A comparison of machine learning algorithms for forecasting indoor temperature in smart buildings

The international community has largely recognized that the Earth’s climate is changing. Mitigating its global effects requires international actions. The European Union (EU) is leading several initiatives focused on reducing the problems. Specifically, the Climate Action tries to both decrease EU g...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy systems (Berlin. Periodical) Ročník 13; číslo 3; s. 689 - 705
Hlavní autori: Alawadi, Sadi, Mera, David, Fernández-Delgado, Manuel, Alkhabbas, Fahed, Olsson, Carl Magnus, Davidsson, Paul
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2022
Springer Nature B.V
Predmet:
ISSN:1868-3967, 1868-3975, 1868-3975
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The international community has largely recognized that the Earth’s climate is changing. Mitigating its global effects requires international actions. The European Union (EU) is leading several initiatives focused on reducing the problems. Specifically, the Climate Action tries to both decrease EU greenhouse gas emissions and improve energy efficiency by reducing the amount of primary energy consumed, and it has pointed to the development of efficient building energy management systems as key. In traditional buildings, households are responsible for continuously monitoring and controlling the installed Heating, Ventilation, and Air Conditioning (HVAC) system. Unnecessary energy consumption might occur due to, for example, forgetting devices turned on, which overwhelms users due to the need to tune the devices manually. Nowadays, smart buildings are automating this process by automatically tuning HVAC systems according to user preferences in order to improve user satisfaction and optimize energy consumption. Towards achieving this goal, in this paper, we compare 36 Machine Learning algorithms that could be used to forecast indoor temperature in a smart building. More specifically, we run experiments using real data to compare their accuracy in terms of R-coefficient and Root Mean Squared Error and their performance in terms of Friedman rank. The results reveal that the ExtraTrees regressor has obtained the highest average accuracy (0.97%) and performance (0,058%) over all horizons.
AbstractList The international community has largely recognized that the Earth’s climate is changing. Mitigating its global effects requires international actions. The European Union (EU) is leading several initiatives focused on reducing the problems. Specifically, the Climate Action tries to both decrease EU greenhouse gas emissions and improve energy efficiency by reducing the amount of primary energy consumed, and it has pointed to the development of efficient building energy management systems as key. In traditional buildings, households are responsible for continuously monitoring and controlling the installed Heating, Ventilation, and Air Conditioning (HVAC) system. Unnecessary energy consumption might occur due to, for example, forgetting devices turned on, which overwhelms users due to the need to tune the devices manually. Nowadays, smart buildings are automating this process by automatically tuning HVAC systems according to user preferences in order to improve user satisfaction and optimize energy consumption. Towards achieving this goal, in this paper, we compare 36 Machine Learning algorithms that could be used to forecast indoor temperature in a smart building. More specifically, we run experiments using real data to compare their accuracy in terms of R-coefficient and Root Mean Squared Error and their performance in terms of Friedman rank. The results reveal that the ExtraTrees regressor has obtained the highest average accuracy (0.97%) and performance (0,058%) over all horizons.
Author Olsson, Carl Magnus
Mera, David
Alkhabbas, Fahed
Davidsson, Paul
Alawadi, Sadi
Fernández-Delgado, Manuel
Author_xml – sequence: 1
  givenname: Sadi
  orcidid: 0000-0002-5380-4358
  surname: Alawadi
  fullname: Alawadi, Sadi
  email: sadi.alawadi@mau.se
  organization: Internet of Things and People Research Center Department of Computer Science and Media Technology, Malmö University
– sequence: 2
  givenname: David
  surname: Mera
  fullname: Mera, David
  organization: Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS), Universidade de Santiago de Compostela
– sequence: 3
  givenname: Manuel
  surname: Fernández-Delgado
  fullname: Fernández-Delgado, Manuel
  organization: Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS), Universidade de Santiago de Compostela
– sequence: 4
  givenname: Fahed
  surname: Alkhabbas
  fullname: Alkhabbas, Fahed
  organization: Internet of Things and People Research Center Department of Computer Science and Media Technology, Malmö University
– sequence: 5
  givenname: Carl Magnus
  surname: Olsson
  fullname: Olsson, Carl Magnus
  organization: Internet of Things and People Research Center Department of Computer Science and Media Technology, Malmö University
– sequence: 6
  givenname: Paul
  surname: Davidsson
  fullname: Davidsson, Paul
  organization: Internet of Things and People Research Center Department of Computer Science and Media Technology, Malmö University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-13827$$DView record from Swedish Publication Index
BookMark eNp9kUtv3CAUhVGVSJ08_kBXlrKN0wvYYC9H0zwqjdRN0y26ZvCEkQ0OYDX992UyeUhZZIFAh-9cnatzQo6cd4aQbxSuKID8HikTQpbAoATgUpRPX8iCNqIpeSvro7e3kF_JeYw7AKAgGQOxILgstB8nDDZ6V_i-GFE_WGeKwWBw1m0LHLY-2PQwxqL3YX-Mxpj2X9ZtfJaSGScTMM3BZKmII4ZUdLMdNhmKZ-S4xyGa85f7lNzfXP9e3ZXrX7c_V8t1qSuAVDZQd5pWneYgNAipgTWctVUvAangfdXipqu7GgVDrhuAvm57DjW2ZtNg1fFTcnmYG_-aae7UFGwO8k95tOqH_bNUPmzViLOivGEy4xcHfAr-cTYxqZ2fg8sJFROtpK0ELjLVHCgdfIzB9ErbhMl6lwLaQVFQ-wrUoQKVK1DPFainbGUfrK-JPjXxlyUy7LYmvKf6xPUfu5mdBw
CitedBy_id crossref_primary_10_3390_buildings13061542
crossref_primary_10_3390_math11163527
crossref_primary_10_1051_e3sconf_202235002002
crossref_primary_10_1109_JSEN_2023_3278719
crossref_primary_10_3390_electronics11193122
crossref_primary_10_1109_ACCESS_2020_3037081
crossref_primary_10_3390_buildings15071008
crossref_primary_10_3390_systems11090456
crossref_primary_10_3390_app15147682
crossref_primary_10_1186_s40537_021_00549_0
crossref_primary_10_3390_electronics9091347
crossref_primary_10_3390_buildings12070933
crossref_primary_10_3390_agriculture12091473
crossref_primary_10_3390_su142013358
crossref_primary_10_1088_1757_899X_1074_1_012022
crossref_primary_10_3390_su14137734
crossref_primary_10_1007_s12667_021_00458_4
crossref_primary_10_1109_ACCESS_2020_3009467
crossref_primary_10_1177_01436244251349636
crossref_primary_10_1016_j_apenergy_2024_124994
crossref_primary_10_1109_JIOT_2025_3580378
crossref_primary_10_3390_buildings14092796
crossref_primary_10_1016_j_enbuild_2024_114972
crossref_primary_10_1109_JIOT_2021_3057919
crossref_primary_10_1109_ACCESS_2025_3605843
crossref_primary_10_1155_2022_7104752
crossref_primary_10_1007_s12273_023_0984_6
crossref_primary_10_1016_j_seta_2023_103271
crossref_primary_10_3390_en14133900
crossref_primary_10_1186_s40494_022_00805_3
crossref_primary_10_3390_app11156722
crossref_primary_10_3390_en17174401
crossref_primary_10_1007_s40996_021_00742_4
crossref_primary_10_1016_j_compag_2024_109591
crossref_primary_10_1016_j_ecolecon_2023_108028
crossref_primary_10_1007_s10462_022_10286_2
crossref_primary_10_3390_fi13100242
crossref_primary_10_3390_en15124213
crossref_primary_10_3390_info15020094
crossref_primary_10_1080_17452007_2023_2254302
crossref_primary_10_3390_buildings13071850
crossref_primary_10_1109_TII_2023_3268467
crossref_primary_10_1007_s00366_020_01074_z
crossref_primary_10_1016_j_seta_2022_102697
crossref_primary_10_3390_sym14010160
crossref_primary_10_1080_23744731_2023_2239081
crossref_primary_10_1007_s00521_024_10477_8
crossref_primary_10_3390_app14177534
crossref_primary_10_3390_atmos16030315
crossref_primary_10_1080_19401493_2022_2099465
Cites_doi 10.1109/72.97934
10.1109/34.735807
10.1111/j.1467-9868.2005.00503.x
10.1111/j.1467-9868.2009.00723.x
10.1137/1.9781611971217
10.1145/219717.219768
10.1109/Deep-ML.2019.00012
10.1162/neco.1992.4.3.415
10.1016/j.buildenv.2006.10.024
10.1016/j.autcon.2006.11.003
10.1111/j.2041-210X.2011.00124.x
10.1023/A:1010933404324
10.1016/j.enbuild.2012.09.005
10.3414/ME13-01-0122
10.1080/01621459.1981.10477729
10.1016/j.advengsoft.2008.05.003
10.1016/j.neunet.2018.12.010
10.19026/rjaset.11.2241
10.1016/j.rser.2008.09.015
10.1109/TNNLS.2015.2424995
10.3390/en11020395
10.1109/TSMCB.2011.2168604
10.1002/bimj.200900028
10.1080/01621459.1937.10503522
10.1145/2832987.2833043
10.1109/ACCESS.2017.2694446
10.1088/1742-6596/1142/1/012012
10.1111/j.1467-9868.2010.00749.x
10.1007/978-1-4899-7252-1
10.1016/S0893-6080(00)00026-5
10.1016/j.enbuild.2004.09.009
10.1186/1471-2105-14-1
10.1016/j.rser.2012.02.049
10.1016/B978-1-55860-307-3.50037-X
10.1214/aos/1013203451
10.1038/467909a
10.1016/j.apenergy.2008.11.035
10.1016/j.buildenv.2011.02.008
10.1162/neco.2006.18.7.1527
10.1016/j.enbuild.2009.07.002
10.1016/j.buildenv.2018.10.062
10.1007/978-3-319-59513-9_4
10.1016/j.enbuild.2005.05.008
10.18637/jss.v028.i05
10.1016/j.enbuild.2011.07.010
10.3390/electronics8090979
10.1007/s10994-006-6226-1
10.1016/0169-7439(93)85002-X
10.1016/j.enbuild.2010.03.014
10.1109/IISA.2017.8316459
10.1016/j.enconman.2003.10.009
10.1016/j.enbuild.2008.04.001
10.1023/B:STCO.0000035301.49549.88
10.1109/TIT.2011.2146690
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7TB
7WY
7WZ
7XB
87Z
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
FR3
FRNLG
F~G
HCIFZ
K60
K6~
KR7
L.-
L6V
M0C
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1007/s12667-020-00376-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
Civil Engineering Abstracts
ABI/INFORM Global
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1868-3975
EndPage 705
ExternalDocumentID oai_DiVA_org_mau_13827
10_1007_s12667_020_00376_x
GrantInformation_xml – fundername: Malmö University
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
3V.
4.4
406
408
409
40D
7WY
8FE
8FG
8FH
8FL
8UJ
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
C6C
CCPQU
CSCUP
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KOV
L6V
LK5
LLZTM
M0C
M4Y
M7R
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P62
P9P
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7Y
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7TB
7XB
8FD
8FK
FR3
KR7
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c400t-805bc14bc306c067c0283294f70a163f49adb5b5a62a3c800f59f305a9ed8a4b3
IEDL.DBID BENPR
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509132000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1868-3967
1868-3975
IngestDate Tue Nov 04 16:58:46 EST 2025
Tue Dec 02 15:57:09 EST 2025
Tue Nov 18 22:17:49 EST 2025
Sat Nov 29 05:00:29 EST 2025
Fri Feb 21 02:45:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Smart buildings
Time series prediction
Energy efficiency
Internet of Things
Machine Learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-805bc14bc306c067c0283294f70a163f49adb5b5a62a3c800f59f305a9ed8a4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5380-4358
OpenAccessLink https://link.springer.com/10.1007/s12667-020-00376-x
PQID 2697197036
PQPubID 1486346
PageCount 17
ParticipantIDs swepub_primary_oai_DiVA_org_mau_13827
proquest_journals_2697197036
crossref_citationtrail_10_1007_s12667_020_00376_x
crossref_primary_10_1007_s12667_020_00376_x
springer_journals_10_1007_s12667_020_00376_x
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Gainesville
PublicationSubtitle Optimization, Modeling, Simulation, and Economic Aspects
PublicationTitle Energy systems (Berlin. Periodical)
PublicationTitleAbbrev Energy Syst
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References De JongSSIMPLS: an alternative approach to partial least squares regressionChemom. Intell. Lab. Syst.19931825126310.1016/0169-7439(93)85002-X
Fernández-DelgadoMCernadasEBarroSAmorimDDo we need hundreds of classifiers to solve real world classification problems?J. Mach. Learn. Res.20141513133318132771551319.62005
LiQMengQCaiJYoshinoHMochidaAApplying support vector machine to predict hourly cooling load in the buildingAppl. Energy200986102249225610.1016/j.apenergy.2008.11.035
MizeraIKoenkerRConvex optimization in rJ. Stat. Softw.20146051231367.62020
FongKFHanbyVIChowT-THvac system optimization for energy management by evolutionary programmingEnergy Build.200638322023110.1016/j.enbuild.2005.05.008
HintonGEOsinderoSTehYWA fast learning algorithm for deep belief netsNeural Comput.20061871527155422244851106.6809410.1162/neco.2006.18.7.1527
Rodrıguez-Mier, P., Fresquet, M., Mucientes, M., Bugarın, A.: Prediction of indoor temperatures for energy optimization in buildings. In: Conference of the Spanish Association for Artificial Intelligence, pp. 675–684 (2016)
LangleyPSimonHAApplications of machine learning and rule inductionCommun. ACM19953811546410.1145/219717.219768
ATLAS Collaboration et al.: The evolution of boosting algorithms-from machine learning to statistical modelling. Methods Inf. Med. 53(6), 419–427 (2014)
FriedmanJHStuetzleWProjection pursuit regressionJ. Am. Stat. Assoc.19817637681782365089210.1080/01621459.1981.10477729
ChunHKelesSSparse partial least squares for simultaneous dimension reduction and variable selectionJ. R. Stat. Soc.20107232527512411411.6218410.1111/j.1467-9868.2009.00723.x
ZhaoHMagoulèsFA review on the prediction of building energy consumptionRenew. Sustain. Energy Rev.20121663586359210.1016/j.rser.2012.02.049
GeurtsPErnstDWehenkelLExtremely randomized treesMach. Learn.20066313421110.6812410.1007/s10994-006-6226-1
García, S., Fernández, A., Benítez, A.D., Herrera, F.: Statistical comparisons by means of non-parametric tests: a case study on genetic based machine learning. In: Proceedings of the II Congreso Español de Informática (CEDI 2007). V Taller Nacional de Minería de Datos y Aprendizaje (TAMIDA), pp. 95–104 (2007)
AlibertiABottaccioliLMaciiEDi CataldoSAcquavivaAPattiEA non-linear autoregressive model for indoor air-temperature predictions in smart buildingsElectronics20198997910.3390/electronics8090979
BreimanLFriedmanJOlshenRAStoneCJClassification and Regression Trees1984Pacific GroveWadsworth and Brooks0541.62042
WilliamsCKIBarberDBayesian classification with Gaussian processesIEEE Trans. Pattern Anal. Mach. Intell.199820121342135110.1109/34.735807
Ríos-MorenoGJTrejo-PereaMCastaneda-MirandaRHernández-GuzmánVMHerrera-RuizGModelling temperature in intelligent buildings by means of autoregressive modelsAutom. Constr.200716571372210.1016/j.autcon.2006.11.003
KwokSSKYuenRKKLeeEWMAn intelligent approach to assessing the effect of building occupancy on building cooling load predictionBuil. Environ.20114681681169010.1016/j.buildenv.2011.02.008
Quinlan, J.R. et al.: Learning with continuous classes. In: 1992 5th Australian Joint conference on Artificial Intelligence, vol. 92, pp. 343–348. World Scientific (1992)
Alzubi, J.A.: Diversity based improved bagging algorithm. In: 2015 1st Proceedings of The International Conference on Engineering & MIS (ICEMIS) 2015, pp. 35–40. ACM (2015)
ChengliangXChenHWangJGuoYYuanYImproving prediction performance for indoor temperature in public buildings based on a novel deep learning methodBuild. Environ.201914812813510.1016/j.buildenv.2018.10.062
BreimanLRandom forestsMach. Learn.2001455321007.6815210.1023/A:1010933404324
Foresee, F.D., Hagan, M.T.: Gauss–Newton approximation to Bayesian regularization. In: International Joint Conference on Neural Networks, pp. 1930–1935 (1997)
ZouHHastieTRegularization and variable selection via the elastic netJ. R. Stat. Soc. Ser B (Stat. Methodol.)200567230132021373271069.6205410.1111/j.1467-9868.2005.00503.x
MoroşanP-DBourdaisRDumurDBuissonJBuilding temperature regulation using a distributed model predictive controlEnergy Build.20104291445145210.1016/j.enbuild.2010.03.014
Sirsat, M.S., García, E.C., Delgado, M.F.: Application of machine learning to agricultural soil data. Ph.D. thesis, Universidade de Santiago de Compostela (2017)
ChenMHaoYHwangKWangLWangLDisease prediction by machine learning over big data from healthcare communitiesIEEE Access201758869887910.1109/ACCESS.2017.2694446
MaloneyKOSchmidMWellerDEApplying additive modelling and gradient boosting to assess the effects of watershed and reach characteristics on riverine assemblagesMethods Ecol. Evol.20123111612810.1111/j.2041-210X.2011.00124.x
HyvarinenAOjaEIndependent component analysis: algorithms and applicationsNeural Netw.20001341143010.1016/S0893-6080(00)00026-5
ZhangTAdaptive forward-backward greedy algorithm for learning sparse representationsIEEE Trans. Inf. Theor.20115774689470828404851365.6228810.1109/TIT.2011.2146690
LiKHongyeSChuJForecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative studyEnergy Build.201143102893289910.1016/j.enbuild.2011.07.010
SmolaAJSchölkopfBBA tutorial on support vector regressionStat. Comput.2004143199222208639810.1023/B:STCO.0000035301.49549.88
Erickson, V.L., Carreira-Perpiñán, M.Á., Cerpa, A.E.: OBSERVE: Occupancy-based system for efficient reduction of HVAC energy. In: Proceedings of the 2011 10th ACM/IEEE International Conference on Information Processing in Sensor Networks, pp. 258–269. IEEE (2011)
CatalinaTVirgoneJBlancoEDevelopment and validation of regression models to predict monthly heating demand for residential buildingsEnergy Build.200840101825183210.1016/j.enbuild.2008.04.001
HuangG-BZhouHDingXZhangRExtreme learning machine for regression and multiclass classificationIEEE Trans. Syst. Man Cybern. Part B Cybern.201242251352910.1109/TSMCB.2011.2168604
Sülo, Idil, K., Seref, R., Dogan, G., Brown, T.: Energy efficient smart buildings: LSTM neural networks for time series prediction. In: 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML), pp. 18–22. IEEE (2019)
WoodSNFast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear modelsJ. R. Stat. Soc.201117333627977341411.6208910.1111/j.1467-9868.2010.00749.x
Quinlan, R.: Combining instance-based and model-based learning. In Proc. Intl. Conf. on Machine Learning, pp. 236–243 (1993)
SantinOGItardLVisscherHThe effect of occupancy and building characteristics on energy use for space and water heating in dutch residential stockEnergy Build.200941111223123210.1016/j.enbuild.2009.07.002
SpechtDFA general regression neural networkIEEE Trans. Neural Netw.1991256857610.1109/72.97934
FriedmanJHGreedy function approximation: a gradient boosting machineAnn. Stat.2001291189123218733281043.6203410.1214/aos/1013203451
PetersAHothornTLausenBipred: Improved predictorsR News2002223336
FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJ. Am. Stat. Assoc.19373220067570163.1098.0210.1080/01621459.1937.10503522
Alawadi, S., Delgado, M.F., Pérez, D.M.: Machine learning algorithms for pattern visualization in classification tasks and for automatic indoor temperature prediction. Ph.D. thesis, Universidade de Santiago de Compostela (2018)
Shanthamallu, U.S., Spanias, A., Tepedelenlioglu, C., Stanley, M.: A brief survey of machine learning methods and their sensor and iot applications. In: 2017 8th International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1–8. IEEE (2017)
RosenzweigCSoleckiWHammerSAMehrotraSCities lead the way in climate-change actionNature2010467731890910.1038/467909a
GoemanJJL-1 penalized estimation in the cox proportional hazards modelBiom. J.201052708427565941207.62185
TangJDengCHuangG-BExtreme learning machine for multilayer perceptronIEEE Trans. Neural Netw. Learn. Syst.2015274809821347684010.1109/TNNLS.2015.2424995
Fernandez-DelgadoMSirsatMSCernadasEAlawadiSBarroSFebrero-BandeMAn extensive experimental survey of regression methodsNeural Netw.2018111113410.1016/j.neunet.2018.12.010
Alawadi, S., Mera, D., Fernández-Delgado, M., Taboada, J.A.: Comparative study of artificial neural network models for forecasting the indoor temperature in smart buildings. In: 2017 2nd International Conference on Smart Cities, pp. 29–38. Springer (2017)
Alzubi, J.A.: Diversity-based boosting algorithm. Int. J. Adv. Comput. Sci. Appl.7(5), 524–529 (2016)
EkiciBBAksoyUTPrediction of building energy consumption by using artificial neural networksAdv. Eng. Softw.20094053563621275.7403810.1016/j.advengsoft.2008.05.003
AlzubiJAResearch article optimal classifier ensemble design based on cooperative game theoryRes. J. Appl. Sci. Eng. Technol.201511121336134310.19026/rjaset.11.2241
AttoueNShahrourIYounesRSmart building: use of the artificial neural network approach for indoor temperature forecastingEnergies201811239510.3390/en11020395
Ben-NakhiAEMahmoudMACooling load prediction for buildings using general regression neural networksEnergy Convers. Manag.200445132127214110.1016/j.enconman.2003.10.009
Meinshausen, N.: Quantregforest: quantile regression forests. R package version 0.2-2 (2007)
GelmanAJakulinAPittauMGSuYSA weakly informative default prior distribution for logistic and other regression modelsAnn. Appl. Stat.2009241360138326556631156.62017
Lawson, C.L., Hanson, R.J.: Solving least squares problems, vol. 15 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM) (1995)
NguyenTAAielloMEnergy intelligent buildings based on user activity: a surveyEnergy Build.20135624425710.1016/j.enbuild.2012.09.005
SongLLangfelderPHorvathSRandom generalized linear model: a highly accurate and interpretable ensemble predictorBMC Bioinform.201314112210.1186/1471-2105-14-1
Alzubi, J., Nayyar, A., Kumar, A.: Machine learning from theory to algorithms: an overview. In: 2018 2nd National Conference
BB Ekici (376_CR24) 2009; 40
P-D Moroşan (376_CR53) 2010; 42
L Breiman (376_CR12) 2001; 45
KF Fong (376_CR29) 2006; 38
K Li (376_CR47) 2011; 43
DF Specht (376_CR66) 1991; 2
GJ Ríos-Moreno (376_CR58) 2007; 16
H Doukas (376_CR22) 2007; 42
M Kuhn (376_CR43) 2008; 28
T Catalina (376_CR14) 2008; 40
376_CR30
376_CR35
H Chun (376_CR17) 2010; 72
376_CR26
CKI Williams (376_CR69) 1998; 20
M Fernandez-Delgado (376_CR27) 2018; 111
C Rosenzweig (376_CR60) 2010; 467
L Breiman (376_CR11) 1996; 24
JH Friedman (376_CR33) 1981; 76
JH Friedman (376_CR32) 2001; 29
JJ Goeman (376_CR38) 2010; 52
JA Alzubi (376_CR7) 2015; 11
A Gelman (376_CR36) 2009; 2
L Song (376_CR65) 2013; 14
376_CR46
H Zhao (376_CR72) 2012; 16
M Chen (376_CR16) 2017; 5
H Zou (376_CR73) 2005; 67
A Hyvarinen (376_CR41) 2000; 13
TA Nguyen (376_CR54) 2013; 56
AJ Smola (376_CR64) 2004; 14
G-B Huang (376_CR40) 2012; 42
OG Santin (376_CR61) 2009; 41
J Jin (376_CR42) 2019; 31
X Chengliang (376_CR18) 2019; 148
AJ Dobson (376_CR20) 1990
AE Ben-Nakhi (376_CR10) 2004; 45
N Attoue (376_CR8) 2018; 11
SSK Kwok (376_CR44) 2011; 46
J Tang (376_CR68) 2015; 27
376_CR51
DJC MacKay (376_CR49) 1992; 4
376_CR57
Q Li (376_CR48) 2009; 86
376_CR56
S De Jong (376_CR19) 1993; 18
P Geurts (376_CR37) 2006; 63
L Breiman (376_CR13) 1984
M Friedman (376_CR34) 1937; 32
376_CR9
376_CR5
376_CR4
376_CR6
T Zhang (376_CR71) 2011; 57
376_CR1
A Aliberti (376_CR3) 2019; 8
376_CR62
376_CR2
376_CR63
376_CR25
P Langley (376_CR45) 1995; 38
376_CR67
B Dong (376_CR21) 2005; 37
376_CR15
376_CR59
SN Wood (376_CR70) 2011; 1
KO Maloney (376_CR50) 2012; 3
AI Dounis (376_CR23) 2009; 13
GE Hinton (376_CR39) 2006; 18
M Fernández-Delgado (376_CR28) 2014; 15
JH Friedman (376_CR31) 1991; 19
A Peters (376_CR55) 2002; 2
I Mizera (376_CR52) 2014; 60
References_xml – reference: AlzubiJAResearch article optimal classifier ensemble design based on cooperative game theoryRes. J. Appl. Sci. Eng. Technol.201511121336134310.19026/rjaset.11.2241
– reference: PetersAHothornTLausenBipred: Improved predictorsR News2002223336
– reference: CatalinaTVirgoneJBlancoEDevelopment and validation of regression models to predict monthly heating demand for residential buildingsEnergy Build.200840101825183210.1016/j.enbuild.2008.04.001
– reference: Meinshausen, N.: Quantregforest: quantile regression forests. R package version 0.2-2 (2007)
– reference: Alawadi, S., Mera, D., Fernández-Delgado, M., Taboada, J.A.: Comparative study of artificial neural network models for forecasting the indoor temperature in smart buildings. In: 2017 2nd International Conference on Smart Cities, pp. 29–38. Springer (2017)
– reference: SmolaAJSchölkopfBBA tutorial on support vector regressionStat. Comput.2004143199222208639810.1023/B:STCO.0000035301.49549.88
– reference: AttoueNShahrourIYounesRSmart building: use of the artificial neural network approach for indoor temperature forecastingEnergies201811239510.3390/en11020395
– reference: EkiciBBAksoyUTPrediction of building energy consumption by using artificial neural networksAdv. Eng. Softw.20094053563621275.7403810.1016/j.advengsoft.2008.05.003
– reference: HyvarinenAOjaEIndependent component analysis: algorithms and applicationsNeural Netw.20001341143010.1016/S0893-6080(00)00026-5
– reference: ATLAS Collaboration et al.: The evolution of boosting algorithms-from machine learning to statistical modelling. Methods Inf. Med. 53(6), 419–427 (2014)
– reference: DoukasHPatlitzianasKDIatropoulosKJohnPIntelligent building energy management system using rule setsBuild. Environ.200742103562356910.1016/j.buildenv.2006.10.024
– reference: NguyenTAAielloMEnergy intelligent buildings based on user activity: a surveyEnergy Build.20135624425710.1016/j.enbuild.2012.09.005
– reference: LangleyPSimonHAApplications of machine learning and rule inductionCommun. ACM19953811546410.1145/219717.219768
– reference: FongKFHanbyVIChowT-THvac system optimization for energy management by evolutionary programmingEnergy Build.200638322023110.1016/j.enbuild.2005.05.008
– reference: WilliamsCKIBarberDBayesian classification with Gaussian processesIEEE Trans. Pattern Anal. Mach. Intell.199820121342135110.1109/34.735807
– reference: FriedmanJHGreedy function approximation: a gradient boosting machineAnn. Stat.2001291189123218733281043.6203410.1214/aos/1013203451
– reference: TangJDengCHuangG-BExtreme learning machine for multilayer perceptronIEEE Trans. Neural Netw. Learn. Syst.2015274809821347684010.1109/TNNLS.2015.2424995
– reference: KuhnMBuilding predictive models in r using the caret packageJ. Stat. Softw.200828512610.18637/jss.v028.i05
– reference: Chambers, J.M.: Linear models, chapter 4. In: Chambers, J.M., Hastie, T.J. (eds.) Wadsworth & Brooks/Cole (1992)
– reference: WoodSNFast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear modelsJ. R. Stat. Soc.201117333627977341411.6208910.1111/j.1467-9868.2010.00749.x
– reference: BreimanLRandom forestsMach. Learn.2001455321007.6815210.1023/A:1010933404324
– reference: SantinOGItardLVisscherHThe effect of occupancy and building characteristics on energy use for space and water heating in dutch residential stockEnergy Build.200941111223123210.1016/j.enbuild.2009.07.002
– reference: FriedmanJHStuetzleWProjection pursuit regressionJ. Am. Stat. Assoc.19817637681782365089210.1080/01621459.1981.10477729
– reference: MacKayDJCBayesian interpolationNeural Comput.199244154470833.6200610.1162/neco.1992.4.3.415
– reference: Quinlan, R.: Combining instance-based and model-based learning. In Proc. Intl. Conf. on Machine Learning, pp. 236–243 (1993)
– reference: Erickson, V.L., Carreira-Perpiñán, M.Á., Cerpa, A.E.: OBSERVE: Occupancy-based system for efficient reduction of HVAC energy. In: Proceedings of the 2011 10th ACM/IEEE International Conference on Information Processing in Sensor Networks, pp. 258–269. IEEE (2011)
– reference: DounisAICaraiscosCAdvanced control systems engineering for energy and comfort management in a building environment a reviewRenew. Sustain. Energy Rev.20091361246126110.1016/j.rser.2008.09.015
– reference: MizeraIKoenkerRConvex optimization in rJ. Stat. Softw.20146051231367.62020
– reference: Alawadi, S., Delgado, M.F., Pérez, D.M.: Machine learning algorithms for pattern visualization in classification tasks and for automatic indoor temperature prediction. Ph.D. thesis, Universidade de Santiago de Compostela (2018)
– reference: Alzubi, J.A.: Diversity-based boosting algorithm. Int. J. Adv. Comput. Sci. Appl.7(5), 524–529 (2016)
– reference: FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJ. Am. Stat. Assoc.19373220067570163.1098.0210.1080/01621459.1937.10503522
– reference: KwokSSKYuenRKKLeeEWMAn intelligent approach to assessing the effect of building occupancy on building cooling load predictionBuil. Environ.20114681681169010.1016/j.buildenv.2011.02.008
– reference: Sülo, Idil, K., Seref, R., Dogan, G., Brown, T.: Energy efficient smart buildings: LSTM neural networks for time series prediction. In: 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML), pp. 18–22. IEEE (2019)
– reference: DongBCaoCLeeSEApplying support vector machines to predict building energy consumption in tropical regionEnergy Build.200537554555310.1016/j.enbuild.2004.09.009
– reference: Alzubi, J., Nayyar, A., Kumar, A.: Machine learning from theory to algorithms: an overview. In: 2018 2nd National Conference on Computational Intelligence (NCCI): Journal of Physics, vol. 1142, p. 012012. IOP Publishing (2018)
– reference: Foresee, F.D., Hagan, M.T.: Gauss–Newton approximation to Bayesian regularization. In: International Joint Conference on Neural Networks, pp. 1930–1935 (1997)
– reference: FriedmanJHMultivariate adaptive regression splinesAnn. Stat.1991191114110918420765.62064
– reference: JinJShuSLinFPrediction of indoor air temperature based on deep learningSens. Mater.201931620292042
– reference: MaloneyKOSchmidMWellerDEApplying additive modelling and gradient boosting to assess the effects of watershed and reach characteristics on riverine assemblagesMethods Ecol. Evol.20123111612810.1111/j.2041-210X.2011.00124.x
– reference: De JongSSIMPLS: an alternative approach to partial least squares regressionChemom. Intell. Lab. Syst.19931825126310.1016/0169-7439(93)85002-X
– reference: HintonGEOsinderoSTehYWA fast learning algorithm for deep belief netsNeural Comput.20061871527155422244851106.6809410.1162/neco.2006.18.7.1527
– reference: LiQMengQCaiJYoshinoHMochidaAApplying support vector machine to predict hourly cooling load in the buildingAppl. Energy200986102249225610.1016/j.apenergy.2008.11.035
– reference: Shanthamallu, U.S., Spanias, A., Tepedelenlioglu, C., Stanley, M.: A brief survey of machine learning methods and their sensor and iot applications. In: 2017 8th International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1–8. IEEE (2017)
– reference: ZouHHastieTRegularization and variable selection via the elastic netJ. R. Stat. Soc. Ser B (Stat. Methodol.)200567230132021373271069.6205410.1111/j.1467-9868.2005.00503.x
– reference: ChengliangXChenHWangJGuoYYuanYImproving prediction performance for indoor temperature in public buildings based on a novel deep learning methodBuild. Environ.201914812813510.1016/j.buildenv.2018.10.062
– reference: ZhangTAdaptive forward-backward greedy algorithm for learning sparse representationsIEEE Trans. Inf. Theor.20115774689470828404851365.6228810.1109/TIT.2011.2146690
– reference: ChunHKelesSSparse partial least squares for simultaneous dimension reduction and variable selectionJ. R. Stat. Soc.20107232527512411411.6218410.1111/j.1467-9868.2009.00723.x
– reference: GelmanAJakulinAPittauMGSuYSA weakly informative default prior distribution for logistic and other regression modelsAnn. Appl. Stat.2009241360138326556631156.62017
– reference: SpechtDFA general regression neural networkIEEE Trans. Neural Netw.1991256857610.1109/72.97934
– reference: García, S., Fernández, A., Benítez, A.D., Herrera, F.: Statistical comparisons by means of non-parametric tests: a case study on genetic based machine learning. In: Proceedings of the II Congreso Español de Informática (CEDI 2007). V Taller Nacional de Minería de Datos y Aprendizaje (TAMIDA), pp. 95–104 (2007)
– reference: DobsonAJAn Introduction to Generalized Linear Models1990LondonChapman and Hall0727.6207410.1007/978-1-4899-7252-1
– reference: ChenMHaoYHwangKWangLWangLDisease prediction by machine learning over big data from healthcare communitiesIEEE Access201758869887910.1109/ACCESS.2017.2694446
– reference: Ríos-MorenoGJTrejo-PereaMCastaneda-MirandaRHernández-GuzmánVMHerrera-RuizGModelling temperature in intelligent buildings by means of autoregressive modelsAutom. Constr.200716571372210.1016/j.autcon.2006.11.003
– reference: Fernández-DelgadoMCernadasEBarroSAmorimDDo we need hundreds of classifiers to solve real world classification problems?J. Mach. Learn. Res.20141513133318132771551319.62005
– reference: ZhaoHMagoulèsFA review on the prediction of building energy consumptionRenew. Sustain. Energy Rev.20121663586359210.1016/j.rser.2012.02.049
– reference: Rodrıguez-Mier, P., Fresquet, M., Mucientes, M., Bugarın, A.: Prediction of indoor temperatures for energy optimization in buildings. In: Conference of the Spanish Association for Artificial Intelligence, pp. 675–684 (2016)
– reference: AlibertiABottaccioliLMaciiEDi CataldoSAcquavivaAPattiEA non-linear autoregressive model for indoor air-temperature predictions in smart buildingsElectronics20198997910.3390/electronics8090979
– reference: GoemanJJL-1 penalized estimation in the cox proportional hazards modelBiom. J.201052708427565941207.62185
– reference: Alzubi, J.A.: Diversity based improved bagging algorithm. In: 2015 1st Proceedings of The International Conference on Engineering & MIS (ICEMIS) 2015, pp. 35–40. ACM (2015)
– reference: SongLLangfelderPHorvathSRandom generalized linear model: a highly accurate and interpretable ensemble predictorBMC Bioinform.201314112210.1186/1471-2105-14-1
– reference: HuangG-BZhouHDingXZhangRExtreme learning machine for regression and multiclass classificationIEEE Trans. Syst. Man Cybern. Part B Cybern.201242251352910.1109/TSMCB.2011.2168604
– reference: Quinlan, J.R. et al.: Learning with continuous classes. In: 1992 5th Australian Joint conference on Artificial Intelligence, vol. 92, pp. 343–348. World Scientific (1992)
– reference: Ben-NakhiAEMahmoudMACooling load prediction for buildings using general regression neural networksEnergy Convers. Manag.200445132127214110.1016/j.enconman.2003.10.009
– reference: BreimanLBagging predictorsMach. Learn.1996241231400858.68080
– reference: GeurtsPErnstDWehenkelLExtremely randomized treesMach. Learn.20066313421110.6812410.1007/s10994-006-6226-1
– reference: RosenzweigCSoleckiWHammerSAMehrotraSCities lead the way in climate-change actionNature2010467731890910.1038/467909a
– reference: Sirsat, M.S., García, E.C., Delgado, M.F.: Application of machine learning to agricultural soil data. Ph.D. thesis, Universidade de Santiago de Compostela (2017)
– reference: BreimanLFriedmanJOlshenRAStoneCJClassification and Regression Trees1984Pacific GroveWadsworth and Brooks0541.62042
– reference: EU. Life-OPERE. http://www.life-opere.org/en. Accessed June 2019
– reference: Fernandez-DelgadoMSirsatMSCernadasEAlawadiSBarroSFebrero-BandeMAn extensive experimental survey of regression methodsNeural Netw.2018111113410.1016/j.neunet.2018.12.010
– reference: LiKHongyeSChuJForecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative studyEnergy Build.201143102893289910.1016/j.enbuild.2011.07.010
– reference: Lawson, C.L., Hanson, R.J.: Solving least squares problems, vol. 15 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM) (1995)
– reference: MoroşanP-DBourdaisRDumurDBuissonJBuilding temperature regulation using a distributed model predictive controlEnergy Build.20104291445145210.1016/j.enbuild.2010.03.014
– ident: 376_CR30
– volume: 2
  start-page: 568
  year: 1991
  ident: 376_CR66
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.97934
– volume: 20
  start-page: 1342
  issue: 12
  year: 1998
  ident: 376_CR69
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.735807
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 376_CR73
  publication-title: J. R. Stat. Soc. Ser B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 72
  start-page: 3
  year: 2010
  ident: 376_CR17
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.1467-9868.2009.00723.x
– ident: 376_CR46
  doi: 10.1137/1.9781611971217
– volume: 38
  start-page: 54
  issue: 11
  year: 1995
  ident: 376_CR45
  publication-title: Commun. ACM
  doi: 10.1145/219717.219768
– ident: 376_CR67
  doi: 10.1109/Deep-ML.2019.00012
– volume: 4
  start-page: 415
  year: 1992
  ident: 376_CR49
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.415
– volume: 42
  start-page: 3562
  issue: 10
  year: 2007
  ident: 376_CR22
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2006.10.024
– ident: 376_CR15
– volume: 16
  start-page: 713
  issue: 5
  year: 2007
  ident: 376_CR58
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2006.11.003
– ident: 376_CR57
– volume: 3
  start-page: 116
  issue: 1
  year: 2012
  ident: 376_CR50
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/j.2041-210X.2011.00124.x
– volume: 24
  start-page: 123
  year: 1996
  ident: 376_CR11
  publication-title: Mach. Learn.
– volume: 45
  start-page: 5
  year: 2001
  ident: 376_CR12
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 56
  start-page: 244
  year: 2013
  ident: 376_CR54
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.09.005
– ident: 376_CR25
– ident: 376_CR9
  doi: 10.3414/ME13-01-0122
– volume: 76
  start-page: 817
  issue: 376
  year: 1981
  ident: 376_CR33
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1981.10477729
– volume: 40
  start-page: 356
  issue: 5
  year: 2009
  ident: 376_CR24
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2008.05.003
– volume: 111
  start-page: 11
  year: 2018
  ident: 376_CR27
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.12.010
– volume: 11
  start-page: 1336
  issue: 12
  year: 2015
  ident: 376_CR7
  publication-title: Res. J. Appl. Sci. Eng. Technol.
  doi: 10.19026/rjaset.11.2241
– volume: 13
  start-page: 1246
  issue: 6
  year: 2009
  ident: 376_CR23
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2008.09.015
– volume: 2
  start-page: 1360
  issue: 4
  year: 2009
  ident: 376_CR36
  publication-title: Ann. Appl. Stat.
– volume: 19
  start-page: 1
  issue: 1
  year: 1991
  ident: 376_CR31
  publication-title: Ann. Stat.
– ident: 376_CR63
– volume: 27
  start-page: 809
  issue: 4
  year: 2015
  ident: 376_CR68
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2424995
– volume: 11
  start-page: 395
  issue: 2
  year: 2018
  ident: 376_CR8
  publication-title: Energies
  doi: 10.3390/en11020395
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 376_CR40
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
  doi: 10.1109/TSMCB.2011.2168604
– ident: 376_CR1
– ident: 376_CR35
– volume: 52
  start-page: 70
  year: 2010
  ident: 376_CR38
  publication-title: Biom. J.
  doi: 10.1002/bimj.200900028
– volume-title: Classification and Regression Trees
  year: 1984
  ident: 376_CR13
– volume: 32
  start-page: 675
  issue: 200
  year: 1937
  ident: 376_CR34
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1937.10503522
– ident: 376_CR26
– ident: 376_CR51
– ident: 376_CR5
  doi: 10.1145/2832987.2833043
– volume: 2
  start-page: 33
  issue: 2
  year: 2002
  ident: 376_CR55
  publication-title: R News
– volume: 15
  start-page: 3133
  issue: 1
  year: 2014
  ident: 376_CR28
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 8869
  year: 2017
  ident: 376_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2694446
– ident: 376_CR4
  doi: 10.1088/1742-6596/1142/1/012012
– volume: 1
  start-page: 3
  issue: 73
  year: 2011
  ident: 376_CR70
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.1467-9868.2010.00749.x
– volume-title: An Introduction to Generalized Linear Models
  year: 1990
  ident: 376_CR20
  doi: 10.1007/978-1-4899-7252-1
– volume: 13
  start-page: 411
  year: 2000
  ident: 376_CR41
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 31
  start-page: 2029
  issue: 6
  year: 2019
  ident: 376_CR42
  publication-title: Sens. Mater.
– volume: 37
  start-page: 545
  issue: 5
  year: 2005
  ident: 376_CR21
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2004.09.009
– volume: 14
  start-page: 1
  issue: 1
  year: 2013
  ident: 376_CR65
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-14-1
– ident: 376_CR59
– volume: 16
  start-page: 3586
  issue: 6
  year: 2012
  ident: 376_CR72
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.02.049
– volume: 60
  start-page: 1
  issue: 5
  year: 2014
  ident: 376_CR52
  publication-title: J. Stat. Softw.
– ident: 376_CR56
  doi: 10.1016/B978-1-55860-307-3.50037-X
– ident: 376_CR6
– volume: 29
  start-page: 1189
  year: 2001
  ident: 376_CR32
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 467
  start-page: 909
  issue: 7318
  year: 2010
  ident: 376_CR60
  publication-title: Nature
  doi: 10.1038/467909a
– volume: 86
  start-page: 2249
  issue: 10
  year: 2009
  ident: 376_CR48
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2008.11.035
– volume: 46
  start-page: 1681
  issue: 8
  year: 2011
  ident: 376_CR44
  publication-title: Buil. Environ.
  doi: 10.1016/j.buildenv.2011.02.008
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 376_CR39
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 41
  start-page: 1223
  issue: 11
  year: 2009
  ident: 376_CR61
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2009.07.002
– volume: 148
  start-page: 128
  year: 2019
  ident: 376_CR18
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.10.062
– ident: 376_CR2
  doi: 10.1007/978-3-319-59513-9_4
– volume: 38
  start-page: 220
  issue: 3
  year: 2006
  ident: 376_CR29
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2005.05.008
– volume: 28
  start-page: 1
  issue: 5
  year: 2008
  ident: 376_CR43
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v028.i05
– volume: 43
  start-page: 2893
  issue: 10
  year: 2011
  ident: 376_CR47
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.07.010
– volume: 8
  start-page: 979
  issue: 9
  year: 2019
  ident: 376_CR3
  publication-title: Electronics
  doi: 10.3390/electronics8090979
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  ident: 376_CR37
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6226-1
– volume: 18
  start-page: 251
  year: 1993
  ident: 376_CR19
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(93)85002-X
– volume: 42
  start-page: 1445
  issue: 9
  year: 2010
  ident: 376_CR53
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.03.014
– ident: 376_CR62
  doi: 10.1109/IISA.2017.8316459
– volume: 45
  start-page: 2127
  issue: 13
  year: 2004
  ident: 376_CR10
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2003.10.009
– volume: 40
  start-page: 1825
  issue: 10
  year: 2008
  ident: 376_CR14
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2008.04.001
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  ident: 376_CR64
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 57
  start-page: 4689
  issue: 7
  year: 2011
  ident: 376_CR71
  publication-title: IEEE Trans. Inf. Theor.
  doi: 10.1109/TIT.2011.2146690
SSID ssj0001072206
ssib031263264
Score 2.501882
Snippet The international community has largely recognized that the Earth’s climate is changing. Mitigating its global effects requires international actions. The...
The international community has largely recognized that the Earth's climate is changing. Mitigating its global effects requires international actions. The...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 689
SubjectTerms Air conditioning
Algorithms
Buildings
Climate action
Economics and Management
Energy
Energy consumption
Energy efficiency
Energy management systems
Energy Policy
Energy Systems
Greenhouse gases
Households
HVAC
HVAC equipment
Machine learning
Operations Research/Decision Theory
Optimization
Original Paper
Smart buildings
User satisfaction
Weather forecasting
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yPejB3-J0Sg560kCbpk1zHOrwIENQx24hydo5cKusU_zzzcvSVUUGeuglbVP68pL3veS97yF0xnMDKJ2SnOuAsFhQIlIVEMqViZNBoHjmSFzveLeb9vvi3ieFlVW0e3Uk6VbqOtnN2hJOwN0B0pSEWOS4GgPbDPjoD71Ki6IQKMi9E-B2WgJOqSuyCdTwJBIJ99kzv3f73ULVsHNxUvqDVdRZos7W__5hG2165Inbc1XZQSvZZBdtfOEj3EOqjc2iLiEucjx2oZYZ9rUlhli9DIvpaPY8LrFFu3BlRpUQOo2tc1_YJuC68kTNtgmXY6ubWPvi2-U-eurcPF7dEl-DgRg7u2fWgMXahEwb61oYa9mMq20kWM4DZaFczoQa6FjHKqEqMhZ95rHI7RqiRDZIFdPRAWpMikl2iLACdMS1SKOMM6ETzVLDkoFQikeCqaiJwkru0niCcqiT8SJramUQn7Tik0588qOJLhbvvM7pOZY-3aqGU_qpWkqaCB4K4CFrostq1Orby3o7n6vB4stA1X096rVlMR3KMdB0RynlR3_r9hitU0ixcEGGLdSYTd-yE7Rm3mejcnrqVP0Tesj3Kw
  priority: 102
  providerName: Springer Nature
Title A comparison of machine learning algorithms for forecasting indoor temperature in smart buildings
URI https://link.springer.com/article/10.1007/s12667-020-00376-x
https://www.proquest.com/docview/2697197036
https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-13827
Volume 13
WOSCitedRecordID wos000509132000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1868-3975
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001072206
  issn: 1868-3975
  databaseCode: RSV
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcWl4VW0rlA5zAIus4cXxC25c4wGrVQilcLNtJlkrdTdksqD-_M15nFzjshUMsxUlsRTP2zNjj7wN4pWpPXrrgtXIJl5kWXBc24UJZn-VlYlUVQFw_quGwuLzUo7jg1sa0ym5ODBN12XhaI38ncq36muCi3t_85MQaRburkUJjA7YIqQz1fOvwZDg66zQq7RMceQwIwqpLooQIhJsEE89Tnat4kmZxng7NleIUUREuS85v_7ZWKxd0uWv6D8JosEqnO__7P49gO_qjbLBQoMdwr5o-gYd_oBQ-BTtgfslWyJqaTUICZsUi48SY2esxNj3_MWkZ-sB0Vd62lFDNMORvsIoQsCJ8M1axdoIay1yk5G6fwZfTk89HH3hkZuAex_wczVrmfF86jwGHR3vnA-ORlrVKLDp4tdS2dJnLbC5s6tEnrTNd48xidVUWVrp0FzanzbR6DsySz6ScLtJKSe1yJwsv81Jbq1ItbdqDficB4yNsObFnXJsV4DJJzaDUTJCaue3Bm-U3NwvQjrVv73cSMnEAt2Ylnh687YS9eryutdcLhVj2TADex1cXA9PMxmZC4N1pIdTe-l5fwANBBy1CquE-bM5nv6qXcN__nl-1swPYUF-_HURlx7tPyRGV6hzLUfYdy7PzizvDuQbV
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAwk48ButMMAHdgJrqePE8QGhijFtWql2GGjiYmzHKZXWZmsKjH-KvxE_x2mBQ287cMjFSRw5_t7zs_38fQAvRWUxSme0EiahPJOMykInlAlts7xMtHCBxHUoRqPi9FQeb8Cv7iwMplV2PjE46rK2uEa-y3Ip-hLpot6eX1BUjcLd1U5Co4XFkfv5w0_ZmjeHe75_dxjbf3_y7oBGVQFqPV4X3iVnxva5sT5Ytt5X26DWI3klEu2Dk4pLXZrMZDpnOrU-nqoyWXmr0NKVheYm9fVeg-ucswQVE46zzx1-0z6Sn8fpR1jjSQRjQd4TSelpKnMRz-20p_f84Cgozt-QBSanl3-PjauAd7lH-w-faRgD9-_-b3_vHtyJ0TYZtOZxHzbc7AHc_oOD8SHoAbFLLUZSV2Qa0ksdiXoaY6LPxr4pi6_ThvgIHy9ndYPp4mQyK2tfhPxekZzaF5Fm6u2RmCg43jyCj1fSxsewOatnbguIxohQGFmkTnBpcsMLy_NSai1SyXXag37X48pGUnbUBjlTKzppRInyKFEBJeqyB6-W75y3lCRrn97uEKGie2rUCg49eN2Ba3V7XW07LQCXX0Z68r3Jp4Gq52M1RWrytGDiyfqvvoCbBycfhmp4ODp6CrcYHikJSZXbsLmYf3PP4Ib9vpg08-fBwAh8uWpM_gZvBlxM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAyF24OcQhQE-sBNYSx0njg8IVSsV06ZqB0C7GdtxSqW12ZoC41_jr8PPcVrg0NsOHHJxEkdJvvf8OXn-PoBXorLI0hmthEkozySjstAJZULbLC8TLVwQcT0R43FxdiZPt-BXtxYGyyq7nBgSdVlb_EZ-wHIp-hLlog6qWBZxOhy9u7ik6CCFf1o7O40WIsfu5w8_fWveHg39u95nbPT-4-EHGh0GqPXYXfr0nBnb58Z64mx93rbBuUfySiTaE5WKS12azGQ6Zzq1nltVmax8hGjpykJzk_p-b8BNwT2PwLLB5LDDctpHIfQ4FQnfexLBWLD6RIF6mspcxDU87Uo-P1AKinM5VITJ6dXf4-Sa_K7-1_6jbRrGw9G9__lJ3oe7kYWTQRs2D2DLzR_Czh_ajI9AD4hdeTSSuiKzUHbqSPTZmBB9PvG3svw6a4hn_rg5qxssIyfTeVn7JtT9iqLVvok0Mx-nxEQj8mYXPl3LPT6G7Xk9d0-AaGSKwsgidYJLkxteWJ6XUmuRSq7THvS7t69sFGtHz5BztZaZRsQojxgVEKOuevB6dc5FK1Wy8ei9Dh0qpq1GraHRgzcd0Na7N_W234JxdWWULR9OPw9UvZioGUqWpwUTTzdf9SXc9lBUJ0fj42dwh-FKk1BruQfby8U39xxu2e_LabN4EWKNwJfrhuRvZwBk1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+machine+learning+algorithms+for+forecasting+indoor+temperature+in+smart+buildings&rft.jtitle=Energy+systems+%28Berlin.+Periodical%29&rft.au=Alawadi%2C+Sadi&rft.au=Mera%2C+David&rft.au=Fern%C3%A1ndez-Delgado%2C+Manuel&rft.au=Alkhabbas%2C+Fahed&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-3967&rft.eissn=1868-3975&rft.volume=13&rft.issue=3&rft.spage=689&rft.epage=705&rft_id=info:doi/10.1007%2Fs12667-020-00376-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-3967&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-3967&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-3967&client=summon