The Detection of Maize Seedling Quality from UAV Images Based on Deep Learning and Voronoi Diagram Algorithms
Assessing the quality of maize seedlings is crucial for field management and germplasm evaluation. Traditional methods for evaluating seedling quality mainly rely on manual field surveys, which are not only inefficient but also highly subjective, while large-scale satellite detection often lacks suf...
Saved in:
| Published in: | Remote sensing (Basel, Switzerland) Vol. 16; no. 19; p. 3548 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.10.2024
|
| Subjects: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Assessing the quality of maize seedlings is crucial for field management and germplasm evaluation. Traditional methods for evaluating seedling quality mainly rely on manual field surveys, which are not only inefficient but also highly subjective, while large-scale satellite detection often lacks sufficient accuracy. To address these issues, this study proposes an innovative approach that combines the YOLO v8 object detection algorithm with Voronoi spatial analysis to rapidly evaluate maize seedling quality based on high-resolution drone imagery. The YOLO v8 model provides the maize coordinates, which are then used for Voronoi segmentation of the field after applying the Convex Hull difference method. From the generated Voronoi diagram, three key indicators are extracted: Voronoi Polygon Uniformity Index (VPUI), missing seedling rate, and repeated seedling rate to comprehensively evaluate maize seedling quality. The results show that this method effectively extracts the VPUI, missing seedling rate, and repeated seedling rate of maize in the target area. Compared to the traditional plant spacing variation coefficient, VPUI performs better in representing seedling uniformity. Additionally, the R2 for the estimated missing seedling rate and replanting rate based on the Voronoi method were 0.773 and 0.940, respectively. Compared to using the plant spacing method, the R2 increased by 0.09 and 0.544, respectively. The maize seedling quality evaluation method proposed in this study provides technical support for precision maize planting management and is of great significance for improving agricultural production efficiency and reducing labor costs. |
|---|---|
| AbstractList | Assessing the quality of maize seedlings is crucial for field management and germplasm evaluation. Traditional methods for evaluating seedling quality mainly rely on manual field surveys, which are not only inefficient but also highly subjective, while large-scale satellite detection often lacks sufficient accuracy. To address these issues, this study proposes an innovative approach that combines the YOLO v8 object detection algorithm with Voronoi spatial analysis to rapidly evaluate maize seedling quality based on high-resolution drone imagery. The YOLO v8 model provides the maize coordinates, which are then used for Voronoi segmentation of the field after applying the Convex Hull difference method. From the generated Voronoi diagram, three key indicators are extracted: Voronoi Polygon Uniformity Index (VPUI), missing seedling rate, and repeated seedling rate to comprehensively evaluate maize seedling quality. The results show that this method effectively extracts the VPUI, missing seedling rate, and repeated seedling rate of maize in the target area. Compared to the traditional plant spacing variation coefficient, VPUI performs better in representing seedling uniformity. Additionally, the R2 for the estimated missing seedling rate and replanting rate based on the Voronoi method were 0.773 and 0.940, respectively. Compared to using the plant spacing method, the R2 increased by 0.09 and 0.544, respectively. The maize seedling quality evaluation method proposed in this study provides technical support for precision maize planting management and is of great significance for improving agricultural production efficiency and reducing labor costs. Assessing the quality of maize seedlings is crucial for field management and germplasm evaluation. Traditional methods for evaluating seedling quality mainly rely on manual field surveys, which are not only inefficient but also highly subjective, while large-scale satellite detection often lacks sufficient accuracy. To address these issues, this study proposes an innovative approach that combines the YOLO v8 object detection algorithm with Voronoi spatial analysis to rapidly evaluate maize seedling quality based on high-resolution drone imagery. The YOLO v8 model provides the maize coordinates, which are then used for Voronoi segmentation of the field after applying the Convex Hull difference method. From the generated Voronoi diagram, three key indicators are extracted: Voronoi Polygon Uniformity Index (VPUI), missing seedling rate, and repeated seedling rate to comprehensively evaluate maize seedling quality. The results show that this method effectively extracts the VPUI, missing seedling rate, and repeated seedling rate of maize in the target area. Compared to the traditional plant spacing variation coefficient, VPUI performs better in representing seedling uniformity. Additionally, the R[sup.2] for the estimated missing seedling rate and replanting rate based on the Voronoi method were 0.773 and 0.940, respectively. Compared to using the plant spacing method, the R[sup.2] increased by 0.09 and 0.544, respectively. The maize seedling quality evaluation method proposed in this study provides technical support for precision maize planting management and is of great significance for improving agricultural production efficiency and reducing labor costs. |
| Audience | Academic |
| Author | Ren, Lipeng Xu, Bo Chen, Zhida Lin, Zhongyun Zhang, Chengjian Yang, Hao Zhao, Dan Yang, Guijun Li, Changchun Feng, Haikuan |
| Author_xml | – sequence: 1 givenname: Lipeng surname: Ren fullname: Ren, Lipeng – sequence: 2 givenname: Changchun surname: Li fullname: Li, Changchun – sequence: 3 givenname: Guijun surname: Yang fullname: Yang, Guijun – sequence: 4 givenname: Dan surname: Zhao fullname: Zhao, Dan – sequence: 5 givenname: Chengjian surname: Zhang fullname: Zhang, Chengjian – sequence: 6 givenname: Bo surname: Xu fullname: Xu, Bo – sequence: 7 givenname: Haikuan orcidid: 0000-0003-3312-6200 surname: Feng fullname: Feng, Haikuan – sequence: 8 givenname: Zhida surname: Chen fullname: Chen, Zhida – sequence: 9 givenname: Zhongyun surname: Lin fullname: Lin, Zhongyun – sequence: 10 givenname: Hao orcidid: 0000-0001-8506-7295 surname: Yang fullname: Yang, Hao |
| BookMark | eNptkUFv1DAQhSNUJErphV9giRvStnZsJ_Fx6QJdaRFCtL1ak3icepXYi-09lF-Pw4JACPvg0eh9b8Z6L6szHzxW1WtGrzhX9Dom1jDFpeieVec1beuVqFV99lf9orpMaU_L4ZwpKs6r-e4RyQYzDtkFT4Iln8B9R_IV0UzOj-TLESaXn4iNYSb36weynWHERN5BQkMKskE8kB1C9IscvCEPIQYfHNk4GCPMZD2NIbr8OKdX1XMLU8LLX-9Fdf_h_d3N7Wr3-eP2Zr1bDYLSvOoMcFAWrZF93UgUgoNsVa9Ma5VkMFDVs7ptuEJrBTLZS8nrRqiOm7q1gl9U25OvCbDXh-hmiE86gNM_GyGOGmJ2w4QabDGU3MoyQkiUqsfOqJqC7RFpS4vXm5PXIYZvR0xZ78Mx-rK-5ow1TUNZt0y8OqlGKKbO25AjDOUanN1QcrKu9NcdE4J2LV8AegKGGFKKaPXgMiwhFNBNmlG9hKr_hFqQt_8gv3_2H_EPOGaiNg |
| CitedBy_id | crossref_primary_10_1016_j_compag_2025_110679 crossref_primary_10_3390_app15084535 |
| Cites_doi | 10.3390/rs9020111 10.1007/s11119-020-09725-3 10.3906/tar-1210-53 10.13031/2013.24494 10.1016/j.measurement.2023.112764 10.1016/j.compag.2020.105766 10.1016/j.biosystemseng.2020.10.013 10.3390/rs15143671 10.34133/plantphenomics.0191 10.1117/1.2784799 10.3389/fmars.2023.1134418 10.2134/agronj2005.0336 10.1016/j.ecolmodel.2012.12.030 10.1016/j.cag.2019.06.007 10.1016/j.compag.2023.108045 10.1016/j.cad.2007.09.006 10.3390/rs15081979 10.3390/rs14153811 10.3390/rs15102530 10.3390/su151512021 10.1057/jors.2008.101 10.1186/s13007-019-0399-7 10.1016/S2095-3119(18)61917-3 10.3390/rs14194892 10.3390/agriculture14020175 10.3390/rs12060923 10.3389/fpls.2021.699085 10.1016/j.compag.2022.107008 10.1016/j.eja.2023.126845 10.1038/s41598-021-01044-5 10.1186/s12866-021-02180-8 10.3390/rs12244170 10.3390/rs12111764 10.3390/jmse8020096 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.3390/rs16193548 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection (via ProQuest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Agriculture |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_af51a53f53a545e59be8d920afbee070 A814408734 10_3390_rs16193548 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c400t-8da3a9fefd5b265e443a579b9d7f951ac09b127639eff4e15b553264983d27f43 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001332855700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:53:46 EDT 2025 Fri Jul 25 11:42:07 EDT 2025 Tue Nov 04 18:15:11 EST 2025 Tue Nov 18 22:24:16 EST 2025 Sat Nov 29 07:14:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-8da3a9fefd5b265e443a579b9d7f951ac09b127639eff4e15b553264983d27f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3312-6200 0000-0001-8506-7295 |
| OpenAccessLink | https://doaj.org/article/af51a53f53a545e59be8d920afbee070 |
| PQID | 3116660184 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_af51a53f53a545e59be8d920afbee070 proquest_journals_3116660184 gale_infotracacademiconefile_A814408734 crossref_citationtrail_10_3390_rs16193548 crossref_primary_10_3390_rs16193548 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Pimstein (ref_13) 2007; 1 Pang (ref_17) 2020; 178 Tollenaar (ref_21) 2006; 98 Gao (ref_19) 2023; 147 ref_36 ref_34 ref_11 ref_33 ref_10 ref_32 Hussain (ref_39) 2014; 38 Shirzadifar (ref_6) 2020; 200 ref_31 Ren (ref_23) 2020; 16 Laporte (ref_28) 2009; 60 Yang (ref_12) 2024; 6 Vong (ref_15) 2022; 198 ref_18 Cui (ref_35) 2023; 212 Li (ref_16) 2019; 15 Zhai (ref_5) 2018; 17 Liao (ref_38) 2013; 251 Au (ref_37) 2008; 40 Valente (ref_22) 2020; 21 Karayel (ref_30) 2010; 16 Xiao (ref_14) 2023; 214 ref_25 Karayel (ref_3) 2008; 24 ref_20 ref_42 ref_41 ref_40 ref_1 ref_2 ref_29 ref_27 ref_26 ref_9 ref_8 ref_4 ref_7 Li (ref_24) 2019; 82 |
| References_xml | – ident: ref_11 doi: 10.3390/rs9020111 – volume: 21 start-page: 1366 year: 2020 ident: ref_22 article-title: Automated Crop Plant Counting from Very High-Resolution Aerial Imagery publication-title: Precis. Agric. doi: 10.1007/s11119-020-09725-3 – volume: 38 start-page: 39 year: 2014 ident: ref_39 article-title: Xanthium strumarium L. Impact on Maize Yield and Yield Components publication-title: Turk. J. Agric. For. doi: 10.3906/tar-1210-53 – volume: 24 start-page: 271 year: 2008 ident: ref_3 article-title: Evaluation of Three Depth-Control Components on Seed Placement Accuracy and Emergence for a Precision Planter publication-title: Appl. Eng. Agric. doi: 10.13031/2013.24494 – volume: 214 start-page: 112764 year: 2023 ident: ref_14 article-title: Enhancing Assessment of Maize Growth Performance Using Unmanned Aerial Vehicles (UAVs) and Deep Learning publication-title: Measurement doi: 10.1016/j.measurement.2023.112764 – volume: 178 start-page: 105766 year: 2020 ident: ref_17 article-title: Improved Crop Row Detection with Deep Neural Network for Early-Season Maize Stand Count in UAV Imagery publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105766 – volume: 200 start-page: 377 year: 2020 ident: ref_6 article-title: Mapping Crop Stand Count and Planting Uniformity Using High Resolution Imagery in a Maize Crop publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.10.013 – ident: ref_10 doi: 10.3390/rs15143671 – volume: 6 start-page: 0191 year: 2024 ident: ref_12 article-title: UAV-Assisted Dynamic Monitoring of Wheat Uniformity toward Yield and Biomass Estimation publication-title: Plant Phenomics doi: 10.34133/plantphenomics.0191 – volume: 1 start-page: 013530 year: 2007 ident: ref_13 article-title: Wheat and Maize Monitoring Based on Ground Spectral Measurements and Multivariate Data Analysis publication-title: J. Appl. Remote Sens. doi: 10.1117/1.2784799 – ident: ref_26 doi: 10.3389/fmars.2023.1134418 – volume: 16 start-page: 97 year: 2010 ident: ref_30 article-title: Evaluation of Seed Distribution in the Horizontal Plane and Plant Growing Area for Row Seeding Using Voronoi Polygons publication-title: J. Agric. Sci.-Tarim Bilim. Derg. – volume: 98 start-page: 930 year: 2006 ident: ref_21 article-title: Effect of Crowding Stress on Dry Matter Accumulation and Harvest Index in Maize publication-title: Agron. J. doi: 10.2134/agronj2005.0336 – volume: 251 start-page: 271 year: 2013 ident: ref_38 article-title: Effects of Space Partitioning in a Plant Species Diversity Model publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2012.12.030 – volume: 82 start-page: 332 year: 2019 ident: ref_24 article-title: Edge Topology Construction of Voronoi Diagrams of Spheres in Non-General Position publication-title: Comput. Graph. doi: 10.1016/j.cag.2019.06.007 – volume: 212 start-page: 108045 year: 2023 ident: ref_35 article-title: Real-Time Missing Seedling Counting in Paddy Fields Based on Lightweight Network and Tracking-by-Detection Algorithm publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108045 – volume: 40 start-page: 139 year: 2008 ident: ref_37 article-title: Spatial and Temporal Competition as a Two Dimensional Kinetic Voronoi Diagram publication-title: Comput.-Aided Des. doi: 10.1016/j.cad.2007.09.006 – ident: ref_8 doi: 10.3390/rs15081979 – ident: ref_9 doi: 10.3390/rs14153811 – ident: ref_42 – ident: ref_1 – ident: ref_18 – ident: ref_40 doi: 10.3390/rs15102530 – ident: ref_29 doi: 10.3390/su151512021 – volume: 60 start-page: 1462 year: 2009 ident: ref_28 article-title: Locating a Metro Line in a Historical City Centre: Application to Sevilla publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.2008.101 – volume: 15 start-page: 15 year: 2019 ident: ref_16 article-title: The Estimation of Crop Emergence in Potatoes by UAV RGB Imagery publication-title: Plant Methods doi: 10.1186/s13007-019-0399-7 – volume: 17 start-page: 2235 year: 2018 ident: ref_5 article-title: Evaluation and Analysis of Intraspecific Competition in Maize: A Case Study on Plant Density Experiment publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(18)61917-3 – volume: 16 start-page: 1015 year: 2020 ident: ref_23 article-title: A Survey of Deep Learning in Agriculture: Techniques and Their Applications publication-title: J. Inf. Process. Syst. – ident: ref_32 doi: 10.3390/rs14194892 – ident: ref_33 – ident: ref_2 – ident: ref_20 doi: 10.3390/agriculture14020175 – ident: ref_34 doi: 10.3390/rs12060923 – ident: ref_41 – ident: ref_4 doi: 10.3389/fpls.2021.699085 – volume: 198 start-page: 107008 year: 2022 ident: ref_15 article-title: Maize Emergence Uniformity Estimation and Mapping Using UAV Imagery and Deep Learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107008 – volume: 147 start-page: 126845 year: 2023 ident: ref_19 article-title: Maize Seedling Information Extraction from UAV Images Based on Semi-Automatic Sample Generation and Mask R-CNN Model publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2023.126845 – ident: ref_31 doi: 10.1038/s41598-021-01044-5 – ident: ref_27 doi: 10.1186/s12866-021-02180-8 – ident: ref_36 doi: 10.3390/rs12244170 – ident: ref_7 doi: 10.3390/rs12111764 – ident: ref_25 doi: 10.3390/jmse8020096 |
| SSID | ssj0000331904 |
| Score | 2.4030087 |
| Snippet | Assessing the quality of maize seedlings is crucial for field management and germplasm evaluation. Traditional methods for evaluating seedling quality mainly... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3548 |
| SubjectTerms | Accuracy Aerial surveys Agricultural production Agriculture Algorithms Coefficient of variation Comparative analysis Convexity Corn Deep learning Distribution Drone aircraft emergence uniformity Environmental aspects Evaluation Germplasm Identification and classification Image processing Image quality Image resolution Image segmentation Machine learning Machine vision maize emergence Methods Object recognition Photography, Aerial plant detection Plant extracts Planting management Polygons Quality assessment Remote sensing systems Satellite imagery Seedlings Spatial analysis Unmanned aerial vehicles unmanned aerial vehicles (UAVs) Vegetation Voronoi graphs Voronoi polygons |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIAtKEjAoUApYktBlkBCHKImsV3HJ5SyVHCgQiqterPs2N6u1E2WJK1Ufn1nEu-2B-DCNXEiWx7Pwx5_Q8h7pE2KTO4n3kmTcGZDYorMJ-B5B8aMRaTaUGxCHh0VZ2fqR9xw62Ja5UonDoraNRXuke-xDA-4UghIPi1_JVg1Ck9XYwmN--QBUhKyIXXveL3HkjIQsJSPVFIG0f1e24GHo5jAcj937NCA6_-bUh4szeHT_-3jM7IZfUxajkLxnNzz9RZ5Us7ayNnwW-RRLH5-fv2CLEBU6NT3Q1JWTZtAv5v5b0-PwbDhZXU6cjauKV5FoSflKf22AC3U0QOwgI7CJ1PvlzSSWmfU1I6eIhihmdPp3GD6Fy0vZtDR_nzRbZOTwy8_P39NYhWGpIL13SeFM8yo4IMTNt8XnnNmhFRWORnAPTNVqmyWg5pSPgTuM2GFAJ-Qq4K5XAbOXpKNuqn9K0JtgB9VkgUjEXojTZY5BKRBSOqsNXJCPq7mRFcRUY6VMi40hCo4f_p2_ibk3brtcgRz_LHVAU7tugXCtIcHTTvTcW1qE2AYggUBA-PCC2V94VSemmC9B5U4IR9QMDQueehOZeLNBRgUwrN0WeAJeSEZn5DdlWDoqAs6fSsVO_9-_Zo8zsFlGlMFd8lG3176N-RhddXPu_btINo3YQ4Bxg priority: 102 providerName: ProQuest |
| Title | The Detection of Maize Seedling Quality from UAV Images Based on Deep Learning and Voronoi Diagram Algorithms |
| URI | https://www.proquest.com/docview/3116660184 https://doaj.org/article/af51a53f53a545e59be8d920afbee070 |
| Volume | 16 |
| WOSCitedRecordID | wos001332855700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQQYIL4imWltVIICEOUZM4ruPjLrsVPXQVUVoVLpYd222kbrbapEjl0N_emSQtewBx4eJDMonsmfE85PE3jH0gtEmRyL3IO2mijNsQmTzxEUbegXNjCVKtazYhF4v89FQVG62-qCashwfuGbdrgkiM4EFwg87eC2V97lQam2C9R30l6xtLtZFMdTaYo2rFWY9HyjGv3103GNsoLqjRz4YH6oD6_2aOOx-z_4w9HYJDmPSTes4e-PoFezz0KT-_fsmWKFWY-barn6phFeDQVL88HKEPonvl0ENiXAPdGoHjyQkcLNFgNDBFZ-UAP5l5fwkDqOoZmNrBCWEYrCqYVYYqtWBycbZaV-35snnFjvfn3z5_iYaGCVGJW7GNcme4UcEHJ2y6J3yWIdOkssrJgJGUKWNlkxQtivIhZD4RVggM3zKVc5fKkPHXbKte1f4NAxvwR6XkwUjCp5EmSRxhmWH26Kw1csQ-3TFRlwOaODW1uNCYVRDD9W-Gj9j7e9rLHkPjj1RTksU9BeFedw9QG_SgDfpf2jBiH0mSmnYnTqc0wyUDXBThXOlJTofZueTZiO3cCVsP27bRPKFT1Biz3rf_Yzbb7EmKMVBf-7fDttr1lX_HHpU_26pZj9nD6XxRfB13mjumotMjGm_mOBbiB74vDg6L77dIcPZU |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKn0wKOAGiiwEiDEwart9Xa9B4RSQtWoTRSJtmpPZte7m0ZqHsQBFH4Uv5EZ20k5ALceuNpry7P-dh67M98AvCK2SRHJvcBZqYOEGx_oNHIBet6ec22IUq1sNiF7vfT8XPXX4OeyFobSKpc6sVTUdpLTHvkuj-iAK8SA5P30S0Bdo-h0ddlCo4LFkVt8x5CteNdp4_99HccHH08-HAZ1V4EgR7zOg9RqrpV33goT7wmXJFwLqYyy0qO7ofNQmSjGZaec94mLhBECfZxEpdzG0icc33sL1hMCewPW-51u_2K1qxNyhHSYVDyonKtwd1agT6W4oAZDv1m-skHA38xAadsO7v1vs3If7tZeNGtVsH8Aa268BZutwaxmEnFbsFG3d79cPIQRLgbWdvMy7WzMJp519fCHY5_QdFM5PquYRBaMim3YaeuMdUaoZwu2jzbeMnyk7dyU1Vy0A6bHlp0R9cNkyNpDTQlurHU1wImZX46KR3B6I7I_hsZ4MnbbwIzHF-WSey2J1kfqKLJEAYdBtzVGyya8XWIgy2sSduoFcpVhMEZ4ya7x0oSXq7HTinrkj6P2CUqrEUQXXl6YzAZZrX0y7VEMwb1AwRLhhDIutSoOtTfOodJvwhsCYkZKDT8n13VtBgpF9GBZK6UcgFTypAk7SyBmtbYrsmsUPvn37RewcXjSPc6OO72jp3AnRgexSozcgcZ89tU9g9v5t_mwmD2vFxaDzzeN2l-iO1-X |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tC-Jx4LGAKCxgCRDiEDWJ43V8QKhLqagWqkqwqxWXYMd2t9K2KU0BlZ_Gr2Mmjy4H4LYHrokTxc43L3vmG4CnxDYpIrkXOCt1kHDjA51GLkDP23OuDVGqVc0m5GiUHh-r8Rb8bGthKK2y1YmVorZFTnvkXR7RAVeIAUnXN2kR4_7g1eJLQB2k6KS1badRQ-TArb9j-Fa-HPbxXz-L48Gbj6_fBk2HgSBH7K6C1GqulXfeChPvCZckXAupjLLSo-uh81CZKEYRVM77xEXCCIH-TqJSbmPpE47vvQAXJcaYlE44Fp82-zshR3CHSc2IyrkKu8sSvSvFBbUa-s0GVq0C_mYQKis3uPE_r89NuN741qxXC8Mt2HLzHbjWmywbfhG3A1eapu8n69swQxFhfbeqktHmrPDsvZ7-cOwDGnQq0mc1v8iaUQkOO-wdseEMtW_J9tHyW4aP9J1bsIahdsL03LIjIoQopqw_1ZT2xnqnE1yY1cmsvAOH5zL3u7A9L-buHjDj8UW55F5LIvuROoosEcNhKG6N0bIDL1o8ZHlDzU4dQk4zDNEIO9kZdjrwZDN2UROS_HHUPsFqM4JIxKsLxXKSNTop0x6nIbgXOLFEOKGMS62KQ-2Nc2gKOvCcQJmRqsPPyXVTsYGTItKwrJdSZkAqedKB3RaUWaMDy-wMkff_ffsxXEaoZu-Go4MHcDVGr7HOltyF7dXyq3sIl_Jvq2m5fFRJGIPP5w3ZXxfVZvo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Detection+of+Maize+Seedling+Quality+from+UAV+Images+Based+on+Deep+Learning+and+Voronoi+Diagram+Algorithms&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Lipeng+Ren&rft.au=Changchun+Li&rft.au=Guijun+Yang&rft.au=Dan+Zhao&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=19&rft.spage=3548&rft_id=info:doi/10.3390%2Frs16193548&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_af51a53f53a545e59be8d920afbee070 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |