: Changchun
  surname: Li
  fullname: Li, Changchun
– sequence: 3
  givenname: Guijun
  surname: Yang
  fullname: Yang, Guijun
– sequence: 4
  givenname: Dan
  surname: Zhao
  fullname: Zhao, Dan
– sequence: 5
  givenname: Chengjian
  surname: Zhang
  fullname: Zhang, Chengjian
– sequence: 6
  givenname: Bo
  surname: Xu
  fullname: Xu, Bo
– sequence: 7
  givenname: Haikuan
  orcidid: 0000-0003-3312-6200
  surname: Feng
  fullname: Feng, Haikuan
– sequence: 8
  givenname: Zhida
  surname: Chen
  fullname: Chen, Zhida
– sequence: 9
  givenname: Zhongyun
  surname: Lin
  fullname: Lin, Zhongyun
– sequence: 10
  givenname: Hao
  orcidid: 0000-0001-8506-7295
  surname: Yang
  fullname: Yang, Hao
BookMark eNptkUFv1DAQhSNUJErphV9giRvStnZsJ_Fx6QJdaRFCtL1ak3icepXYi-09lF-Pw4JACPvg0eh9b8Z6L6szHzxW1WtGrzhX9Dom1jDFpeieVec1beuVqFV99lf9orpMaU_L4ZwpKs6r-e4RyQYzDtkFT4Iln8B9R_IV0UzOj-TLESaXn4iNYSb36weynWHERN5BQkMKskE8kB1C9IscvCEPIQYfHNk4GCPMZD2NIbr8OKdX1XMLU8LLX-9Fdf_h_d3N7Wr3-eP2Zr1bDYLSvOoMcFAWrZF93UgUgoNsVa9Ma5VkMFDVs7ptuEJrBTLZS8nrRqiOm7q1gl9U25OvCbDXh-hmiE86gNM_GyGOGmJ2w4QabDGU3MoyQkiUqsfOqJqC7RFpS4vXm5PXIYZvR0xZ78Mx-rK-5ow1TUNZt0y8OqlGKKbO25AjDOUanN1QcrKu9NcdE4J2LV8AegKGGFKKaPXgMiwhFNBNmlG9hKr_hFqQt_8gv3_2H_EPOGaiNg
CitedBy_id crossref_primary_10_1016_j_compag_2025_110679
crossref_primary_10_3390_app15084535
Cites_doi 10.3390/rs9020111
10.1007/s11119-020-09725-3
10.3906/tar-1210-53
10.13031/2013.24494
10.1016/j.measurement.2023.112764
10.1016/j.compag.2020.105766
10.1016/j.biosystemseng.2020.10.013
10.3390/rs15143671
10.34133/plantphenomics.0191
10.1117/1.2784799
10.3389/fmars.2023.1134418
10.2134/agronj2005.0336
10.1016/j.ecolmodel.2012.12.030
10.1016/j.cag.2019.06.007
10.1016/j.compag.2023.108045
10.1016/j.cad.2007.09.006
10.3390/rs15081979
10.3390/rs14153811
10.3390/rs15102530
10.3390/su151512021
10.1057/jors.2008.101
10.1186/s13007-019-0399-7
10.1016/S2095-3119(18)61917-3
10.3390/rs14194892
10.3390/agriculture14020175
10.3390/rs12060923
10.3389/fpls.2021.699085
10.1016/j.compag.2022.107008
10.1016/j.eja.2023.126845
10.1038/s41598-021-01044-5
10.1186/s12866-021-02180-8
10.3390/rs12244170
10.3390/rs12111764
10.3390/jmse8020096
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs16193548
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (via ProQuest)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Agriculture
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_af51a53f53a545e59be8d920afbee070
A814408734
10_3390_rs16193548
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c400t-8da3a9fefd5b265e443a579b9d7f951ac09b127639eff4e15b553264983d27f43
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001332855700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:53:46 EDT 2025
Fri Jul 25 11:42:07 EDT 2025
Tue Nov 04 18:15:11 EST 2025
Tue Nov 18 22:24:16 EST 2025
Sat Nov 29 07:14:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-8da3a9fefd5b265e443a579b9d7f951ac09b127639eff4e15b553264983d27f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3312-6200
0000-0001-8506-7295
OpenAccessLink https://doaj.org/article/af51a53f53a545e59be8d920afbee070
PQID 3116660184
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_af51a53f53a545e59be8d920afbee070
proquest_journals_3116660184
gale_infotracacademiconefile_A814408734
crossref_citationtrail_10_3390_rs16193548
crossref_primary_10_3390_rs16193548
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Pimstein (ref_13) 2007; 1
Pang (ref_17) 2020; 178
Tollenaar (ref_21) 2006; 98
Gao (ref_19) 2023; 147
ref_36
ref_34
ref_11
ref_33
ref_10
ref_32
Hussain (ref_39) 2014; 38
Shirzadifar (ref_6) 2020; 200
ref_31
Ren (ref_23) 2020; 16
Laporte (ref_28) 2009; 60
Yang (ref_12) 2024; 6
Vong (ref_15) 2022; 198
ref_18
Cui (ref_35) 2023; 212
Li (ref_16) 2019; 15
Zhai (ref_5) 2018; 17
Liao (ref_38) 2013; 251
Au (ref_37) 2008; 40
Valente (ref_22) 2020; 21
Karayel (ref_30) 2010; 16
Xiao (ref_14) 2023; 214
ref_25
Karayel (ref_3) 2008; 24
ref_20
ref_42
ref_41
ref_40
ref_1
ref_2
ref_29
ref_27
ref_26
ref_9
ref_8
ref_4
ref_7
Li (ref_24) 2019; 82
References_xml – ident: ref_11
  doi: 10.3390/rs9020111
– volume: 21
  start-page: 1366
  year: 2020
  ident: ref_22
  article-title: Automated Crop Plant Counting from Very High-Resolution Aerial Imagery
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-020-09725-3
– volume: 38
  start-page: 39
  year: 2014
  ident: ref_39
  article-title: Xanthium strumarium L. Impact on Maize Yield and Yield Components
  publication-title: Turk. J. Agric. For.
  doi: 10.3906/tar-1210-53
– volume: 24
  start-page: 271
  year: 2008
  ident: ref_3
  article-title: Evaluation of Three Depth-Control Components on Seed Placement Accuracy and Emergence for a Precision Planter
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.24494
– volume: 214
  start-page: 112764
  year: 2023
  ident: ref_14
  article-title: Enhancing Assessment of Maize Growth Performance Using Unmanned Aerial Vehicles (UAVs) and Deep Learning
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112764
– volume: 178
  start-page: 105766
  year: 2020
  ident: ref_17
  article-title: Improved Crop Row Detection with Deep Neural Network for Early-Season Maize Stand Count in UAV Imagery
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105766
– volume: 200
  start-page: 377
  year: 2020
  ident: ref_6
  article-title: Mapping Crop Stand Count and Planting Uniformity Using High Resolution Imagery in a Maize Crop
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.10.013
– ident: ref_10
  doi: 10.3390/rs15143671
– volume: 6
  start-page: 0191
  year: 2024
  ident: ref_12
  article-title: UAV-Assisted Dynamic Monitoring of Wheat Uniformity toward Yield and Biomass Estimation
  publication-title: Plant Phenomics
  doi: 10.34133/plantphenomics.0191
– volume: 1
  start-page: 013530
  year: 2007
  ident: ref_13
  article-title: Wheat and Maize Monitoring Based on Ground Spectral Measurements and Multivariate Data Analysis
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.2784799
– ident: ref_26
  doi: 10.3389/fmars.2023.1134418
– volume: 16
  start-page: 97
  year: 2010
  ident: ref_30
  article-title: Evaluation of Seed Distribution in the Horizontal Plane and Plant Growing Area for Row Seeding Using Voronoi Polygons
  publication-title: J. Agric. Sci.-Tarim Bilim. Derg.
– volume: 98
  start-page: 930
  year: 2006
  ident: ref_21
  article-title: Effect of Crowding Stress on Dry Matter Accumulation and Harvest Index in Maize
  publication-title: Agron. J.
  doi: 10.2134/agronj2005.0336
– volume: 251
  start-page: 271
  year: 2013
  ident: ref_38
  article-title: Effects of Space Partitioning in a Plant Species Diversity Model
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2012.12.030
– volume: 82
  start-page: 332
  year: 2019
  ident: ref_24
  article-title: Edge Topology Construction of Voronoi Diagrams of Spheres in Non-General Position
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2019.06.007
– volume: 212
  start-page: 108045
  year: 2023
  ident: ref_35
  article-title: Real-Time Missing Seedling Counting in Paddy Fields Based on Lightweight Network and Tracking-by-Detection Algorithm
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108045
– volume: 40
  start-page: 139
  year: 2008
  ident: ref_37
  article-title: Spatial and Temporal Competition as a Two Dimensional Kinetic Voronoi Diagram
  publication-title: Comput.-Aided Des.
  doi: 10.1016/j.cad.2007.09.006
– ident: ref_8
  doi: 10.3390/rs15081979
– ident: ref_9
  doi: 10.3390/rs14153811
– ident: ref_42
– ident: ref_1
– ident: ref_18
– ident: ref_40
  doi: 10.3390/rs15102530
– ident: ref_29
  doi: 10.3390/su151512021
– volume: 60
  start-page: 1462
  year: 2009
  ident: ref_28
  article-title: Locating a Metro Line in a Historical City Centre: Application to Sevilla
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.2008.101
– volume: 15
  start-page: 15
  year: 2019
  ident: ref_16
  article-title: The Estimation of Crop Emergence in Potatoes by UAV RGB Imagery
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0399-7
– volume: 17
  start-page: 2235
  year: 2018
  ident: ref_5
  article-title: Evaluation and Analysis of Intraspecific Competition in Maize: A Case Study on Plant Density Experiment
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(18)61917-3
– volume: 16
  start-page: 1015
  year: 2020
  ident: ref_23
  article-title: A Survey of Deep Learning in Agriculture: Techniques and Their Applications
  publication-title: J. Inf. Process. Syst.
– ident: ref_32
  doi: 10.3390/rs14194892
– ident: ref_33
– ident: ref_2
– ident: ref_20
  doi: 10.3390/agriculture14020175
– ident: ref_34
  doi: 10.3390/rs12060923
– ident: ref_41
– ident: ref_4
  doi: 10.3389/fpls.2021.699085
– volume: 198
  start-page: 107008
  year: 2022
  ident: ref_15
  article-title: Maize Emergence Uniformity Estimation and Mapping Using UAV Imagery and Deep Learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107008
– volume: 147
  start-page: 126845
  year: 2023
  ident: ref_19
  article-title: Maize Seedling Information Extraction from UAV Images Based on Semi-Automatic Sample Generation and Mask R-CNN Model
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2023.126845
– ident: ref_31
  doi: 10.1038/s41598-021-01044-5
– ident: ref_27
  doi: 10.1186/s12866-021-02180-8
– ident: ref_36
  doi: 10.3390/rs12244170
– ident: ref_7
  doi: 10.3390/rs12111764
– ident: ref_25
  doi: 10.3390/jmse8020096
SSID ssj0000331904
Score 2.4030087
Snippet Assessing the quality of maize seedlings is crucial for field management and germplasm evaluation. Traditional methods for evaluating seedling quality mainly...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3548
SubjectTerms Accuracy
Aerial surveys
Agricultural production
Agriculture
Algorithms
Coefficient of variation
Comparative analysis
Convexity
Corn
Deep learning
Distribution
Drone aircraft
emergence uniformity
Environmental aspects
Evaluation
Germplasm
Identification and classification
Image processing
Image quality
Image resolution
Image segmentation
Machine learning
Machine vision
maize emergence
Methods
Object recognition
Photography, Aerial
plant detection
Plant extracts
Planting management
Polygons
Quality assessment
Remote sensing systems
Satellite imagery
Seedlings
Spatial analysis
Unmanned aerial vehicles
unmanned aerial vehicles (UAVs)
Vegetation
Voronoi graphs
Voronoi polygons
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIAtKEjAoUApYktBlkBCHKImsV3HJ5SyVHCgQiqterPs2N6u1E2WJK1Ufn1nEu-2B-DCNXEiWx7Pwx5_Q8h7pE2KTO4n3kmTcGZDYorMJ-B5B8aMRaTaUGxCHh0VZ2fqR9xw62Ja5UonDoraNRXuke-xDA-4UghIPi1_JVg1Ck9XYwmN--QBUhKyIXXveL3HkjIQsJSPVFIG0f1e24GHo5jAcj937NCA6_-bUh4szeHT_-3jM7IZfUxajkLxnNzz9RZ5Us7ayNnwW-RRLH5-fv2CLEBU6NT3Q1JWTZtAv5v5b0-PwbDhZXU6cjauKV5FoSflKf22AC3U0QOwgI7CJ1PvlzSSWmfU1I6eIhihmdPp3GD6Fy0vZtDR_nzRbZOTwy8_P39NYhWGpIL13SeFM8yo4IMTNt8XnnNmhFRWORnAPTNVqmyWg5pSPgTuM2GFAJ-Qq4K5XAbOXpKNuqn9K0JtgB9VkgUjEXojTZY5BKRBSOqsNXJCPq7mRFcRUY6VMi40hCo4f_p2_ibk3brtcgRz_LHVAU7tugXCtIcHTTvTcW1qE2AYggUBA-PCC2V94VSemmC9B5U4IR9QMDQueehOZeLNBRgUwrN0WeAJeSEZn5DdlWDoqAs6fSsVO_9-_Zo8zsFlGlMFd8lG3176N-RhddXPu_btINo3YQ4Bxg
  priority: 102
  providerName: ProQuest
Title The Detection of Maize Seedling Quality from UAV Images Based on Deep Learning and Voronoi Diagram Algorithms
URI https://www.proquest.com/docview/3116660184
https://doaj.org/article/af51a53f53a545e59be8d920afbee070
Volume 16
WOSCitedRecordID wos001332855700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQQYIL4imWltVIICEOUZM4ruPjLrsVPXQVUVoVLpYd222kbrbapEjl0N_emSQtewBx4eJDMonsmfE85PE3jH0gtEmRyL3IO2mijNsQmTzxEUbegXNjCVKtazYhF4v89FQVG62-qCashwfuGbdrgkiM4EFwg87eC2V97lQam2C9R30l6xtLtZFMdTaYo2rFWY9HyjGv3103GNsoLqjRz4YH6oD6_2aOOx-z_4w9HYJDmPSTes4e-PoFezz0KT-_fsmWKFWY-barn6phFeDQVL88HKEPonvl0ENiXAPdGoHjyQkcLNFgNDBFZ-UAP5l5fwkDqOoZmNrBCWEYrCqYVYYqtWBycbZaV-35snnFjvfn3z5_iYaGCVGJW7GNcme4UcEHJ2y6J3yWIdOkssrJgJGUKWNlkxQtivIhZD4RVggM3zKVc5fKkPHXbKte1f4NAxvwR6XkwUjCp5EmSRxhmWH26Kw1csQ-3TFRlwOaODW1uNCYVRDD9W-Gj9j7e9rLHkPjj1RTksU9BeFedw9QG_SgDfpf2jBiH0mSmnYnTqc0wyUDXBThXOlJTofZueTZiO3cCVsP27bRPKFT1Biz3rf_Yzbb7EmKMVBf-7fDttr1lX_HHpU_26pZj9nD6XxRfB13mjumotMjGm_mOBbiB74vDg6L77dIcPZU
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKn0wKOAGiiwEiDEwart9Xa9B4RSQtWoTRSJtmpPZte7m0ZqHsQBFH4Uv5EZ20k5ALceuNpry7P-dh67M98AvCK2SRHJvcBZqYOEGx_oNHIBet6ec22IUq1sNiF7vfT8XPXX4OeyFobSKpc6sVTUdpLTHvkuj-iAK8SA5P30S0Bdo-h0ddlCo4LFkVt8x5CteNdp4_99HccHH08-HAZ1V4EgR7zOg9RqrpV33goT7wmXJFwLqYyy0qO7ofNQmSjGZaec94mLhBECfZxEpdzG0icc33sL1hMCewPW-51u_2K1qxNyhHSYVDyonKtwd1agT6W4oAZDv1m-skHA38xAadsO7v1vs3If7tZeNGtVsH8Aa268BZutwaxmEnFbsFG3d79cPIQRLgbWdvMy7WzMJp519fCHY5_QdFM5PquYRBaMim3YaeuMdUaoZwu2jzbeMnyk7dyU1Vy0A6bHlp0R9cNkyNpDTQlurHU1wImZX46KR3B6I7I_hsZ4MnbbwIzHF-WSey2J1kfqKLJEAYdBtzVGyya8XWIgy2sSduoFcpVhMEZ4ya7x0oSXq7HTinrkj6P2CUqrEUQXXl6YzAZZrX0y7VEMwb1AwRLhhDIutSoOtTfOodJvwhsCYkZKDT8n13VtBgpF9GBZK6UcgFTypAk7SyBmtbYrsmsUPvn37RewcXjSPc6OO72jp3AnRgexSozcgcZ89tU9g9v5t_mwmD2vFxaDzzeN2l-iO1-X
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tC-Jx4LGAKCxgCRDiEDWJ43V8QKhLqagWqkqwqxWXYMd2t9K2KU0BlZ_Gr2Mmjy4H4LYHrokTxc43L3vmG4CnxDYpIrkXOCt1kHDjA51GLkDP23OuDVGqVc0m5GiUHh-r8Rb8bGthKK2y1YmVorZFTnvkXR7RAVeIAUnXN2kR4_7g1eJLQB2k6KS1badRQ-TArb9j-Fa-HPbxXz-L48Gbj6_fBk2HgSBH7K6C1GqulXfeChPvCZckXAupjLLSo-uh81CZKEYRVM77xEXCCIH-TqJSbmPpE47vvQAXJcaYlE44Fp82-zshR3CHSc2IyrkKu8sSvSvFBbUa-s0GVq0C_mYQKis3uPE_r89NuN741qxXC8Mt2HLzHbjWmywbfhG3A1eapu8n69swQxFhfbeqktHmrPDsvZ7-cOwDGnQq0mc1v8iaUQkOO-wdseEMtW_J9tHyW4aP9J1bsIahdsL03LIjIoQopqw_1ZT2xnqnE1yY1cmsvAOH5zL3u7A9L-buHjDj8UW55F5LIvuROoosEcNhKG6N0bIDL1o8ZHlDzU4dQk4zDNEIO9kZdjrwZDN2UROS_HHUPsFqM4JIxKsLxXKSNTop0x6nIbgXOLFEOKGMS62KQ-2Nc2gKOvCcQJmRqsPPyXVTsYGTItKwrJdSZkAqedKB3RaUWaMDy-wMkff_ffsxXEaoZu-Go4MHcDVGr7HOltyF7dXyq3sIl_Jvq2m5fFRJGIPP5w3ZXxfVZvo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Detection+of+Maize+Seedling+Quality+from+UAV+Images+Based+on+Deep+Learning+and+Voronoi+Diagram+Algorithms&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Lipeng+Ren&rft.au=Changchun+Li&rft.au=Guijun+Yang&rft.au=Dan+Zhao&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=19&rft.spage=3548&rft_id=info:doi/10.3390%2Frs16193548&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_af51a53f53a545e59be8d920afbee070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon