A comparison of machine learning algorithms for forecasting indoor temperature in smart buildings
The international community has largely recognized that the Earth’s climate is changing. Mitigating its global effects requires international actions. The European Union (EU) is leading several initiatives focused on reducing the problems. Specifically, the Climate Action tries to both decrease EU g...
Uložené v:
| Vydané v: | Energy systems (Berlin. Periodical) Ročník 13; číslo 3; s. 689 - 705 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1868-3967, 1868-3975, 1868-3975 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The international community has largely recognized that the Earth’s climate is changing. Mitigating its global effects requires international actions. The European Union (EU) is leading several initiatives focused on reducing the problems. Specifically, the Climate Action tries to both decrease EU greenhouse gas emissions and improve energy efficiency by reducing the amount of primary energy consumed, and it has pointed to the development of efficient building energy management systems as key. In traditional buildings, households are responsible for continuously monitoring and controlling the installed Heating, Ventilation, and Air Conditioning (HVAC) system. Unnecessary energy consumption might occur due to, for example, forgetting devices turned on, which overwhelms users due to the need to tune the devices manually. Nowadays, smart buildings are automating this process by automatically tuning HVAC systems according to user preferences in order to improve user satisfaction and optimize energy consumption. Towards achieving this goal, in this paper, we compare 36 Machine Learning algorithms that could be used to forecast indoor temperature in a smart building. More specifically, we run experiments using real data to compare their accuracy in terms of R-coefficient and Root Mean Squared Error and their performance in terms of Friedman rank. The results reveal that the ExtraTrees regressor has obtained the highest average accuracy (0.97%) and performance (0,058%) over all horizons. |
|---|---|
| AbstractList | The international community has largely recognized that the Earth’s climate is changing. Mitigating its global effects requires international actions. The European Union (EU) is leading several initiatives focused on reducing the problems. Specifically, the Climate Action tries to both decrease EU greenhouse gas emissions and improve energy efficiency by reducing the amount of primary energy consumed, and it has pointed to the development of efficient building energy management systems as key. In traditional buildings, households are responsible for continuously monitoring and controlling the installed Heating, Ventilation, and Air Conditioning (HVAC) system. Unnecessary energy consumption might occur due to, for example, forgetting devices turned on, which overwhelms users due to the need to tune the devices manually. Nowadays, smart buildings are automating this process by automatically tuning HVAC systems according to user preferences in order to improve user satisfaction and optimize energy consumption. Towards achieving this goal, in this paper, we compare 36 Machine Learning algorithms that could be used to forecast indoor temperature in a smart building. More specifically, we run experiments using real data to compare their accuracy in terms of R-coefficient and Root Mean Squared Error and their performance in terms of Friedman rank. The results reveal that the ExtraTrees regressor has obtained the highest average accuracy (0.97%) and performance (0,058%) over all horizons. |
| Author | Olsson, Carl Magnus Mera, David Alkhabbas, Fahed Davidsson, Paul Alawadi, Sadi Fernández-Delgado, Manuel |
| Author_xml | – sequence: 1 givenname: Sadi orcidid: 0000-0002-5380-4358 surname: Alawadi fullname: Alawadi, Sadi email: sadi.alawadi@mau.se organization: Internet of Things and People Research Center Department of Computer Science and Media Technology, Malmö University – sequence: 2 givenname: David surname: Mera fullname: Mera, David organization: Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS), Universidade de Santiago de Compostela – sequence: 3 givenname: Manuel surname: Fernández-Delgado fullname: Fernández-Delgado, Manuel organization: Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS), Universidade de Santiago de Compostela – sequence: 4 givenname: Fahed surname: Alkhabbas fullname: Alkhabbas, Fahed organization: Internet of Things and People Research Center Department of Computer Science and Media Technology, Malmö University – sequence: 5 givenname: Carl Magnus surname: Olsson fullname: Olsson, Carl Magnus organization: Internet of Things and People Research Center Department of Computer Science and Media Technology, Malmö University – sequence: 6 givenname: Paul surname: Davidsson fullname: Davidsson, Paul organization: Internet of Things and People Research Center Department of Computer Science and Media Technology, Malmö University |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-13827$$DView record from Swedish Publication Index |
| BookMark | eNp9kUtv3CAUhVGVSJ08_kBXlrKN0wvYYC9H0zwqjdRN0y26ZvCEkQ0OYDX992UyeUhZZIFAh-9cnatzQo6cd4aQbxSuKID8HikTQpbAoATgUpRPX8iCNqIpeSvro7e3kF_JeYw7AKAgGQOxILgstB8nDDZ6V_i-GFE_WGeKwWBw1m0LHLY-2PQwxqL3YX-Mxpj2X9ZtfJaSGScTMM3BZKmII4ZUdLMdNhmKZ-S4xyGa85f7lNzfXP9e3ZXrX7c_V8t1qSuAVDZQd5pWneYgNAipgTWctVUvAangfdXipqu7GgVDrhuAvm57DjW2ZtNg1fFTcnmYG_-aae7UFGwO8k95tOqH_bNUPmzViLOivGEy4xcHfAr-cTYxqZ2fg8sJFROtpK0ELjLVHCgdfIzB9ErbhMl6lwLaQVFQ-wrUoQKVK1DPFainbGUfrK-JPjXxlyUy7LYmvKf6xPUfu5mdBw |
| CitedBy_id | crossref_primary_10_3390_buildings13061542 crossref_primary_10_3390_math11163527 crossref_primary_10_1051_e3sconf_202235002002 crossref_primary_10_1109_JSEN_2023_3278719 crossref_primary_10_3390_electronics11193122 crossref_primary_10_1109_ACCESS_2020_3037081 crossref_primary_10_3390_buildings15071008 crossref_primary_10_3390_systems11090456 crossref_primary_10_3390_app15147682 crossref_primary_10_1186_s40537_021_00549_0 crossref_primary_10_3390_electronics9091347 crossref_primary_10_3390_buildings12070933 crossref_primary_10_3390_agriculture12091473 crossref_primary_10_3390_su142013358 crossref_primary_10_1088_1757_899X_1074_1_012022 crossref_primary_10_3390_su14137734 crossref_primary_10_1007_s12667_021_00458_4 crossref_primary_10_1109_ACCESS_2020_3009467 crossref_primary_10_1177_01436244251349636 crossref_primary_10_1016_j_apenergy_2024_124994 crossref_primary_10_1109_JIOT_2025_3580378 crossref_primary_10_3390_buildings14092796 crossref_primary_10_1016_j_enbuild_2024_114972 crossref_primary_10_1109_JIOT_2021_3057919 crossref_primary_10_1109_ACCESS_2025_3605843 crossref_primary_10_1155_2022_7104752 crossref_primary_10_1007_s12273_023_0984_6 crossref_primary_10_1016_j_seta_2023_103271 crossref_primary_10_3390_en14133900 crossref_primary_10_1186_s40494_022_00805_3 crossref_primary_10_3390_app11156722 crossref_primary_10_3390_en17174401 crossref_primary_10_1007_s40996_021_00742_4 crossref_primary_10_1016_j_compag_2024_109591 crossref_primary_10_1016_j_ecolecon_2023_108028 crossref_primary_10_1007_s10462_022_10286_2 crossref_primary_10_3390_fi13100242 crossref_primary_10_3390_en15124213 crossref_primary_10_3390_info15020094 crossref_primary_10_1080_17452007_2023_2254302 crossref_primary_10_3390_buildings13071850 crossref_primary_10_1109_TII_2023_3268467 crossref_primary_10_1007_s00366_020_01074_z crossref_primary_10_1016_j_seta_2022_102697 crossref_primary_10_3390_sym14010160 crossref_primary_10_1080_23744731_2023_2239081 crossref_primary_10_1007_s00521_024_10477_8 crossref_primary_10_3390_app14177534 crossref_primary_10_3390_atmos16030315 crossref_primary_10_1080_19401493_2022_2099465 |
| Cites_doi | 10.1109/72.97934 10.1109/34.735807 10.1111/j.1467-9868.2005.00503.x 10.1111/j.1467-9868.2009.00723.x 10.1137/1.9781611971217 10.1145/219717.219768 10.1109/Deep-ML.2019.00012 10.1162/neco.1992.4.3.415 10.1016/j.buildenv.2006.10.024 10.1016/j.autcon.2006.11.003 10.1111/j.2041-210X.2011.00124.x 10.1023/A:1010933404324 10.1016/j.enbuild.2012.09.005 10.3414/ME13-01-0122 10.1080/01621459.1981.10477729 10.1016/j.advengsoft.2008.05.003 10.1016/j.neunet.2018.12.010 10.19026/rjaset.11.2241 10.1016/j.rser.2008.09.015 10.1109/TNNLS.2015.2424995 10.3390/en11020395 10.1109/TSMCB.2011.2168604 10.1002/bimj.200900028 10.1080/01621459.1937.10503522 10.1145/2832987.2833043 10.1109/ACCESS.2017.2694446 10.1088/1742-6596/1142/1/012012 10.1111/j.1467-9868.2010.00749.x 10.1007/978-1-4899-7252-1 10.1016/S0893-6080(00)00026-5 10.1016/j.enbuild.2004.09.009 10.1186/1471-2105-14-1 10.1016/j.rser.2012.02.049 10.1016/B978-1-55860-307-3.50037-X 10.1214/aos/1013203451 10.1038/467909a 10.1016/j.apenergy.2008.11.035 10.1016/j.buildenv.2011.02.008 10.1162/neco.2006.18.7.1527 10.1016/j.enbuild.2009.07.002 10.1016/j.buildenv.2018.10.062 10.1007/978-3-319-59513-9_4 10.1016/j.enbuild.2005.05.008 10.18637/jss.v028.i05 10.1016/j.enbuild.2011.07.010 10.3390/electronics8090979 10.1007/s10994-006-6226-1 10.1016/0169-7439(93)85002-X 10.1016/j.enbuild.2010.03.014 10.1109/IISA.2017.8316459 10.1016/j.enconman.2003.10.009 10.1016/j.enbuild.2008.04.001 10.1023/B:STCO.0000035301.49549.88 10.1109/TIT.2011.2146690 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7TB 7WY 7WZ 7XB 87Z 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS BENPR BEZIV BGLVJ BHPHI BKSAR CCPQU DWQXO FR3 FRNLG F~G HCIFZ K60 K6~ KR7 L.- L6V M0C M7S P5Z P62 PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U ADTPV AOWAS D8T ZZAVC |
| DOI | 10.1007/s12667-020-00376-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Business Premium Collection ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection Civil Engineering Abstracts ABI/INFORM Global Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1868-3975 |
| EndPage | 705 |
| ExternalDocumentID | oai_DiVA_org_mau_13827 10_1007_s12667_020_00376_x |
| GrantInformation_xml | – fundername: Malmö University |
| GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 3V. 4.4 406 408 409 40D 7WY 8FE 8FG 8FH 8FL 8UJ 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ C6C CCPQU CSCUP DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KOV L6V LK5 LLZTM M0C M4Y M7R M7S NPVJJ NQJWS NU0 O9- O93 O9J P62 P9P PCBAR PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S1Z S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7Y ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7TB 7XB 8FD 8FK FR3 KR7 L.- PKEHL PQEST PQUKI PRINS Q9U ADTPV AOWAS D8T ZZAVC |
| ID | FETCH-LOGICAL-c400t-805bc14bc306c067c0283294f70a163f49adb5b5a62a3c800f59f305a9ed8a4b3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509132000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1868-3967 1868-3975 |
| IngestDate | Tue Nov 04 16:58:46 EST 2025 Tue Dec 02 15:57:09 EST 2025 Tue Nov 18 22:17:49 EST 2025 Sat Nov 29 05:00:29 EST 2025 Fri Feb 21 02:45:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Smart buildings Time series prediction Energy efficiency Internet of Things Machine Learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-805bc14bc306c067c0283294f70a163f49adb5b5a62a3c800f59f305a9ed8a4b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5380-4358 |
| OpenAccessLink | https://link.springer.com/10.1007/s12667-020-00376-x |
| PQID | 2697197036 |
| PQPubID | 1486346 |
| PageCount | 17 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_mau_13827 proquest_journals_2697197036 crossref_citationtrail_10_1007_s12667_020_00376_x crossref_primary_10_1007_s12667_020_00376_x springer_journals_10_1007_s12667_020_00376_x |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Gainesville |
| PublicationSubtitle | Optimization, Modeling, Simulation, and Economic Aspects |
| PublicationTitle | Energy systems (Berlin. Periodical) |
| PublicationTitleAbbrev | Energy Syst |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | De JongSSIMPLS: an alternative approach to partial least squares regressionChemom. Intell. Lab. Syst.19931825126310.1016/0169-7439(93)85002-X Fernández-DelgadoMCernadasEBarroSAmorimDDo we need hundreds of classifiers to solve real world classification problems?J. Mach. Learn. Res.20141513133318132771551319.62005 LiQMengQCaiJYoshinoHMochidaAApplying support vector machine to predict hourly cooling load in the buildingAppl. Energy200986102249225610.1016/j.apenergy.2008.11.035 MizeraIKoenkerRConvex optimization in rJ. Stat. Softw.20146051231367.62020 FongKFHanbyVIChowT-THvac system optimization for energy management by evolutionary programmingEnergy Build.200638322023110.1016/j.enbuild.2005.05.008 HintonGEOsinderoSTehYWA fast learning algorithm for deep belief netsNeural Comput.20061871527155422244851106.6809410.1162/neco.2006.18.7.1527 Rodrıguez-Mier, P., Fresquet, M., Mucientes, M., Bugarın, A.: Prediction of indoor temperatures for energy optimization in buildings. In: Conference of the Spanish Association for Artificial Intelligence, pp. 675–684 (2016) LangleyPSimonHAApplications of machine learning and rule inductionCommun. ACM19953811546410.1145/219717.219768 ATLAS Collaboration et al.: The evolution of boosting algorithms-from machine learning to statistical modelling. Methods Inf. Med. 53(6), 419–427 (2014) FriedmanJHStuetzleWProjection pursuit regressionJ. Am. Stat. Assoc.19817637681782365089210.1080/01621459.1981.10477729 ChunHKelesSSparse partial least squares for simultaneous dimension reduction and variable selectionJ. R. Stat. Soc.20107232527512411411.6218410.1111/j.1467-9868.2009.00723.x ZhaoHMagoulèsFA review on the prediction of building energy consumptionRenew. Sustain. Energy Rev.20121663586359210.1016/j.rser.2012.02.049 GeurtsPErnstDWehenkelLExtremely randomized treesMach. Learn.20066313421110.6812410.1007/s10994-006-6226-1 García, S., Fernández, A., Benítez, A.D., Herrera, F.: Statistical comparisons by means of non-parametric tests: a case study on genetic based machine learning. In: Proceedings of the II Congreso Español de Informática (CEDI 2007). V Taller Nacional de Minería de Datos y Aprendizaje (TAMIDA), pp. 95–104 (2007) AlibertiABottaccioliLMaciiEDi CataldoSAcquavivaAPattiEA non-linear autoregressive model for indoor air-temperature predictions in smart buildingsElectronics20198997910.3390/electronics8090979 BreimanLFriedmanJOlshenRAStoneCJClassification and Regression Trees1984Pacific GroveWadsworth and Brooks0541.62042 WilliamsCKIBarberDBayesian classification with Gaussian processesIEEE Trans. Pattern Anal. Mach. Intell.199820121342135110.1109/34.735807 Ríos-MorenoGJTrejo-PereaMCastaneda-MirandaRHernández-GuzmánVMHerrera-RuizGModelling temperature in intelligent buildings by means of autoregressive modelsAutom. Constr.200716571372210.1016/j.autcon.2006.11.003 KwokSSKYuenRKKLeeEWMAn intelligent approach to assessing the effect of building occupancy on building cooling load predictionBuil. Environ.20114681681169010.1016/j.buildenv.2011.02.008 Quinlan, J.R. et al.: Learning with continuous classes. In: 1992 5th Australian Joint conference on Artificial Intelligence, vol. 92, pp. 343–348. World Scientific (1992) Alzubi, J.A.: Diversity based improved bagging algorithm. In: 2015 1st Proceedings of The International Conference on Engineering & MIS (ICEMIS) 2015, pp. 35–40. ACM (2015) ChengliangXChenHWangJGuoYYuanYImproving prediction performance for indoor temperature in public buildings based on a novel deep learning methodBuild. Environ.201914812813510.1016/j.buildenv.2018.10.062 BreimanLRandom forestsMach. Learn.2001455321007.6815210.1023/A:1010933404324 Foresee, F.D., Hagan, M.T.: Gauss–Newton approximation to Bayesian regularization. In: International Joint Conference on Neural Networks, pp. 1930–1935 (1997) ZouHHastieTRegularization and variable selection via the elastic netJ. R. Stat. Soc. Ser B (Stat. Methodol.)200567230132021373271069.6205410.1111/j.1467-9868.2005.00503.x MoroşanP-DBourdaisRDumurDBuissonJBuilding temperature regulation using a distributed model predictive controlEnergy Build.20104291445145210.1016/j.enbuild.2010.03.014 Sirsat, M.S., García, E.C., Delgado, M.F.: Application of machine learning to agricultural soil data. Ph.D. thesis, Universidade de Santiago de Compostela (2017) ChenMHaoYHwangKWangLWangLDisease prediction by machine learning over big data from healthcare communitiesIEEE Access201758869887910.1109/ACCESS.2017.2694446 MaloneyKOSchmidMWellerDEApplying additive modelling and gradient boosting to assess the effects of watershed and reach characteristics on riverine assemblagesMethods Ecol. Evol.20123111612810.1111/j.2041-210X.2011.00124.x HyvarinenAOjaEIndependent component analysis: algorithms and applicationsNeural Netw.20001341143010.1016/S0893-6080(00)00026-5 ZhangTAdaptive forward-backward greedy algorithm for learning sparse representationsIEEE Trans. Inf. Theor.20115774689470828404851365.6228810.1109/TIT.2011.2146690 LiKHongyeSChuJForecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative studyEnergy Build.201143102893289910.1016/j.enbuild.2011.07.010 SmolaAJSchölkopfBBA tutorial on support vector regressionStat. Comput.2004143199222208639810.1023/B:STCO.0000035301.49549.88 Erickson, V.L., Carreira-Perpiñán, M.Á., Cerpa, A.E.: OBSERVE: Occupancy-based system for efficient reduction of HVAC energy. In: Proceedings of the 2011 10th ACM/IEEE International Conference on Information Processing in Sensor Networks, pp. 258–269. IEEE (2011) CatalinaTVirgoneJBlancoEDevelopment and validation of regression models to predict monthly heating demand for residential buildingsEnergy Build.200840101825183210.1016/j.enbuild.2008.04.001 HuangG-BZhouHDingXZhangRExtreme learning machine for regression and multiclass classificationIEEE Trans. Syst. Man Cybern. Part B Cybern.201242251352910.1109/TSMCB.2011.2168604 Sülo, Idil, K., Seref, R., Dogan, G., Brown, T.: Energy efficient smart buildings: LSTM neural networks for time series prediction. In: 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML), pp. 18–22. IEEE (2019) WoodSNFast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear modelsJ. R. Stat. Soc.201117333627977341411.6208910.1111/j.1467-9868.2010.00749.x Quinlan, R.: Combining instance-based and model-based learning. In Proc. Intl. Conf. on Machine Learning, pp. 236–243 (1993) SantinOGItardLVisscherHThe effect of occupancy and building characteristics on energy use for space and water heating in dutch residential stockEnergy Build.200941111223123210.1016/j.enbuild.2009.07.002 SpechtDFA general regression neural networkIEEE Trans. Neural Netw.1991256857610.1109/72.97934 FriedmanJHGreedy function approximation: a gradient boosting machineAnn. Stat.2001291189123218733281043.6203410.1214/aos/1013203451 PetersAHothornTLausenBipred: Improved predictorsR News2002223336 FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJ. Am. Stat. Assoc.19373220067570163.1098.0210.1080/01621459.1937.10503522 Alawadi, S., Delgado, M.F., Pérez, D.M.: Machine learning algorithms for pattern visualization in classification tasks and for automatic indoor temperature prediction. Ph.D. thesis, Universidade de Santiago de Compostela (2018) Shanthamallu, U.S., Spanias, A., Tepedelenlioglu, C., Stanley, M.: A brief survey of machine learning methods and their sensor and iot applications. In: 2017 8th International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1–8. IEEE (2017) RosenzweigCSoleckiWHammerSAMehrotraSCities lead the way in climate-change actionNature2010467731890910.1038/467909a GoemanJJL-1 penalized estimation in the cox proportional hazards modelBiom. J.201052708427565941207.62185 TangJDengCHuangG-BExtreme learning machine for multilayer perceptronIEEE Trans. Neural Netw. Learn. Syst.2015274809821347684010.1109/TNNLS.2015.2424995 Fernandez-DelgadoMSirsatMSCernadasEAlawadiSBarroSFebrero-BandeMAn extensive experimental survey of regression methodsNeural Netw.2018111113410.1016/j.neunet.2018.12.010 Alawadi, S., Mera, D., Fernández-Delgado, M., Taboada, J.A.: Comparative study of artificial neural network models for forecasting the indoor temperature in smart buildings. In: 2017 2nd International Conference on Smart Cities, pp. 29–38. Springer (2017) Alzubi, J.A.: Diversity-based boosting algorithm. Int. J. Adv. Comput. Sci. Appl.7(5), 524–529 (2016) EkiciBBAksoyUTPrediction of building energy consumption by using artificial neural networksAdv. Eng. Softw.20094053563621275.7403810.1016/j.advengsoft.2008.05.003 AlzubiJAResearch article optimal classifier ensemble design based on cooperative game theoryRes. J. Appl. Sci. Eng. Technol.201511121336134310.19026/rjaset.11.2241 AttoueNShahrourIYounesRSmart building: use of the artificial neural network approach for indoor temperature forecastingEnergies201811239510.3390/en11020395 Ben-NakhiAEMahmoudMACooling load prediction for buildings using general regression neural networksEnergy Convers. Manag.200445132127214110.1016/j.enconman.2003.10.009 Meinshausen, N.: Quantregforest: quantile regression forests. R package version 0.2-2 (2007) GelmanAJakulinAPittauMGSuYSA weakly informative default prior distribution for logistic and other regression modelsAnn. Appl. Stat.2009241360138326556631156.62017 Lawson, C.L., Hanson, R.J.: Solving least squares problems, vol. 15 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM) (1995) NguyenTAAielloMEnergy intelligent buildings based on user activity: a surveyEnergy Build.20135624425710.1016/j.enbuild.2012.09.005 SongLLangfelderPHorvathSRandom generalized linear model: a highly accurate and interpretable ensemble predictorBMC Bioinform.201314112210.1186/1471-2105-14-1 Alzubi, J., Nayyar, A., Kumar, A.: Machine learning from theory to algorithms: an overview. In: 2018 2nd National Conference BB Ekici (376_CR24) 2009; 40 P-D Moroşan (376_CR53) 2010; 42 L Breiman (376_CR12) 2001; 45 KF Fong (376_CR29) 2006; 38 K Li (376_CR47) 2011; 43 DF Specht (376_CR66) 1991; 2 GJ Ríos-Moreno (376_CR58) 2007; 16 H Doukas (376_CR22) 2007; 42 M Kuhn (376_CR43) 2008; 28 T Catalina (376_CR14) 2008; 40 376_CR30 376_CR35 H Chun (376_CR17) 2010; 72 376_CR26 CKI Williams (376_CR69) 1998; 20 M Fernandez-Delgado (376_CR27) 2018; 111 C Rosenzweig (376_CR60) 2010; 467 L Breiman (376_CR11) 1996; 24 JH Friedman (376_CR33) 1981; 76 JH Friedman (376_CR32) 2001; 29 JJ Goeman (376_CR38) 2010; 52 JA Alzubi (376_CR7) 2015; 11 A Gelman (376_CR36) 2009; 2 L Song (376_CR65) 2013; 14 376_CR46 H Zhao (376_CR72) 2012; 16 M Chen (376_CR16) 2017; 5 H Zou (376_CR73) 2005; 67 A Hyvarinen (376_CR41) 2000; 13 TA Nguyen (376_CR54) 2013; 56 AJ Smola (376_CR64) 2004; 14 G-B Huang (376_CR40) 2012; 42 OG Santin (376_CR61) 2009; 41 J Jin (376_CR42) 2019; 31 X Chengliang (376_CR18) 2019; 148 AJ Dobson (376_CR20) 1990 AE Ben-Nakhi (376_CR10) 2004; 45 N Attoue (376_CR8) 2018; 11 SSK Kwok (376_CR44) 2011; 46 J Tang (376_CR68) 2015; 27 376_CR51 DJC MacKay (376_CR49) 1992; 4 376_CR57 Q Li (376_CR48) 2009; 86 376_CR56 S De Jong (376_CR19) 1993; 18 P Geurts (376_CR37) 2006; 63 L Breiman (376_CR13) 1984 M Friedman (376_CR34) 1937; 32 376_CR9 376_CR5 376_CR4 376_CR6 T Zhang (376_CR71) 2011; 57 376_CR1 A Aliberti (376_CR3) 2019; 8 376_CR62 376_CR2 376_CR63 376_CR25 P Langley (376_CR45) 1995; 38 376_CR67 B Dong (376_CR21) 2005; 37 376_CR15 376_CR59 SN Wood (376_CR70) 2011; 1 KO Maloney (376_CR50) 2012; 3 AI Dounis (376_CR23) 2009; 13 GE Hinton (376_CR39) 2006; 18 M Fernández-Delgado (376_CR28) 2014; 15 JH Friedman (376_CR31) 1991; 19 A Peters (376_CR55) 2002; 2 I Mizera (376_CR52) 2014; 60 |
| References_xml | – reference: AlzubiJAResearch article optimal classifier ensemble design based on cooperative game theoryRes. J. Appl. Sci. Eng. Technol.201511121336134310.19026/rjaset.11.2241 – reference: PetersAHothornTLausenBipred: Improved predictorsR News2002223336 – reference: CatalinaTVirgoneJBlancoEDevelopment and validation of regression models to predict monthly heating demand for residential buildingsEnergy Build.200840101825183210.1016/j.enbuild.2008.04.001 – reference: Meinshausen, N.: Quantregforest: quantile regression forests. R package version 0.2-2 (2007) – reference: Alawadi, S., Mera, D., Fernández-Delgado, M., Taboada, J.A.: Comparative study of artificial neural network models for forecasting the indoor temperature in smart buildings. In: 2017 2nd International Conference on Smart Cities, pp. 29–38. Springer (2017) – reference: SmolaAJSchölkopfBBA tutorial on support vector regressionStat. Comput.2004143199222208639810.1023/B:STCO.0000035301.49549.88 – reference: AttoueNShahrourIYounesRSmart building: use of the artificial neural network approach for indoor temperature forecastingEnergies201811239510.3390/en11020395 – reference: EkiciBBAksoyUTPrediction of building energy consumption by using artificial neural networksAdv. Eng. Softw.20094053563621275.7403810.1016/j.advengsoft.2008.05.003 – reference: HyvarinenAOjaEIndependent component analysis: algorithms and applicationsNeural Netw.20001341143010.1016/S0893-6080(00)00026-5 – reference: ATLAS Collaboration et al.: The evolution of boosting algorithms-from machine learning to statistical modelling. Methods Inf. Med. 53(6), 419–427 (2014) – reference: DoukasHPatlitzianasKDIatropoulosKJohnPIntelligent building energy management system using rule setsBuild. Environ.200742103562356910.1016/j.buildenv.2006.10.024 – reference: NguyenTAAielloMEnergy intelligent buildings based on user activity: a surveyEnergy Build.20135624425710.1016/j.enbuild.2012.09.005 – reference: LangleyPSimonHAApplications of machine learning and rule inductionCommun. ACM19953811546410.1145/219717.219768 – reference: FongKFHanbyVIChowT-THvac system optimization for energy management by evolutionary programmingEnergy Build.200638322023110.1016/j.enbuild.2005.05.008 – reference: WilliamsCKIBarberDBayesian classification with Gaussian processesIEEE Trans. Pattern Anal. Mach. Intell.199820121342135110.1109/34.735807 – reference: FriedmanJHGreedy function approximation: a gradient boosting machineAnn. Stat.2001291189123218733281043.6203410.1214/aos/1013203451 – reference: TangJDengCHuangG-BExtreme learning machine for multilayer perceptronIEEE Trans. Neural Netw. Learn. Syst.2015274809821347684010.1109/TNNLS.2015.2424995 – reference: KuhnMBuilding predictive models in r using the caret packageJ. Stat. Softw.200828512610.18637/jss.v028.i05 – reference: Chambers, J.M.: Linear models, chapter 4. In: Chambers, J.M., Hastie, T.J. (eds.) Wadsworth & Brooks/Cole (1992) – reference: WoodSNFast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear modelsJ. R. Stat. Soc.201117333627977341411.6208910.1111/j.1467-9868.2010.00749.x – reference: BreimanLRandom forestsMach. Learn.2001455321007.6815210.1023/A:1010933404324 – reference: SantinOGItardLVisscherHThe effect of occupancy and building characteristics on energy use for space and water heating in dutch residential stockEnergy Build.200941111223123210.1016/j.enbuild.2009.07.002 – reference: FriedmanJHStuetzleWProjection pursuit regressionJ. Am. Stat. Assoc.19817637681782365089210.1080/01621459.1981.10477729 – reference: MacKayDJCBayesian interpolationNeural Comput.199244154470833.6200610.1162/neco.1992.4.3.415 – reference: Quinlan, R.: Combining instance-based and model-based learning. In Proc. Intl. Conf. on Machine Learning, pp. 236–243 (1993) – reference: Erickson, V.L., Carreira-Perpiñán, M.Á., Cerpa, A.E.: OBSERVE: Occupancy-based system for efficient reduction of HVAC energy. In: Proceedings of the 2011 10th ACM/IEEE International Conference on Information Processing in Sensor Networks, pp. 258–269. IEEE (2011) – reference: DounisAICaraiscosCAdvanced control systems engineering for energy and comfort management in a building environment a reviewRenew. Sustain. Energy Rev.20091361246126110.1016/j.rser.2008.09.015 – reference: MizeraIKoenkerRConvex optimization in rJ. Stat. Softw.20146051231367.62020 – reference: Alawadi, S., Delgado, M.F., Pérez, D.M.: Machine learning algorithms for pattern visualization in classification tasks and for automatic indoor temperature prediction. Ph.D. thesis, Universidade de Santiago de Compostela (2018) – reference: Alzubi, J.A.: Diversity-based boosting algorithm. Int. J. Adv. Comput. Sci. Appl.7(5), 524–529 (2016) – reference: FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJ. Am. Stat. Assoc.19373220067570163.1098.0210.1080/01621459.1937.10503522 – reference: KwokSSKYuenRKKLeeEWMAn intelligent approach to assessing the effect of building occupancy on building cooling load predictionBuil. Environ.20114681681169010.1016/j.buildenv.2011.02.008 – reference: Sülo, Idil, K., Seref, R., Dogan, G., Brown, T.: Energy efficient smart buildings: LSTM neural networks for time series prediction. In: 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML), pp. 18–22. IEEE (2019) – reference: DongBCaoCLeeSEApplying support vector machines to predict building energy consumption in tropical regionEnergy Build.200537554555310.1016/j.enbuild.2004.09.009 – reference: Alzubi, J., Nayyar, A., Kumar, A.: Machine learning from theory to algorithms: an overview. In: 2018 2nd National Conference on Computational Intelligence (NCCI): Journal of Physics, vol. 1142, p. 012012. IOP Publishing (2018) – reference: Foresee, F.D., Hagan, M.T.: Gauss–Newton approximation to Bayesian regularization. In: International Joint Conference on Neural Networks, pp. 1930–1935 (1997) – reference: FriedmanJHMultivariate adaptive regression splinesAnn. Stat.1991191114110918420765.62064 – reference: JinJShuSLinFPrediction of indoor air temperature based on deep learningSens. Mater.201931620292042 – reference: MaloneyKOSchmidMWellerDEApplying additive modelling and gradient boosting to assess the effects of watershed and reach characteristics on riverine assemblagesMethods Ecol. Evol.20123111612810.1111/j.2041-210X.2011.00124.x – reference: De JongSSIMPLS: an alternative approach to partial least squares regressionChemom. Intell. Lab. Syst.19931825126310.1016/0169-7439(93)85002-X – reference: HintonGEOsinderoSTehYWA fast learning algorithm for deep belief netsNeural Comput.20061871527155422244851106.6809410.1162/neco.2006.18.7.1527 – reference: LiQMengQCaiJYoshinoHMochidaAApplying support vector machine to predict hourly cooling load in the buildingAppl. Energy200986102249225610.1016/j.apenergy.2008.11.035 – reference: Shanthamallu, U.S., Spanias, A., Tepedelenlioglu, C., Stanley, M.: A brief survey of machine learning methods and their sensor and iot applications. In: 2017 8th International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1–8. IEEE (2017) – reference: ZouHHastieTRegularization and variable selection via the elastic netJ. R. Stat. Soc. Ser B (Stat. Methodol.)200567230132021373271069.6205410.1111/j.1467-9868.2005.00503.x – reference: ChengliangXChenHWangJGuoYYuanYImproving prediction performance for indoor temperature in public buildings based on a novel deep learning methodBuild. Environ.201914812813510.1016/j.buildenv.2018.10.062 – reference: ZhangTAdaptive forward-backward greedy algorithm for learning sparse representationsIEEE Trans. Inf. Theor.20115774689470828404851365.6228810.1109/TIT.2011.2146690 – reference: ChunHKelesSSparse partial least squares for simultaneous dimension reduction and variable selectionJ. R. Stat. Soc.20107232527512411411.6218410.1111/j.1467-9868.2009.00723.x – reference: GelmanAJakulinAPittauMGSuYSA weakly informative default prior distribution for logistic and other regression modelsAnn. Appl. Stat.2009241360138326556631156.62017 – reference: SpechtDFA general regression neural networkIEEE Trans. Neural Netw.1991256857610.1109/72.97934 – reference: García, S., Fernández, A., Benítez, A.D., Herrera, F.: Statistical comparisons by means of non-parametric tests: a case study on genetic based machine learning. In: Proceedings of the II Congreso Español de Informática (CEDI 2007). V Taller Nacional de Minería de Datos y Aprendizaje (TAMIDA), pp. 95–104 (2007) – reference: DobsonAJAn Introduction to Generalized Linear Models1990LondonChapman and Hall0727.6207410.1007/978-1-4899-7252-1 – reference: ChenMHaoYHwangKWangLWangLDisease prediction by machine learning over big data from healthcare communitiesIEEE Access201758869887910.1109/ACCESS.2017.2694446 – reference: Ríos-MorenoGJTrejo-PereaMCastaneda-MirandaRHernández-GuzmánVMHerrera-RuizGModelling temperature in intelligent buildings by means of autoregressive modelsAutom. Constr.200716571372210.1016/j.autcon.2006.11.003 – reference: Fernández-DelgadoMCernadasEBarroSAmorimDDo we need hundreds of classifiers to solve real world classification problems?J. Mach. Learn. Res.20141513133318132771551319.62005 – reference: ZhaoHMagoulèsFA review on the prediction of building energy consumptionRenew. Sustain. Energy Rev.20121663586359210.1016/j.rser.2012.02.049 – reference: Rodrıguez-Mier, P., Fresquet, M., Mucientes, M., Bugarın, A.: Prediction of indoor temperatures for energy optimization in buildings. In: Conference of the Spanish Association for Artificial Intelligence, pp. 675–684 (2016) – reference: AlibertiABottaccioliLMaciiEDi CataldoSAcquavivaAPattiEA non-linear autoregressive model for indoor air-temperature predictions in smart buildingsElectronics20198997910.3390/electronics8090979 – reference: GoemanJJL-1 penalized estimation in the cox proportional hazards modelBiom. J.201052708427565941207.62185 – reference: Alzubi, J.A.: Diversity based improved bagging algorithm. In: 2015 1st Proceedings of The International Conference on Engineering & MIS (ICEMIS) 2015, pp. 35–40. ACM (2015) – reference: SongLLangfelderPHorvathSRandom generalized linear model: a highly accurate and interpretable ensemble predictorBMC Bioinform.201314112210.1186/1471-2105-14-1 – reference: HuangG-BZhouHDingXZhangRExtreme learning machine for regression and multiclass classificationIEEE Trans. Syst. Man Cybern. Part B Cybern.201242251352910.1109/TSMCB.2011.2168604 – reference: Quinlan, J.R. et al.: Learning with continuous classes. In: 1992 5th Australian Joint conference on Artificial Intelligence, vol. 92, pp. 343–348. World Scientific (1992) – reference: Ben-NakhiAEMahmoudMACooling load prediction for buildings using general regression neural networksEnergy Convers. Manag.200445132127214110.1016/j.enconman.2003.10.009 – reference: BreimanLBagging predictorsMach. Learn.1996241231400858.68080 – reference: GeurtsPErnstDWehenkelLExtremely randomized treesMach. Learn.20066313421110.6812410.1007/s10994-006-6226-1 – reference: RosenzweigCSoleckiWHammerSAMehrotraSCities lead the way in climate-change actionNature2010467731890910.1038/467909a – reference: Sirsat, M.S., García, E.C., Delgado, M.F.: Application of machine learning to agricultural soil data. Ph.D. thesis, Universidade de Santiago de Compostela (2017) – reference: BreimanLFriedmanJOlshenRAStoneCJClassification and Regression Trees1984Pacific GroveWadsworth and Brooks0541.62042 – reference: EU. Life-OPERE. http://www.life-opere.org/en. Accessed June 2019 – reference: Fernandez-DelgadoMSirsatMSCernadasEAlawadiSBarroSFebrero-BandeMAn extensive experimental survey of regression methodsNeural Netw.2018111113410.1016/j.neunet.2018.12.010 – reference: LiKHongyeSChuJForecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative studyEnergy Build.201143102893289910.1016/j.enbuild.2011.07.010 – reference: Lawson, C.L., Hanson, R.J.: Solving least squares problems, vol. 15 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM) (1995) – reference: MoroşanP-DBourdaisRDumurDBuissonJBuilding temperature regulation using a distributed model predictive controlEnergy Build.20104291445145210.1016/j.enbuild.2010.03.014 – ident: 376_CR30 – volume: 2 start-page: 568 year: 1991 ident: 376_CR66 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.97934 – volume: 20 start-page: 1342 issue: 12 year: 1998 ident: 376_CR69 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.735807 – volume: 67 start-page: 301 issue: 2 year: 2005 ident: 376_CR73 publication-title: J. R. Stat. Soc. Ser B (Stat. Methodol.) doi: 10.1111/j.1467-9868.2005.00503.x – volume: 72 start-page: 3 year: 2010 ident: 376_CR17 publication-title: J. R. Stat. Soc. doi: 10.1111/j.1467-9868.2009.00723.x – ident: 376_CR46 doi: 10.1137/1.9781611971217 – volume: 38 start-page: 54 issue: 11 year: 1995 ident: 376_CR45 publication-title: Commun. ACM doi: 10.1145/219717.219768 – ident: 376_CR67 doi: 10.1109/Deep-ML.2019.00012 – volume: 4 start-page: 415 year: 1992 ident: 376_CR49 publication-title: Neural Comput. doi: 10.1162/neco.1992.4.3.415 – volume: 42 start-page: 3562 issue: 10 year: 2007 ident: 376_CR22 publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.10.024 – ident: 376_CR15 – volume: 16 start-page: 713 issue: 5 year: 2007 ident: 376_CR58 publication-title: Autom. Constr. doi: 10.1016/j.autcon.2006.11.003 – ident: 376_CR57 – volume: 3 start-page: 116 issue: 1 year: 2012 ident: 376_CR50 publication-title: Methods Ecol. Evol. doi: 10.1111/j.2041-210X.2011.00124.x – volume: 24 start-page: 123 year: 1996 ident: 376_CR11 publication-title: Mach. Learn. – volume: 45 start-page: 5 year: 2001 ident: 376_CR12 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 56 start-page: 244 year: 2013 ident: 376_CR54 publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.09.005 – ident: 376_CR25 – ident: 376_CR9 doi: 10.3414/ME13-01-0122 – volume: 76 start-page: 817 issue: 376 year: 1981 ident: 376_CR33 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1981.10477729 – volume: 40 start-page: 356 issue: 5 year: 2009 ident: 376_CR24 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2008.05.003 – volume: 111 start-page: 11 year: 2018 ident: 376_CR27 publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.12.010 – volume: 11 start-page: 1336 issue: 12 year: 2015 ident: 376_CR7 publication-title: Res. J. Appl. Sci. Eng. Technol. doi: 10.19026/rjaset.11.2241 – volume: 13 start-page: 1246 issue: 6 year: 2009 ident: 376_CR23 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2008.09.015 – volume: 2 start-page: 1360 issue: 4 year: 2009 ident: 376_CR36 publication-title: Ann. Appl. Stat. – volume: 19 start-page: 1 issue: 1 year: 1991 ident: 376_CR31 publication-title: Ann. Stat. – ident: 376_CR63 – volume: 27 start-page: 809 issue: 4 year: 2015 ident: 376_CR68 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2424995 – volume: 11 start-page: 395 issue: 2 year: 2018 ident: 376_CR8 publication-title: Energies doi: 10.3390/en11020395 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 376_CR40 publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/TSMCB.2011.2168604 – ident: 376_CR1 – ident: 376_CR35 – volume: 52 start-page: 70 year: 2010 ident: 376_CR38 publication-title: Biom. J. doi: 10.1002/bimj.200900028 – volume-title: Classification and Regression Trees year: 1984 ident: 376_CR13 – volume: 32 start-page: 675 issue: 200 year: 1937 ident: 376_CR34 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1937.10503522 – ident: 376_CR26 – ident: 376_CR51 – ident: 376_CR5 doi: 10.1145/2832987.2833043 – volume: 2 start-page: 33 issue: 2 year: 2002 ident: 376_CR55 publication-title: R News – volume: 15 start-page: 3133 issue: 1 year: 2014 ident: 376_CR28 publication-title: J. Mach. Learn. Res. – volume: 5 start-page: 8869 year: 2017 ident: 376_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2694446 – ident: 376_CR4 doi: 10.1088/1742-6596/1142/1/012012 – volume: 1 start-page: 3 issue: 73 year: 2011 ident: 376_CR70 publication-title: J. R. Stat. Soc. doi: 10.1111/j.1467-9868.2010.00749.x – volume-title: An Introduction to Generalized Linear Models year: 1990 ident: 376_CR20 doi: 10.1007/978-1-4899-7252-1 – volume: 13 start-page: 411 year: 2000 ident: 376_CR41 publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – volume: 31 start-page: 2029 issue: 6 year: 2019 ident: 376_CR42 publication-title: Sens. Mater. – volume: 37 start-page: 545 issue: 5 year: 2005 ident: 376_CR21 publication-title: Energy Build. doi: 10.1016/j.enbuild.2004.09.009 – volume: 14 start-page: 1 issue: 1 year: 2013 ident: 376_CR65 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-14-1 – ident: 376_CR59 – volume: 16 start-page: 3586 issue: 6 year: 2012 ident: 376_CR72 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.02.049 – volume: 60 start-page: 1 issue: 5 year: 2014 ident: 376_CR52 publication-title: J. Stat. Softw. – ident: 376_CR56 doi: 10.1016/B978-1-55860-307-3.50037-X – ident: 376_CR6 – volume: 29 start-page: 1189 year: 2001 ident: 376_CR32 publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 467 start-page: 909 issue: 7318 year: 2010 ident: 376_CR60 publication-title: Nature doi: 10.1038/467909a – volume: 86 start-page: 2249 issue: 10 year: 2009 ident: 376_CR48 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2008.11.035 – volume: 46 start-page: 1681 issue: 8 year: 2011 ident: 376_CR44 publication-title: Buil. Environ. doi: 10.1016/j.buildenv.2011.02.008 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 376_CR39 publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 41 start-page: 1223 issue: 11 year: 2009 ident: 376_CR61 publication-title: Energy Build. doi: 10.1016/j.enbuild.2009.07.002 – volume: 148 start-page: 128 year: 2019 ident: 376_CR18 publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.10.062 – ident: 376_CR2 doi: 10.1007/978-3-319-59513-9_4 – volume: 38 start-page: 220 issue: 3 year: 2006 ident: 376_CR29 publication-title: Energy Build. doi: 10.1016/j.enbuild.2005.05.008 – volume: 28 start-page: 1 issue: 5 year: 2008 ident: 376_CR43 publication-title: J. Stat. Softw. doi: 10.18637/jss.v028.i05 – volume: 43 start-page: 2893 issue: 10 year: 2011 ident: 376_CR47 publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.07.010 – volume: 8 start-page: 979 issue: 9 year: 2019 ident: 376_CR3 publication-title: Electronics doi: 10.3390/electronics8090979 – volume: 63 start-page: 3 issue: 1 year: 2006 ident: 376_CR37 publication-title: Mach. Learn. doi: 10.1007/s10994-006-6226-1 – volume: 18 start-page: 251 year: 1993 ident: 376_CR19 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(93)85002-X – volume: 42 start-page: 1445 issue: 9 year: 2010 ident: 376_CR53 publication-title: Energy Build. doi: 10.1016/j.enbuild.2010.03.014 – ident: 376_CR62 doi: 10.1109/IISA.2017.8316459 – volume: 45 start-page: 2127 issue: 13 year: 2004 ident: 376_CR10 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2003.10.009 – volume: 40 start-page: 1825 issue: 10 year: 2008 ident: 376_CR14 publication-title: Energy Build. doi: 10.1016/j.enbuild.2008.04.001 – volume: 14 start-page: 199 issue: 3 year: 2004 ident: 376_CR64 publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 57 start-page: 4689 issue: 7 year: 2011 ident: 376_CR71 publication-title: IEEE Trans. Inf. Theor. doi: 10.1109/TIT.2011.2146690 |
| SSID | ssj0001072206 ssib031263264 |
| Score | 2.501882 |
| Snippet | The international community has largely recognized that the Earth’s climate is changing. Mitigating its global effects requires international actions. The... The international community has largely recognized that the Earth's climate is changing. Mitigating its global effects requires international actions. The... |
| SourceID | swepub proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 689 |
| SubjectTerms | Air conditioning Algorithms Buildings Climate action Economics and Management Energy Energy consumption Energy efficiency Energy management systems Energy Policy Energy Systems Greenhouse gases Households HVAC HVAC equipment Machine learning Operations Research/Decision Theory Optimization Original Paper Smart buildings User satisfaction Weather forecasting |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yPejB3-J0Sg560kCbpk1zHOrwIENQx24hydo5cKusU_zzzcvSVUUGeuglbVP68pL3veS97yF0xnMDKJ2SnOuAsFhQIlIVEMqViZNBoHjmSFzveLeb9vvi3ieFlVW0e3Uk6VbqOtnN2hJOwN0B0pSEWOS4GgPbDPjoD71Ki6IQKMi9E-B2WgJOqSuyCdTwJBIJ99kzv3f73ULVsHNxUvqDVdRZos7W__5hG2165Inbc1XZQSvZZBdtfOEj3EOqjc2iLiEucjx2oZYZ9rUlhli9DIvpaPY8LrFFu3BlRpUQOo2tc1_YJuC68kTNtgmXY6ubWPvi2-U-eurcPF7dEl-DgRg7u2fWgMXahEwb61oYa9mMq20kWM4DZaFczoQa6FjHKqEqMhZ95rHI7RqiRDZIFdPRAWpMikl2iLACdMS1SKOMM6ETzVLDkoFQikeCqaiJwkru0niCcqiT8SJramUQn7Tik0588qOJLhbvvM7pOZY-3aqGU_qpWkqaCB4K4CFrostq1Orby3o7n6vB4stA1X096rVlMR3KMdB0RynlR3_r9hitU0ixcEGGLdSYTd-yE7Rm3mejcnrqVP0Tesj3Kw priority: 102 providerName: Springer Nature |
| Title | A comparison of machine learning algorithms for forecasting indoor temperature in smart buildings |
| URI | https://link.springer.com/article/10.1007/s12667-020-00376-x https://www.proquest.com/docview/2697197036 https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-13827 |
| Volume | 13 |
| WOSCitedRecordID | wos000509132000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1868-3975 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001072206 issn: 1868-3975 databaseCode: RSV dateStart: 20100201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcWl4VW0rlA5zAIus4cXxC25c4wGrVQilcLNtJlkrdTdksqD-_M15nFzjshUMsxUlsRTP2zNjj7wN4pWpPXrrgtXIJl5kWXBc24UJZn-VlYlUVQFw_quGwuLzUo7jg1sa0ym5ODBN12XhaI38ncq36muCi3t_85MQaRburkUJjA7YIqQz1fOvwZDg66zQq7RMceQwIwqpLooQIhJsEE89Tnat4kmZxng7NleIUUREuS85v_7ZWKxd0uWv6D8JosEqnO__7P49gO_qjbLBQoMdwr5o-gYd_oBQ-BTtgfslWyJqaTUICZsUi48SY2esxNj3_MWkZ-sB0Vd62lFDNMORvsIoQsCJ8M1axdoIay1yk5G6fwZfTk89HH3hkZuAex_wczVrmfF86jwGHR3vnA-ORlrVKLDp4tdS2dJnLbC5s6tEnrTNd48xidVUWVrp0FzanzbR6DsySz6ScLtJKSe1yJwsv81Jbq1ItbdqDficB4yNsObFnXJsV4DJJzaDUTJCaue3Bm-U3NwvQjrVv73cSMnEAt2Ylnh687YS9eryutdcLhVj2TADex1cXA9PMxmZC4N1pIdTe-l5fwANBBy1CquE-bM5nv6qXcN__nl-1swPYUF-_HURlx7tPyRGV6hzLUfYdy7PzizvDuQbV |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAwk48ButMMAHdgJrqePE8QGhijFtWql2GGjiYmzHKZXWZmsKjH-KvxE_x2mBQ287cMjFSRw5_t7zs_38fQAvRWUxSme0EiahPJOMykInlAlts7xMtHCBxHUoRqPi9FQeb8Cv7iwMplV2PjE46rK2uEa-y3Ip-hLpot6eX1BUjcLd1U5Co4XFkfv5w0_ZmjeHe75_dxjbf3_y7oBGVQFqPV4X3iVnxva5sT5Ytt5X26DWI3klEu2Dk4pLXZrMZDpnOrU-nqoyWXmr0NKVheYm9fVeg-ucswQVE46zzx1-0z6Sn8fpR1jjSQRjQd4TSelpKnMRz-20p_f84Cgozt-QBSanl3-PjauAd7lH-w-faRgD9-_-b3_vHtyJ0TYZtOZxHzbc7AHc_oOD8SHoAbFLLUZSV2Qa0ksdiXoaY6LPxr4pi6_ThvgIHy9ndYPp4mQyK2tfhPxekZzaF5Fm6u2RmCg43jyCj1fSxsewOatnbguIxohQGFmkTnBpcsMLy_NSai1SyXXag37X48pGUnbUBjlTKzppRInyKFEBJeqyB6-W75y3lCRrn97uEKGie2rUCg49eN2Ba3V7XW07LQCXX0Z68r3Jp4Gq52M1RWrytGDiyfqvvoCbBycfhmp4ODp6CrcYHikJSZXbsLmYf3PP4Ib9vpg08-fBwAh8uWpM_gZvBlxM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAyF24OcQhQE-sBNYSx0njg8IVSsV06ZqB0C7GdtxSqW12ZoC41_jr8PPcVrg0NsOHHJxEkdJvvf8OXn-PoBXorLI0hmthEkozySjstAJZULbLC8TLVwQcT0R43FxdiZPt-BXtxYGyyq7nBgSdVlb_EZ-wHIp-hLlog6qWBZxOhy9u7ik6CCFf1o7O40WIsfu5w8_fWveHg39u95nbPT-4-EHGh0GqPXYXfr0nBnb58Z64mx93rbBuUfySiTaE5WKS12azGQ6Zzq1nltVmax8hGjpykJzk_p-b8BNwT2PwLLB5LDDctpHIfQ4FQnfexLBWLD6RIF6mspcxDU87Uo-P1AKinM5VITJ6dXf4-Sa_K7-1_6jbRrGw9G9__lJ3oe7kYWTQRs2D2DLzR_Czh_ajI9AD4hdeTSSuiKzUHbqSPTZmBB9PvG3svw6a4hn_rg5qxssIyfTeVn7JtT9iqLVvok0Mx-nxEQj8mYXPl3LPT6G7Xk9d0-AaGSKwsgidYJLkxteWJ6XUmuRSq7THvS7t69sFGtHz5BztZaZRsQojxgVEKOuevB6dc5FK1Wy8ei9Dh0qpq1GraHRgzcd0Na7N_W234JxdWWULR9OPw9UvZioGUqWpwUTTzdf9SXc9lBUJ0fj42dwh-FKk1BruQfby8U39xxu2e_LabN4EWKNwJfrhuRvZwBk1Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+machine+learning+algorithms+for+forecasting+indoor+temperature+in+smart+buildings&rft.jtitle=Energy+systems+%28Berlin.+Periodical%29&rft.au=Alawadi%2C+Sadi&rft.au=Mera%2C+David&rft.au=Fern%C3%A1ndez-Delgado%2C+Manuel&rft.au=Alkhabbas%2C+Fahed&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-3967&rft.eissn=1868-3975&rft.volume=13&rft.issue=3&rft.spage=689&rft.epage=705&rft_id=info:doi/10.1007%2Fs12667-020-00376-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-3967&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-3967&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-3967&client=summon |