Prediction of Energy Production Level in Large PV Plants through AUTO-Encoder Based Neural-Network (AUTO-NN) with Restricted Boltzmann Feature Extraction

In general, reliable PV generation prediction is required to increase complete control quality and avoid potential damage. Accurate forecasting of direct solar radiation trends in PV power production could limit the influence of uncertainties on photovoltaics, enhance organizational dependability, a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Future internet Ročník 15; číslo 2; s. 46
Hlavní autoři: Ramesh, Ganapathy, Logeshwaran, Jaganathan, Kiruthiga, Thangavel, Lloret, Jaime
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.01.2023
Témata:
ISSN:1999-5903, 1999-5903
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In general, reliable PV generation prediction is required to increase complete control quality and avoid potential damage. Accurate forecasting of direct solar radiation trends in PV power production could limit the influence of uncertainties on photovoltaics, enhance organizational dependability, and maximize the utilization factor of the PV systems for something such as an energy management system (EMS) of microgrids. This paper proposes an intelligent prediction of energy production level in large PV plants through AUTO-encoder-based Neural-Network (AUTO-NN) with Restricted Boltzmann feature extraction. Here, the solar energy output may be projected using prior sun illumination and meteorological data. The feature selection and prediction modules use an AUTO encoder-based Neural Network to improve the process of energy prediction (AUTO-NN). Restricted Boltzmann Machines (RBM) can be used during a set of regulations for development-based feature extraction. The proposed model’s result is evaluated using various constraints. As a result, the proposed AUTO-NN achieved 58.72% of RMSE (Root Mean Square Error), 62.72% of nRMSE (Normalized Root Mean Square Error), 48.04% of MaxAE (Maximum Absolute Error), 48.66% of (Mean Absolute Error), and 46.76% of (Mean Absolute Percentage Error).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-5903
1999-5903
DOI:10.3390/fi15020046