Atom search optimization and its application to solve a hydrogeologic parameter estimation problem

In recent years, various metaheuristic optimization methods have been proposed in scientific and engineering fields. In this study, a novel physics-inspired metaheuristic optimization algorithm, atom search optimization (ASO), inspired by basic molecular dynamics, is developed to address a diverse s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Knowledge-based systems Ročník 163; s. 283 - 304
Hlavní autori: Zhao, Weiguo, Wang, Liying, Zhang, Zhenxing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.01.2019
Elsevier Science Ltd
Predmet:
ISSN:0950-7051, 1872-7409
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent years, various metaheuristic optimization methods have been proposed in scientific and engineering fields. In this study, a novel physics-inspired metaheuristic optimization algorithm, atom search optimization (ASO), inspired by basic molecular dynamics, is developed to address a diverse set of optimization problems. ASO mathematically models and mimics the atomic motion model in nature, where atoms interact through interaction forces resulting from the Lennard-Jones potential and constraint forces resulting from the bond-length potential. The proposed algorithm is simple and easy to implement. ASO is tested on a range of benchmark functions to verify its validity, qualitatively and quantitatively, and then applied to a hydrogeologic parameter estimation problem with success. The results demonstrate that ASO is superior to some classic and newly emerging algorithms in the literature and is a promising solution to real-world engineering problems. •A novel optimization algorithm called Atom Search Optimization (ASO) is proposed.•ASO is benchmarked on 37 well-known test functions.•The results on test functions show the competitiveness of ASO.•The results on hydrogeologic parameter estimation confirm the performance of ASO.
AbstractList In recent years, various metaheuristic optimization methods have been proposed in scientific and engineering fields. In this study, a novel physics-inspired metaheuristic optimization algorithm, atom search optimization (ASO), inspired by basic molecular dynamics, is developed to address a diverse set of optimization problems. ASO mathematically models and mimics the atomic motion model in nature, where atoms interact through interaction forces resulting from the Lennard-Jones potential and constraint forces resulting from the bond-length potential. The proposed algorithm is simple and easy to implement. ASO is tested on a range of benchmark functions to verify its validity, qualitatively and quantitatively, and then applied to a hydrogeologic parameter estimation problem with success. The results demonstrate that ASO is superior to some classic and newly emerging algorithms in the literature and is a promising solution to real-world engineering problems. •A novel optimization algorithm called Atom Search Optimization (ASO) is proposed.•ASO is benchmarked on 37 well-known test functions.•The results on test functions show the competitiveness of ASO.•The results on hydrogeologic parameter estimation confirm the performance of ASO.
In recent years, various metaheuristic optimization methods have been proposed in scientific and engineering fields. In this study, a novel physics-inspired metaheuristic optimization algorithm, atom search optimization (ASO), inspired by basic molecular dynamics, is developed to address a diverse set of optimization problems. ASO mathematically models and mimics the atomic motion model in nature, where atoms interact through interaction forces resulting from the Lennard-Jones potential and constraint forces resulting from the bond-length potential. The proposed algorithm is simple and easy to implement. ASO is tested on a range of benchmark functions to verify its validity, qualitatively and quantitatively, and then applied to a hydrogeologic parameter estimation problem with success. The results demonstrate that ASO is superior to some classic and newly emerging algorithms in the literature and is a promising solution to real-world engineering problems.
Author Wang, Liying
Zhao, Weiguo
Zhang, Zhenxing
Author_xml – sequence: 1
  givenname: Weiguo
  surname: Zhao
  fullname: Zhao, Weiguo
  email: wgzhao@illinois.edu
  organization: School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, Hebei, 056021, China
– sequence: 2
  givenname: Liying
  surname: Wang
  fullname: Wang, Liying
  email: wangliying@hebeu.edu.cn
  organization: School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, Hebei, 056021, China
– sequence: 3
  givenname: Zhenxing
  surname: Zhang
  fullname: Zhang, Zhenxing
  email: zhang538@illinois.edu
  organization: Illinois State Water Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
BookMark eNqFUEtLAzEQDlLBWv0HHgKet042u8muB6EUXyB40XNIs9M2dbtZk1Sov97U9eRBYWCY4XvMfKdk1LkOCblgMGXAxNVm-ta5sA_THFg1hVQcjsiYVTLPZAH1iIyhLiGTULITchrCBgDynFVjsphFt6UBtTdr6vpot_ZTR-s6qruG2hio7vvWmmEXHQ2u_UCq6XrfeLdC17qVNbTXXm8xoqcYksaA7r1btLg9I8dL3QY8_-kT8np3-zJ_yJ6e7x_ns6fMFAAxk00toMwX3DDOha4By-WCS16lyUAlSlFUhWikYAVKU0udl0teCmmkLmQjcj4hl4Nu8n3fpTvUxu18lyxVzkQJopAMEqoYUMa7EDwuVe_TwX6vGKhDmmqjhjTVIU0FqfiBdv2LZmz8fjN6bdv_yDcDGdP7Hxa9CsZiZ7CxHk1UjbN_C3wB8kmV8Q
CitedBy_id crossref_primary_10_1016_j_cma_2021_114194
crossref_primary_10_1016_j_ijmecsci_2025_110860
crossref_primary_10_1038_s41598_024_67197_1
crossref_primary_10_1007_s00521_022_07980_1
crossref_primary_10_1080_15567036_2022_2055231
crossref_primary_10_1007_s00217_022_04168_8
crossref_primary_10_32604_cmc_2023_034025
crossref_primary_10_1007_s42235_024_00493_8
crossref_primary_10_1016_j_bspc_2022_104031
crossref_primary_10_1016_j_engstruct_2023_116718
crossref_primary_10_1016_j_pce_2023_103415
crossref_primary_10_1371_journal_pone_0267041
crossref_primary_10_3390_app15020910
crossref_primary_10_1109_ACCESS_2023_3336595
crossref_primary_10_1109_ACCESS_2020_2979921
crossref_primary_10_3390_sym17060841
crossref_primary_10_1016_j_icheatmasstransfer_2020_104822
crossref_primary_10_1016_j_engappai_2023_107101
crossref_primary_10_1016_j_measen_2022_100519
crossref_primary_10_3389_fenrg_2023_1173739
crossref_primary_10_1016_j_egyr_2021_11_010
crossref_primary_10_1080_09540091_2020_1741515
crossref_primary_10_3390_en12101884
crossref_primary_10_1016_j_knosys_2022_108320
crossref_primary_10_1109_ACCESS_2022_3143802
crossref_primary_10_1002_er_8399
crossref_primary_10_3390_automation6020013
crossref_primary_10_32604_cmes_2025_058473
crossref_primary_10_1007_s13042_024_02462_3
crossref_primary_10_1016_j_asoc_2021_107282
crossref_primary_10_1007_s00521_022_07203_7
crossref_primary_10_1016_j_renene_2023_119528
crossref_primary_10_1016_j_advengsoft_2023_103517
crossref_primary_10_1016_j_mtcomm_2024_109394
crossref_primary_10_1007_s42417_022_00538_4
crossref_primary_10_1038_s41598_024_84632_5
crossref_primary_10_1016_j_cma_2022_115223
crossref_primary_10_1109_ACCESS_2025_3562367
crossref_primary_10_1088_1361_6501_acd713
crossref_primary_10_1088_1757_899X_981_4_042067
crossref_primary_10_1038_s41598_024_73991_8
crossref_primary_10_1016_j_eswa_2022_119211
crossref_primary_10_1016_j_engfailanal_2021_105714
crossref_primary_10_1109_ACCESS_2023_3311271
crossref_primary_10_3390_math10111929
crossref_primary_10_1016_j_eswa_2023_120602
crossref_primary_10_1080_19648189_2024_2319868
crossref_primary_10_3390_math11204224
crossref_primary_10_1038_s41598_023_38252_0
crossref_primary_10_1016_j_knosys_2022_110206
crossref_primary_10_1016_j_procs_2021_08_072
crossref_primary_10_1016_j_advengsoft_2022_103399
crossref_primary_10_1049_rpg2_13004
crossref_primary_10_3390_biomimetics10050282
crossref_primary_10_1016_j_conbuildmat_2025_141883
crossref_primary_10_3390_electronics12041058
crossref_primary_10_1109_ACCESS_2021_3133286
crossref_primary_10_1007_s13042_023_01788_8
crossref_primary_10_1007_s42235_023_00387_1
crossref_primary_10_1016_j_asoc_2021_107140
crossref_primary_10_1109_ACCESS_2025_3552312
crossref_primary_10_1016_j_apm_2024_04_057
crossref_primary_10_1007_s42235_024_00505_7
crossref_primary_10_1016_j_engappai_2023_106121
crossref_primary_10_3390_biomimetics8020191
crossref_primary_10_3390_diagnostics11020315
crossref_primary_10_1007_s00202_024_02822_w
crossref_primary_10_1007_s00500_021_05654_z
crossref_primary_10_1007_s11227_024_06279_3
crossref_primary_10_14710_ijred_0_37482
crossref_primary_10_1016_j_eswa_2025_127733
crossref_primary_10_4218_etrij_2022_0324
crossref_primary_10_1007_s13369_020_04486_7
crossref_primary_10_3390_biomimetics9040205
crossref_primary_10_3390_w14193035
crossref_primary_10_1016_j_cie_2021_107904
crossref_primary_10_1016_j_est_2023_109183
crossref_primary_10_1007_s00521_020_05073_5
crossref_primary_10_3390_math10132329
crossref_primary_10_7717_peerj_cs_2722
crossref_primary_10_1016_j_cma_2023_115878
crossref_primary_10_1109_JSYST_2023_3248658
crossref_primary_10_1007_s11047_020_09826_y
crossref_primary_10_1038_s41598_023_35863_5
crossref_primary_10_1016_j_csi_2025_103977
crossref_primary_10_1016_j_iswa_2025_200521
crossref_primary_10_1007_s11831_023_09990_1
crossref_primary_10_1007_s42835_020_00644_x
crossref_primary_10_1016_j_engappai_2022_105082
crossref_primary_10_3390_en15196966
crossref_primary_10_1002_ese3_1182
crossref_primary_10_1007_s10586_024_04927_0
crossref_primary_10_1007_s11831_025_10281_0
crossref_primary_10_32604_cmes_2022_019198
crossref_primary_10_1007_s00366_021_01451_2
crossref_primary_10_1007_s12597_023_00682_9
crossref_primary_10_1016_j_bspc_2022_104359
crossref_primary_10_1007_s00500_021_06138_w
crossref_primary_10_1007_s11831_023_09902_3
crossref_primary_10_1016_j_asoc_2021_108053
crossref_primary_10_3390_su14063267
crossref_primary_10_1007_s12046_022_01962_8
crossref_primary_10_1016_j_eswa_2025_126532
crossref_primary_10_1007_s12652_021_03008_z
crossref_primary_10_1007_s12065_023_00877_5
crossref_primary_10_1007_s13198_024_02605_3
crossref_primary_10_1038_s41598_025_99207_1
crossref_primary_10_1007_s11227_025_07052_w
crossref_primary_10_1016_j_engappai_2019_06_017
crossref_primary_10_1155_2022_4629178
crossref_primary_10_3390_math9131532
crossref_primary_10_1016_j_tsep_2024_102862
crossref_primary_10_1109_ACCESS_2021_3068223
crossref_primary_10_1002_cpe_6918
crossref_primary_10_1016_j_est_2020_102219
crossref_primary_10_1088_1402_4896_add8c7
crossref_primary_10_1007_s00366_020_01248_9
crossref_primary_10_3389_fphy_2024_1301035
crossref_primary_10_1007_s13369_025_10482_6
crossref_primary_10_1109_ACCESS_2020_3030874
crossref_primary_10_1007_s00521_024_10905_9
crossref_primary_10_1007_s13369_025_10138_5
crossref_primary_10_1155_2023_8685976
crossref_primary_10_1016_j_knosys_2023_110940
crossref_primary_10_3390_en16114362
crossref_primary_10_1140_epjs_s11734_025_01703_y
crossref_primary_10_1155_2020_6657181
crossref_primary_10_1155_2024_5806437
crossref_primary_10_3389_fnhum_2022_973959
crossref_primary_10_1007_s12652_021_02905_7
crossref_primary_10_1007_s13369_021_05677_6
crossref_primary_10_1007_s00521_020_04701_4
crossref_primary_10_1016_j_energy_2022_123587
crossref_primary_10_1016_j_aeue_2019_152854
crossref_primary_10_1016_j_asoc_2024_111539
crossref_primary_10_1007_s10115_022_01825_y
crossref_primary_10_3390_sym17091410
crossref_primary_10_1007_s11277_022_09647_5
crossref_primary_10_1016_j_asoc_2022_108574
crossref_primary_10_1016_j_heliyon_2023_e14467
crossref_primary_10_1007_s00521_019_04452_x
crossref_primary_10_28948_ngumuh_1570577
crossref_primary_10_3390_math10101626
crossref_primary_10_1007_s00500_023_08925_z
crossref_primary_10_1080_10168664_2022_2129121
crossref_primary_10_1007_s00521_025_11228_z
crossref_primary_10_1007_s10973_022_11516_z
crossref_primary_10_1093_jcde_qwac113
crossref_primary_10_1007_s10489_020_01893_z
crossref_primary_10_3390_math9192383
crossref_primary_10_1016_j_asoc_2023_110837
crossref_primary_10_1016_j_swevo_2020_100821
crossref_primary_10_3389_fenrg_2022_1030034
crossref_primary_10_1007_s11831_025_10249_0
crossref_primary_10_1109_ACCESS_2023_3343619
crossref_primary_10_1186_s43067_024_00144_2
crossref_primary_10_1007_s00500_020_05227_6
crossref_primary_10_1016_j_jhydrol_2021_126211
crossref_primary_10_32604_EE_2022_015910
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1016_j_egyr_2022_10_342
crossref_primary_10_1371_journal_pone_0290117
crossref_primary_10_1016_j_heliyon_2023_e23434
crossref_primary_10_1016_j_jclepro_2019_119301
crossref_primary_10_3390_math9182230
crossref_primary_10_1007_s10586_025_05273_5
crossref_primary_10_1016_j_knosys_2022_108281
crossref_primary_10_1016_j_eswa_2025_127660
crossref_primary_10_3846_jcem_2023_20399
crossref_primary_10_1080_0952813X_2022_2084566
crossref_primary_10_1016_j_cma_2022_114616
crossref_primary_10_3390_math13152499
crossref_primary_10_3390_bioengineering10040475
crossref_primary_10_1007_s12652_021_02892_9
crossref_primary_10_3390_app13020906
crossref_primary_10_1007_s13369_020_05228_5
crossref_primary_10_1016_j_dajour_2023_100182
crossref_primary_10_1038_s41598_024_54910_3
crossref_primary_10_3390_biomimetics8020243
crossref_primary_10_3390_math11092018
crossref_primary_10_1080_15567036_2023_2244909
crossref_primary_10_3390_w17081221
crossref_primary_10_1007_s11227_023_05790_3
crossref_primary_10_1080_0305215X_2022_2127698
crossref_primary_10_1007_s13721_024_00489_8
crossref_primary_10_3390_rs14051136
crossref_primary_10_1002_suco_202400163
crossref_primary_10_1007_s10462_024_10981_2
crossref_primary_10_1016_j_engappai_2024_107906
crossref_primary_10_1007_s11831_020_09456_8
crossref_primary_10_1088_1402_4896_adb706
crossref_primary_10_3390_en13195097
crossref_primary_10_1016_j_jocs_2022_101636
crossref_primary_10_1016_j_enconman_2022_116346
crossref_primary_10_1371_journal_pone_0291788
crossref_primary_10_1108_EC_07_2024_0675
crossref_primary_10_1016_j_compbiomed_2022_106404
crossref_primary_10_1007_s12530_025_09715_8
crossref_primary_10_1038_s41598_025_91203_9
crossref_primary_10_1016_j_procs_2025_04_124
crossref_primary_10_1007_s10586_024_05027_9
crossref_primary_10_1007_s11760_020_01814_0
crossref_primary_10_1038_s41598_023_37824_4
crossref_primary_10_1108_EC_10_2021_0612
crossref_primary_10_3390_math12152364
crossref_primary_10_1016_j_apm_2023_05_023
crossref_primary_10_3390_biomimetics8030310
crossref_primary_10_1007_s11831_023_09923_y
crossref_primary_10_1371_journal_pone_0287136
crossref_primary_10_1002_jnm_2845
crossref_primary_10_1109_ACCESS_2022_3151641
crossref_primary_10_1186_s40537_024_00902_z
crossref_primary_10_1371_journal_pone_0233110
crossref_primary_10_3390_app10072490
crossref_primary_10_1016_j_measen_2023_101007
crossref_primary_10_1007_s40435_022_01094_1
crossref_primary_10_1016_j_energy_2025_137696
crossref_primary_10_1016_j_eswa_2023_122200
crossref_primary_10_3233_JIFS_221348
crossref_primary_10_1007_s11227_023_05618_0
crossref_primary_10_1007_s10489_022_03265_1
crossref_primary_10_1038_s41598_024_61434_3
crossref_primary_10_1007_s13369_019_04285_9
crossref_primary_10_1016_j_conbuildmat_2025_141383
crossref_primary_10_1109_ACCESS_2022_3197745
crossref_primary_10_1007_s10462_025_11360_1
crossref_primary_10_1007_s00521_022_07391_2
crossref_primary_10_1038_s41598_024_63908_w
crossref_primary_10_1016_j_compag_2024_109167
crossref_primary_10_1016_j_jestch_2023_101408
crossref_primary_10_1007_s00366_020_00994_0
crossref_primary_10_1016_j_renene_2023_118994
crossref_primary_10_1049_ipr2_12019
crossref_primary_10_1007_s13198_021_01575_0
crossref_primary_10_1371_journal_pone_0286060
crossref_primary_10_1007_s40747_021_00402_0
crossref_primary_10_1016_j_solener_2024_113189
crossref_primary_10_1038_s41598_025_88080_7
crossref_primary_10_1016_j_envsoft_2021_105237
crossref_primary_10_1007_s10462_024_11023_7
crossref_primary_10_3390_axioms13060361
crossref_primary_10_3390_su15042884
crossref_primary_10_1016_j_matcom_2023_04_020
crossref_primary_10_1016_j_eswa_2023_121218
crossref_primary_10_1016_j_isatra_2025_07_023
crossref_primary_10_1016_j_asoc_2020_106761
crossref_primary_10_1049_rpg2_12359
crossref_primary_10_1016_j_engappai_2022_105202
crossref_primary_10_1038_s41598_024_60821_0
crossref_primary_10_1007_s42235_022_00316_8
crossref_primary_10_1080_02286203_2023_2287968
crossref_primary_10_1186_s40537_025_01129_2
crossref_primary_10_3390_math13050717
crossref_primary_10_1016_j_bspc_2025_108207
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_1007_s10586_024_04950_1
crossref_primary_10_32604_cmc_2022_031909
crossref_primary_10_1016_j_amc_2020_125535
crossref_primary_10_1016_j_bspc_2022_104534
crossref_primary_10_1007_s00034_025_02997_y
crossref_primary_10_1007_s11831_024_10217_0
crossref_primary_10_1007_s42235_022_00207_y
crossref_primary_10_3390_fractalfract7020119
crossref_primary_10_1007_s00500_023_07928_0
crossref_primary_10_1007_s40815_024_01841_w
crossref_primary_10_1002_dac_4341
crossref_primary_10_1016_j_knosys_2025_114273
crossref_primary_10_1007_s00521_024_10694_1
crossref_primary_10_1061__ASCE_IR_1943_4774_0001690
crossref_primary_10_1038_s41598_025_04705_x
crossref_primary_10_32604_cmc_2023_035911
crossref_primary_10_1016_j_ress_2025_111610
crossref_primary_10_1109_ACCESS_2019_2958689
crossref_primary_10_1007_s11831_022_09800_0
crossref_primary_10_1038_s41598_025_11861_7
crossref_primary_10_3390_rs15245653
crossref_primary_10_1016_j_compbiomed_2022_106239
crossref_primary_10_1007_s10462_025_11269_9
crossref_primary_10_1155_2022_2721490
crossref_primary_10_1007_s12065_019_00212_x
crossref_primary_10_1080_15435075_2024_2449155
crossref_primary_10_1016_j_eswa_2020_113917
crossref_primary_10_1016_j_eswa_2023_120186
crossref_primary_10_1016_j_cma_2022_114901
crossref_primary_10_3390_sym13122388
crossref_primary_10_3390_biomimetics10010003
crossref_primary_10_1016_j_jastp_2024_106360
crossref_primary_10_1038_s41598_024_70731_w
crossref_primary_10_3390_a17080342
crossref_primary_10_1016_j_jhydrol_2024_132596
crossref_primary_10_1038_s41598_022_16498_4
crossref_primary_10_1007_s12065_019_00269_8
crossref_primary_10_1007_s11042_021_11839_3
crossref_primary_10_1007_s00521_025_11379_z
crossref_primary_10_1016_j_jclepro_2020_121817
crossref_primary_10_1002_2050_7038_12712
crossref_primary_10_1016_j_tust_2023_105235
crossref_primary_10_1016_j_knosys_2024_111725
crossref_primary_10_1007_s00521_020_05409_1
crossref_primary_10_1007_s11042_024_19039_5
crossref_primary_10_3390_biomimetics10080482
crossref_primary_10_1007_s42235_022_00330_w
crossref_primary_10_1038_s41598_024_78761_0
crossref_primary_10_1007_s10115_025_02422_5
crossref_primary_10_3390_su142316205
crossref_primary_10_1007_s11069_021_05160_3
crossref_primary_10_1016_j_asoc_2020_106320
crossref_primary_10_1063_5_0108340
crossref_primary_10_1016_j_knosys_2021_107796
crossref_primary_10_1016_j_prime_2024_100536
crossref_primary_10_1007_s13042_024_02185_5
crossref_primary_10_1007_s13369_021_06513_7
crossref_primary_10_1007_s10586_024_05011_3
crossref_primary_10_1007_s13042_025_02588_y
crossref_primary_10_1109_ACCESS_2025_3547537
crossref_primary_10_1016_j_jhydrol_2025_132998
crossref_primary_10_3390_su15119017
crossref_primary_10_1016_j_enconman_2020_113279
crossref_primary_10_1007_s11042_022_13171_w
crossref_primary_10_1038_s41598_023_41024_5
crossref_primary_10_1007_s10825_021_01796_3
crossref_primary_10_1016_j_oceaneng_2024_117806
crossref_primary_10_3233_JIFS_230459
crossref_primary_10_1016_j_jocs_2022_101766
crossref_primary_10_1016_j_engappai_2020_103731
crossref_primary_10_1109_ACCESS_2020_3021212
crossref_primary_10_1016_j_apm_2022_11_016
crossref_primary_10_1007_s10489_024_05930_z
crossref_primary_10_1155_2020_4568906
crossref_primary_10_1007_s11831_024_10202_7
crossref_primary_10_1016_j_asoc_2023_110113
crossref_primary_10_1016_j_apenergy_2024_123437
crossref_primary_10_1016_j_engappai_2024_109202
crossref_primary_10_1007_s11042_022_13093_7
crossref_primary_10_1016_j_jenvman_2023_119807
crossref_primary_10_1109_ACCESS_2025_3567303
crossref_primary_10_1016_j_isatra_2023_02_025
crossref_primary_10_1007_s10586_025_05328_7
crossref_primary_10_1016_j_egyr_2022_10_386
crossref_primary_10_1016_j_cma_2023_116062
crossref_primary_10_3390_fuels6020030
crossref_primary_10_1016_j_matcom_2022_04_031
crossref_primary_10_1007_s12065_022_00762_7
crossref_primary_10_33889_IJMEMS_2023_8_2_016
crossref_primary_10_1007_s10462_024_10747_w
crossref_primary_10_14710_ijred_2021_37482
crossref_primary_10_1109_ACCESS_2020_2996611
crossref_primary_10_1016_j_engappai_2022_104763
crossref_primary_10_1007_s40031_022_00731_9
crossref_primary_10_1049_rpg2_12746
crossref_primary_10_1007_s10489_020_01947_2
crossref_primary_10_1016_j_eswa_2024_124765
crossref_primary_10_1002_ima_23001
crossref_primary_10_1016_j_eswa_2019_113134
crossref_primary_10_1038_s41598_022_18993_0
crossref_primary_10_1016_j_apm_2020_07_052
crossref_primary_10_1007_s11276_020_02263_w
crossref_primary_10_1155_2019_6759106
crossref_primary_10_1007_s13369_023_08335_1
crossref_primary_10_7717_peerj_cs_2263
crossref_primary_10_1016_j_asoc_2019_105974
crossref_primary_10_1016_j_conengprac_2024_106061
crossref_primary_10_1109_JIOT_2022_3228736
crossref_primary_10_1007_s12530_023_09552_7
crossref_primary_10_3390_biomimetics10070471
crossref_primary_10_1007_s00500_019_04631_x
crossref_primary_10_1016_j_renene_2022_12_067
crossref_primary_10_1109_ACCESS_2021_3120749
crossref_primary_10_1109_ACCESS_2023_3311626
crossref_primary_10_1007_s10462_025_11279_7
crossref_primary_10_1038_s41598_025_06380_4
crossref_primary_10_3390_math12142250
crossref_primary_10_1186_s40537_024_00895_9
crossref_primary_10_1007_s11831_022_09801_z
crossref_primary_10_1038_s41598_025_93370_1
crossref_primary_10_1007_s00202_024_02653_9
crossref_primary_10_1016_j_cmpb_2021_106579
crossref_primary_10_3390_pr11051346
crossref_primary_10_1016_j_engappai_2022_104860
crossref_primary_10_1155_2022_3343505
crossref_primary_10_1002_oca_2767
crossref_primary_10_1007_s00521_020_04799_6
crossref_primary_10_3390_machines9120341
crossref_primary_10_1007_s11831_023_09928_7
crossref_primary_10_1016_j_engappai_2024_109879
crossref_primary_10_1155_2024_4590764
crossref_primary_10_1109_ACCESS_2025_3574730
crossref_primary_10_1007_s11227_023_05579_4
crossref_primary_10_1016_j_sysarc_2023_102871
crossref_primary_10_1109_ACCESS_2022_3228782
crossref_primary_10_1007_s10462_025_11118_9
crossref_primary_10_1016_j_advengsoft_2022_103405
crossref_primary_10_1007_s10462_022_10333_y
crossref_primary_10_1016_j_chaos_2024_115636
crossref_primary_10_1016_j_jestch_2020_08_011
crossref_primary_10_1108_EC_03_2020_0137
crossref_primary_10_1016_j_compbiomed_2025_110500
crossref_primary_10_1016_j_bbe_2020_10_001
crossref_primary_10_3390_drones7070427
crossref_primary_10_1016_j_cma_2023_116664
crossref_primary_10_1093_jcde_qwae080
crossref_primary_10_1016_j_asoc_2024_112295
crossref_primary_10_32604_cmes_2024_055860
crossref_primary_10_1007_s11227_024_06916_x
crossref_primary_10_1186_s40537_023_00864_8
crossref_primary_10_1109_TEVC_2023_3346672
crossref_primary_10_1016_j_jestch_2020_08_001
crossref_primary_10_1186_s40537_025_01274_8
crossref_primary_10_1016_j_dt_2024_04_006
crossref_primary_10_1515_mt_2024_0097
crossref_primary_10_1002_eng2_12773
crossref_primary_10_1038_s41598_024_75387_0
crossref_primary_10_1007_s10115_025_02498_z
crossref_primary_10_3390_batteries11070272
crossref_primary_10_3390_math13040668
crossref_primary_10_54287_gujsa_1667182
crossref_primary_10_1016_j_ins_2020_06_037
crossref_primary_10_3390_math11051231
crossref_primary_10_1371_journal_pone_0295579
crossref_primary_10_1111_exsy_13715
crossref_primary_10_26599_Jic_2025_9180087
crossref_primary_10_1007_s10115_025_02389_3
crossref_primary_10_1016_j_asoc_2025_113527
crossref_primary_10_1109_ACCESS_2020_3027654
crossref_primary_10_3390_en16041782
crossref_primary_10_1016_j_jwpe_2023_103957
crossref_primary_10_3390_math13040675
crossref_primary_10_1007_s12065_020_00506_5
crossref_primary_10_3390_buildings13051167
crossref_primary_10_1016_j_cma_2023_116200
crossref_primary_10_1002_cpe_6425
crossref_primary_10_1016_j_cma_2023_116446
crossref_primary_10_1007_s12008_024_02136_y
crossref_primary_10_3390_buildings14123753
crossref_primary_10_4018_IJSKD_330150
crossref_primary_10_1007_s00521_022_07705_4
crossref_primary_10_1007_s13198_025_02721_8
crossref_primary_10_1016_j_eswa_2021_115079
crossref_primary_10_1016_j_jobe_2025_113515
crossref_primary_10_1007_s10489_021_02629_3
crossref_primary_10_1016_j_aei_2024_102464
crossref_primary_10_3389_fenrg_2022_902486
crossref_primary_10_1016_j_asoc_2021_107421
crossref_primary_10_1038_s41598_022_12030_w
crossref_primary_10_1007_s00521_021_06260_8
crossref_primary_10_1007_s10586_025_05170_x
crossref_primary_10_1002_cpe_6732
crossref_primary_10_3390_bioengineering10070825
crossref_primary_10_1016_j_seta_2021_101824
crossref_primary_10_1007_s11831_023_09897_x
crossref_primary_10_1007_s11063_022_10797_7
crossref_primary_10_1016_j_rineng_2025_104215
crossref_primary_10_1007_s11277_021_08946_7
crossref_primary_10_1002_oca_2823
crossref_primary_10_3389_fgene_2021_793629
crossref_primary_10_1016_j_enconman_2020_113692
crossref_primary_10_1080_15325008_2022_2049648
crossref_primary_10_1007_s00521_020_05333_4
crossref_primary_10_1016_j_eswa_2024_123362
crossref_primary_10_1016_j_epsr_2023_109513
crossref_primary_10_3390_math12182870
crossref_primary_10_1007_s00521_024_09879_5
crossref_primary_10_1109_ACCESS_2022_3143035
crossref_primary_10_3390_math11051273
crossref_primary_10_1007_s12065_020_00450_4
crossref_primary_10_1109_ACCESS_2022_3157400
crossref_primary_10_1007_s13042_022_01524_8
crossref_primary_10_1680_jtran_24_00050
crossref_primary_10_3389_fmars_2023_1126556
crossref_primary_10_1007_s12065_021_00615_9
crossref_primary_10_3390_sym14112282
crossref_primary_10_1155_2021_6622655
crossref_primary_10_1109_ACCESS_2019_2923557
crossref_primary_10_1007_s11831_022_09876_8
crossref_primary_10_3390_electronics12194113
crossref_primary_10_1007_s13369_023_07984_6
crossref_primary_10_1016_j_eswa_2023_119941
crossref_primary_10_1007_s41939_025_00800_8
crossref_primary_10_1038_s41598_023_48462_1
crossref_primary_10_1016_j_knosys_2023_111081
crossref_primary_10_3390_e23121637
crossref_primary_10_1016_j_cma_2023_116238
crossref_primary_10_1109_ACCESS_2022_3208700
crossref_primary_10_46904_eea_24_72_1_1108007
Cites_doi 10.1002/tee.20628
10.1016/j.neucom.2013.04.052
10.1016/j.physleta.2016.08.027
10.1016/j.jclepro.2018.02.004
10.7763/IJMLC.2012.V2.114
10.1108/02644401211235834
10.1016/j.ins.2010.07.015
10.1109/4235.585893
10.1016/j.knosys.2016.07.005
10.1016/j.compstruc.2012.07.010
10.1504/IJBIC.2010.032124
10.1016/j.asoc.2015.03.035
10.1016/j.ins.2012.06.032
10.1016/j.engappai.2016.04.004
10.1016/j.eswa.2015.04.055
10.1103/PhysRev.136.A405
10.1016/j.ins.2012.04.027
10.1109/TEVC.2016.2634625
10.1016/0021-9991(77)90098-5
10.1061/(ASCE)0733-9437(2003)129:5(348)
10.1016/j.swevo.2015.05.002
10.1029/TR036i001p00095
10.1109/MCS.2002.1004010
10.1109/TCYB.2016.2638902
10.1109/TEVC.2005.843751
10.1063/1.465188
10.1016/j.compstruc.2016.01.008
10.1063/1.4822471
10.1177/003754970107600201
10.1016/j.ecoinf.2006.07.003
10.1016/j.epsr.2016.09.025
10.1016/j.advengsoft.2013.03.004
10.1126/science.220.4598.671
10.1016/j.ins.2014.08.053
10.1016/j.knosys.2011.07.001
10.1016/j.advengsoft.2013.03.001
10.1016/j.ins.2013.01.020
10.1016/j.ins.2015.10.001
10.1016/j.cogsys.2018.07.022
10.1002/hyp.6274
10.1016/j.swevo.2018.02.013
10.1016/j.biosystems.2006.04.005
10.1109/3477.484436
10.1109/NABIC.2009.5393690
10.1109/TAP.2013.2238654
10.1002/oca.2334
10.1016/j.advengsoft.2017.07.002
10.1016/j.cor.2014.10.008
10.1016/j.advengsoft.2017.01.004
10.1504/IJBIC.2009.022775
10.1063/1.1730376
10.1103/PhysRevLett.89.150201
10.1023/A:1022452626305
10.1016/j.ins.2015.06.044
10.1016/j.camwa.2010.07.049
10.1111/j.1745-6584.1998.tb02203.x
10.1109/59.801925
10.1016/j.asoc.2015.03.003
10.1016/j.ins.2016.03.025
10.1016/j.ins.2011.08.006
10.1016/j.cnsns.2012.05.010
10.1007/s00707-009-0270-4
10.1023/A:1015059928466
10.1016/j.fluid.2016.07.008
10.1016/j.eswa.2013.05.041
10.1016/j.ins.2009.03.004
10.1007/s00500-012-0921-6
10.1007/s13201-015-0374-z
10.1016/j.advengsoft.2017.03.014
10.1016/j.advengsoft.2016.01.008
10.1186/1748-7188-5-32
10.1016/j.amc.2013.02.017
10.1109/TEVC.2008.919004
10.1109/MAP.2011.5773566
10.1016/0167-8191(88)90098-1
10.1016/j.cnsns.2013.08.027
10.1016/j.knosys.2016.01.009
10.1016/j.jnoncrysol.2015.10.031
10.1109/ICNN.1995.488968
10.1016/j.knosys.2015.12.022
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier Science Ltd. Jan 1, 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jan 1, 2019
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2018.08.030
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
Physics
EISSN 1872-7409
EndPage 304
ExternalDocumentID 10_1016_j_knosys_2018_08_030
S0950705118304271
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c400t-7d96052b3c1336a90e5fb3738336c086564846d7614e7c97a25f3567c7a47d623
ISICitedReferencesCount 540
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454468200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 19:18:17 EST 2025
Sat Nov 29 06:41:33 EST 2025
Tue Nov 18 22:38:35 EST 2025
Fri Feb 23 02:18:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Benchmark functions
Optimization algorithm
Global optimization
Metaheuristic
Parameter estimation
Heuristic algorithm
Atom search optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-7d96052b3c1336a90e5fb3738336c086564846d7614e7c97a25f3567c7a47d623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2165064710
PQPubID 2035257
PageCount 22
ParticipantIDs proquest_journals_2165064710
crossref_primary_10_1016_j_knosys_2018_08_030
crossref_citationtrail_10_1016_j_knosys_2018_08_030
elsevier_sciencedirect_doi_10_1016_j_knosys_2018_08_030
PublicationCentury 2000
PublicationDate 2019-01-01
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Li, Sang, Han, Wang, Gao (b3) 2018; 181
Rapaport, Blumberg, McKay, Christian (b82) 1996; 10
F.F. Moghaddam, R.F. Moghaddam, M. Cheriet, Curved space optimization: a random search based on general relativity theory, 2012. arXiv preprint
Kaveh, Talatahari (b39) 2010; 213
Wang, Zhao, Tian, Pan (b93) 2018; 52
Beni, Wang (b53) 1993
Kaveh, Dadras (b47) 2017; 110
Pishkenari, Mohagheghian, Rasouli (b89) 2016; 380
Askarzadeh (b60) 2014; 19
Tuckerman, Berne, Martyna, Klein (b88) 1993; 99
Goldstein, Poole, Safko (b81) 2001
Kaveh, Bakhshpoori (b32) 2016; 167
Oftadeh, Mahjoob, Shariatpanahi (b66) 2010; 60
Moscato, Mendes, Berretta (b19) 2007; 88
Mirjalili, Lewis (b95) 2016; 95
Shah-Hosseini (b38) 2009; 1
Kaveh, Farhoudi (b65) 2013; 59
Hsiao, Chuang, Jiang, Chien (b33) 2005
Rashedi, Nezamabadi-Pour, Saryazdi (b28) 2009; 179
Rahman (b80) 1964; 136
Birbil, Fang (b29) 2003; 25
Lennard-Jones (b86) 1924; 106
Mohamed, Mohamed, El-Gaafary, Hemeida (b64) 2017; 142
Yang, Hossein Gandomi (b20) 2012; 29
Patel, Savsani (b49) 2015; 324
Passino (b12) 2002; 22
W.F. Sacco, C.R.E. De Oliveira, A new stochastic optimization algorithm based on a particle collision metaheuristic, in: Proceedings of 6th WCSMO, 2005.
.
Alba, Dorronsoro (b71) 2005; 9
Kirkpatrick, Gelatt, Vecchi (b1) 1983; 220
Samuel, Jha (b102) 2003; 129
Mirjalili, Hashim (b40) 2012; 2
Gandomi, Alavi (b57) 2012; 17
Lynn, Suganthan (b72) 2015; 24
Chuang, Jiang (b37) 2007
Pan (b21) 2012; 26
Wolpert, Macready (b75) 1997; 1
Holland (b14) 1975
J.J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 2013.
Ryckaert, Ciccotti, Berendsen (b87) 1977; 23
Stone (b85) 1996
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b56) 2017; 114
Jain, Singh, Rani (b70) 2018
Zheng, Liu, Zhou, Liang, Wang (b41) 2010; 5
Geem, Kim, Loganathan (b10) 2001; 76
Barker (b76) 1870
Alder, Wainwright (b79) 1959; 31
Gong, Sun, Miao (b15) 2018; 22
Uymaz, Tezel, Yel (b23) 2015; 31
Duman, Uysal, Alkaya (b67) 2012; 217
Bayraktar, Komurcu, Bossard, Werner (b96) 2013; 61
Tamura, Yasuda (b50) 2011; 6
Kenkel, Kelter, Hage (b78) 2000
Srivastava, Guzman-Guzman (b100) 1998; 36
Doğan, Ölmez (b31) 2015; 293
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the 1995 IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.
Gong, Ji, Sun, Sun (b9) 2014; 137
Flores, López, Barrera (b44) 2011
Shen, Li (b48) 2009
Cuevas, González (b97) 2013; 17
Gong, Sun, Ji (b8) 2013; 233
De Falco, Della Cioppa, Maisto, Scafuri, Tarantino (b13) 2012; 207
Beyer, Schwefel (b16) 2002; 1
Akay, Karaboga (b55) 2012; 192
Genç, Eksin, Erol (b34) 2010
Cuevas, Cienfuegos, Zaldívar, Pérez-Cisneros (b59) 2013; 40
Gray, Gubbins (b84) 1984
Zhang, Xin (b74) 2017; 7
Krause, Cordeiro, Parpinelli, Lopes (b11) 2013
Hare, Nutini, Tesfamariam (b6) 2013; 59
X.S. Yang, S. Deb, Cuckoo search via Lévy flights, nature & biologically inspired computing, in: NaBIC 2009, World Congress on IEEE, 2009, pp. 210–214.
Kilymis, Delaye, Ispas (b91) 2016; 432
Rao, Savsani, Vakharia (b45) 2012; 183
Zheng (b43) 2015; 55
Dorigo, Maniezzo, Colorni (b54) 1996; 26
Walker, King (b77) 2005
Mucherino, Seref (b69) 2007
Rocca, Oliveri, Massa (b17) 2011; 53
Simon (b24) 2009; 12
Hantush, Jacob (b101) 1955; 36
Kiran (b58) 2015; 42
Mirjalili (b63) 2016; 96
Eskandar, Sadollah, Bahreininejad, Hamdi (b51) 2012; 110
Mehrabian, Lucas (b26) 2006; 1
Javidy, Hatamlou, Mirjalili (b42) 2015; 32
Yang (b68) 2010; 2
M. Kripka, R.M.L. Kripka, Big crunch optimization method, in: International Conference on Engineering Optimization, Brazil, 2008, pp. 1–5.
Topal, Altun (b27) 2016; 354
Zarand, Pazmandi, Pál, Zimányi (b46) 2002; 89
Mühlenbein, Gorges-Schleuter, Krämer (b7) 1988; 7
Punnathanam, Kotecha (b25) 2016; 54
Zhao, Wang (b92) 2016; 329
Civicioglu (b98) 2013; 219
Duan, Li, Wang, Sang, Jia (b5) 2018; 39
Juste, Kita, Tanaka, Hasegawa (b18) 1999; 14
Bertsimas, Jaillet, Martin (b73) 2018
Saremi, Mirjalili, Lewis (b62) 2017; 105
Zhang, Li, Li, Lai, Zhang (b99) 2016; 109
Yeh, Lin, Huang (b103) 2007; 21
Meng, Pan (b22) 2016; 97
Maitland, Rigby, Smith, Wakeham (b83) 1981
Hui, Bo, Hongyu (b104) 2009
Hasheminasab, Mehdipour (b90) 2016; 427
Liu, Gong, Sun, Jin (b4) 2017; 47
Shah-Hosseini (b35) 2011; 6
Patel (10.1016/j.knosys.2018.08.030_b49) 2015; 324
Pishkenari (10.1016/j.knosys.2018.08.030_b89) 2016; 380
Yeh (10.1016/j.knosys.2018.08.030_b103) 2007; 21
Kaveh (10.1016/j.knosys.2018.08.030_b65) 2013; 59
10.1016/j.knosys.2018.08.030_b94
Shen (10.1016/j.knosys.2018.08.030_b48) 2009
Genç (10.1016/j.knosys.2018.08.030_b34) 2010
Kaveh (10.1016/j.knosys.2018.08.030_b47) 2017; 110
Wang (10.1016/j.knosys.2018.08.030_b93) 2018; 52
Hasheminasab (10.1016/j.knosys.2018.08.030_b90) 2016; 427
Walker (10.1016/j.knosys.2018.08.030_b77) 2005
Holland (10.1016/j.knosys.2018.08.030_b14) 1975
Hui (10.1016/j.knosys.2018.08.030_b104) 2009
Uymaz (10.1016/j.knosys.2018.08.030_b23) 2015; 31
Cuevas (10.1016/j.knosys.2018.08.030_b97) 2013; 17
Lynn (10.1016/j.knosys.2018.08.030_b72) 2015; 24
Kirkpatrick (10.1016/j.knosys.2018.08.030_b1) 1983; 220
Zarand (10.1016/j.knosys.2018.08.030_b46) 2002; 89
Oftadeh (10.1016/j.knosys.2018.08.030_b66) 2010; 60
Rashedi (10.1016/j.knosys.2018.08.030_b28) 2009; 179
Mirjalili (10.1016/j.knosys.2018.08.030_b63) 2016; 96
Duan (10.1016/j.knosys.2018.08.030_b5) 2018; 39
Mucherino (10.1016/j.knosys.2018.08.030_b69) 2007
Passino (10.1016/j.knosys.2018.08.030_b12) 2002; 22
Kaveh (10.1016/j.knosys.2018.08.030_b39) 2010; 213
Geem (10.1016/j.knosys.2018.08.030_b10) 2001; 76
Shah-Hosseini (10.1016/j.knosys.2018.08.030_b35) 2011; 6
Mirjalili (10.1016/j.knosys.2018.08.030_b40) 2012; 2
Shah-Hosseini (10.1016/j.knosys.2018.08.030_b38) 2009; 1
10.1016/j.knosys.2018.08.030_b36
10.1016/j.knosys.2018.08.030_b30
Kenkel (10.1016/j.knosys.2018.08.030_b78) 2000
10.1016/j.knosys.2018.08.030_b2
Zhang (10.1016/j.knosys.2018.08.030_b99) 2016; 109
Maitland (10.1016/j.knosys.2018.08.030_b83) 1981
De Falco (10.1016/j.knosys.2018.08.030_b13) 2012; 207
Beni (10.1016/j.knosys.2018.08.030_b53) 1993
Mehrabian (10.1016/j.knosys.2018.08.030_b26) 2006; 1
Mühlenbein (10.1016/j.knosys.2018.08.030_b7) 1988; 7
Hantush (10.1016/j.knosys.2018.08.030_b101) 1955; 36
Barker (10.1016/j.knosys.2018.08.030_b76) 1870
Topal (10.1016/j.knosys.2018.08.030_b27) 2016; 354
Chuang (10.1016/j.knosys.2018.08.030_b37) 2007
Askarzadeh (10.1016/j.knosys.2018.08.030_b60) 2014; 19
Zhao (10.1016/j.knosys.2018.08.030_b92) 2016; 329
Gong (10.1016/j.knosys.2018.08.030_b8) 2013; 233
Javidy (10.1016/j.knosys.2018.08.030_b42) 2015; 32
Stone (10.1016/j.knosys.2018.08.030_b85) 1996
Alba (10.1016/j.knosys.2018.08.030_b71) 2005; 9
Moscato (10.1016/j.knosys.2018.08.030_b19) 2007; 88
Cuevas (10.1016/j.knosys.2018.08.030_b59) 2013; 40
Tuckerman (10.1016/j.knosys.2018.08.030_b88) 1993; 99
Zhang (10.1016/j.knosys.2018.08.030_b74) 2017; 7
Meng (10.1016/j.knosys.2018.08.030_b22) 2016; 97
Simon (10.1016/j.knosys.2018.08.030_b24) 2009; 12
Rao (10.1016/j.knosys.2018.08.030_b45) 2012; 183
Tamura (10.1016/j.knosys.2018.08.030_b50) 2011; 6
Krause (10.1016/j.knosys.2018.08.030_b11) 2013
Rahman (10.1016/j.knosys.2018.08.030_b80) 1964; 136
10.1016/j.knosys.2018.08.030_b52
Gong (10.1016/j.knosys.2018.08.030_b15) 2018; 22
Kilymis (10.1016/j.knosys.2018.08.030_b91) 2016; 432
Duman (10.1016/j.knosys.2018.08.030_b67) 2012; 217
Rocca (10.1016/j.knosys.2018.08.030_b17) 2011; 53
Eskandar (10.1016/j.knosys.2018.08.030_b51) 2012; 110
Jain (10.1016/j.knosys.2018.08.030_b70) 2018
Pan (10.1016/j.knosys.2018.08.030_b21) 2012; 26
Dorigo (10.1016/j.knosys.2018.08.030_b54) 1996; 26
Rapaport (10.1016/j.knosys.2018.08.030_b82) 1996; 10
Hsiao (10.1016/j.knosys.2018.08.030_b33) 2005
Kaveh (10.1016/j.knosys.2018.08.030_b32) 2016; 167
Srivastava (10.1016/j.knosys.2018.08.030_b100) 1998; 36
Zheng (10.1016/j.knosys.2018.08.030_b43) 2015; 55
Juste (10.1016/j.knosys.2018.08.030_b18) 1999; 14
Mirjalili (10.1016/j.knosys.2018.08.030_b95) 2016; 95
Li (10.1016/j.knosys.2018.08.030_b3) 2018; 181
Bertsimas (10.1016/j.knosys.2018.08.030_b73) 2018
Birbil (10.1016/j.knosys.2018.08.030_b29) 2003; 25
Lennard-Jones (10.1016/j.knosys.2018.08.030_b86) 1924; 106
Yang (10.1016/j.knosys.2018.08.030_b68) 2010; 2
Goldstein (10.1016/j.knosys.2018.08.030_b81) 2001
Mirjalili (10.1016/j.knosys.2018.08.030_b56) 2017; 114
Gong (10.1016/j.knosys.2018.08.030_b9) 2014; 137
Samuel (10.1016/j.knosys.2018.08.030_b102) 2003; 129
Ryckaert (10.1016/j.knosys.2018.08.030_b87) 1977; 23
Zheng (10.1016/j.knosys.2018.08.030_b41) 2010; 5
Kiran (10.1016/j.knosys.2018.08.030_b58) 2015; 42
Punnathanam (10.1016/j.knosys.2018.08.030_b25) 2016; 54
Hare (10.1016/j.knosys.2018.08.030_b6) 2013; 59
Wolpert (10.1016/j.knosys.2018.08.030_b75) 1997; 1
Gray (10.1016/j.knosys.2018.08.030_b84) 1984
Yang (10.1016/j.knosys.2018.08.030_b20) 2012; 29
Gandomi (10.1016/j.knosys.2018.08.030_b57) 2012; 17
Alder (10.1016/j.knosys.2018.08.030_b79) 1959; 31
Bayraktar (10.1016/j.knosys.2018.08.030_b96) 2013; 61
Civicioglu (10.1016/j.knosys.2018.08.030_b98) 2013; 219
Flores (10.1016/j.knosys.2018.08.030_b44) 2011
10.1016/j.knosys.2018.08.030_b61
Akay (10.1016/j.knosys.2018.08.030_b55) 2012; 192
Saremi (10.1016/j.knosys.2018.08.030_b62) 2017; 105
Beyer (10.1016/j.knosys.2018.08.030_b16) 2002; 1
Liu (10.1016/j.knosys.2018.08.030_b4) 2017; 47
Mohamed (10.1016/j.knosys.2018.08.030_b64) 2017; 142
Doğan (10.1016/j.knosys.2018.08.030_b31) 2015; 293
References_xml – volume: 52
  start-page: 301
  year: 2018
  end-page: 311
  ident: b93
  article-title: A bare bones bacterial foraging optimization algorithm
  publication-title: Cognit. Syst. Res.
– volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: b10
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Trans. Simul.
– volume: 88
  start-page: 56
  year: 2007
  end-page: 75
  ident: b19
  article-title: Benchmarking a memetic algorithm for ordering microarray data
  publication-title: Biosystems
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b63
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– reference: J.J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 2013.
– year: 1981
  ident: b83
  article-title: Intermolecular Forces: Their Origin and Determination
– volume: 167
  start-page: 69
  year: 2016
  end-page: 85
  ident: b32
  article-title: Water evaporation optimization: a novel physically inspired optimization algorithm
  publication-title: Comput. Struct.
– year: 2000
  ident: b78
  article-title: Chemistry: An Industry-Based Introduction With CD-ROM
– volume: 183
  start-page: 1
  year: 2012
  end-page: 15
  ident: b45
  article-title: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inf. Sci.
– volume: 6
  start-page: 132
  year: 2011
  end-page: 140
  ident: b35
  article-title: Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 59
  start-page: 19
  year: 2013
  end-page: 28
  ident: b6
  article-title: A survey of non-gradient optimization methods in structural engineering
  publication-title: Adv. Eng. Softw.
– start-page: 107
  year: 2009
  end-page: 115
  ident: b104
  article-title: Groundwater Dynamics
– volume: 54
  start-page: 62
  year: 2016
  end-page: 79
  ident: b25
  article-title: Yin-Yang-pair Optimization: a novel lightweight optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 61
  start-page: 2745
  year: 2013
  end-page: 2757
  ident: b96
  article-title: The wind driven optimization technique and its application in electromagnetics
  publication-title: IEEE Trans. Antennas Propag.
– volume: 5
  start-page: 32
  year: 2010
  ident: b41
  article-title: Gravitation field algorithm and its application in gene cluster
  publication-title: Algorithms Mol. Biol.
– volume: 42
  start-page: 6686
  year: 2015
  end-page: 6698
  ident: b58
  article-title: TSA: Tree-seed algorithm for continuous optimization
  publication-title: Expert Syst. Appl.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b56
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– volume: 36
  start-page: 844
  year: 1998
  end-page: 848
  ident: b100
  article-title: Practical approximations of the well function
  publication-title: Groundwater
– volume: 1
  start-page: 355
  year: 2006
  end-page: 366
  ident: b26
  article-title: A novel numerical optimization algorithm inspired from weed colonization
  publication-title: Ecol. Inf.
– volume: 219
  start-page: 8121
  year: 2013
  end-page: 8144
  ident: b98
  article-title: Backtracking search optimization algorithm for numerical optimization problems
  publication-title: Appl. Math. Comput.
– start-page: 881
  year: 2010
  end-page: 887
  ident: b34
  article-title: Big Bang-Big Crunch optimization algorithm hybridized with local directional moves and application to target motion analysis problem
  publication-title: 2010 IEEE International Conference on Systems Man and Cybernetics, SMC
– volume: 192
  start-page: 120
  year: 2012
  end-page: 142
  ident: b55
  article-title: A modified artificial bee colony algorithm for real-parameter optimization
  publication-title: Inf. Sci.
– volume: 136
  start-page: A405
  year: 1964
  end-page: A411
  ident: b80
  article-title: Correlations in the motion of atoms in liquid argon
  publication-title: Phys. Rev.
– volume: 10
  year: 1996
  ident: b82
  article-title: The art of molecular dynamics simulation
  publication-title: Comput. Phys.
– start-page: 162
  year: 2007
  end-page: 173
  ident: b69
  article-title: Monkey search: a novel metaheuristic search for global optimization
  publication-title: AIP conference proceedings, Vol. 935
– year: 2001
  ident: b81
  article-title: Classical Mechanics
– volume: 99
  start-page: 2796
  year: 1993
  end-page: 2808
  ident: b88
  article-title: Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals
  publication-title: J. Chem. Phys.
– reference: M. Kripka, R.M.L. Kripka, Big crunch optimization method, in: International Conference on Engineering Optimization, Brazil, 2008, pp. 1–5.
– start-page: 226
  year: 2011
  end-page: 237
  ident: b44
  article-title: Gravitational interactions optimization
  publication-title: International Conference on Learning and Intelligent Optimization
– volume: 7
  start-page: 65
  year: 1988
  end-page: 85
  ident: b7
  article-title: Evolution algorithms in combinatorial optimization
  publication-title: Parallel Comput.
– year: 1870
  ident: b76
  article-title: Divisions of matter
  publication-title: A Text-Book of Elementary Chemistry: Theoretical and Inorganic
– volume: 25
  start-page: 263
  year: 2003
  end-page: 282
  ident: b29
  article-title: An electromagnetism-like mechanism for global optimization
  publication-title: J. Global Optim.
– start-page: 2323
  year: 2005
  end-page: 2328
  ident: b33
  article-title: A novel optimization algorithm: space gravitational optimization
  publication-title: 2005 IEEE International Conference on Systems, Man and Cybernetics, Vol. 3
– volume: 324
  start-page: 217
  year: 2015
  end-page: 246
  ident: b49
  article-title: Heat transfer search (HTS): a novel optimization algorithm
  publication-title: Inf. Sci.
– volume: 354
  start-page: 222
  year: 2016
  end-page: 235
  ident: b27
  article-title: A novel meta-heuristic algorithm: Dynamic Virtual Bats Algorithm
  publication-title: Inf. Sci.
– volume: 1
  start-page: 3
  year: 2002
  end-page: 52
  ident: b16
  article-title: Evolution strategies-a comprehensive introduction
  publication-title: Nat. Comput.
– reference: X.S. Yang, S. Deb, Cuckoo search via Lévy flights, nature & biologically inspired computing, in: NaBIC 2009, World Congress on IEEE, 2009, pp. 210–214.
– volume: 9
  start-page: 126
  year: 2005
  end-page: 142
  ident: b71
  article-title: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 1
  start-page: 71
  year: 2009
  end-page: 79
  ident: b38
  article-title: The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm
  publication-title: Int. J. Bio-Inspired Comput.
– volume: 12
  start-page: 702
  year: 2009
  end-page: 713
  ident: b24
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 29
  start-page: 464
  year: 2012
  end-page: 483
  ident: b20
  article-title: Bat algorithm: a novel approach for global engineering optimization
  publication-title: Eng. Comput.
– volume: 36
  start-page: 95
  year: 1955
  end-page: 100
  ident: b101
  article-title: Non-steady radial flow in an infinite leaky aquifer
  publication-title: Trans. Amer. Geophys. Union
– volume: 23
  start-page: 327
  year: 1977
  end-page: 341
  ident: b87
  article-title: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes
  publication-title: J. Comput. Phys.
– volume: 293
  start-page: 125
  year: 2015
  end-page: 145
  ident: b31
  article-title: A new metaheuristic for numerical function optimization: Vortex Search algorithm
  publication-title: Inf. Sci.
– volume: 22
  start-page: 52
  year: 2002
  end-page: 67
  ident: b12
  article-title: Biomimicry of bacterial foraging for distributed optimization and control
  publication-title: IEEE Control Syst.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b28
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
– start-page: 918
  year: 2009
  end-page: 922
  ident: b48
  article-title: Light ray optimization and its parameter analysis
  publication-title: International Joint Conference on Computational Sciences and Optimization, Vol. 2, CSO 2009
– volume: 32
  start-page: 72
  year: 2015
  end-page: 79
  ident: b42
  article-title: Ions motion algorithm for solving optimization problems
  publication-title: Appl. Soft Comput.
– volume: 31
  start-page: 459
  year: 1959
  end-page: 466
  ident: b79
  article-title: Studies in molecular dynamics, I. general method
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: S98
  year: 2011
  end-page: S100
  ident: b50
  article-title: Primary study of spiral dynamics inspired optimization
  publication-title: IEEE Trans. Electr. Electron. Eng.
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: b54
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
– volume: 142
  start-page: 190
  year: 2017
  end-page: 206
  ident: b64
  article-title: Optimal power flow using moth swarm algorithm
  publication-title: Electr. Power Syst. Res.
– volume: 17
  start-page: 489
  year: 2013
  end-page: 502
  ident: b97
  article-title: An optimization algorithm for multimodal functions inspired by collective animal behavior
  publication-title: Soft Comput.
– volume: 2
  start-page: 78
  year: 2010
  end-page: 84
  ident: b68
  article-title: Firefly algorithm, stochastic test functions and design optimization
  publication-title: Int. J. Bio-Inspired Comput.
– volume: 22
  start-page: 47
  year: 2018
  end-page: 60
  ident: b15
  article-title: A set-based genetic algorithm for interval many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 59
  start-page: 53
  year: 2013
  end-page: 70
  ident: b65
  article-title: A new optimization method: dolphin echolocation
  publication-title: Adv. Eng. Softw.
– volume: 181
  start-page: 584
  year: 2018
  end-page: 598
  ident: b3
  article-title: Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions
  publication-title: J. Cleaner Prod.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b95
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 89
  start-page: 150
  year: 2002
  end-page: 201
  ident: b46
  article-title: Using hysteresis for optimization
  publication-title: Phys. Rev. Lett.
– start-page: 703
  year: 1993
  end-page: 712
  ident: b53
  article-title: Swarm intelligence in cellular robotic systems
  publication-title: Robots and Biological Systems: Towards a New Bionics?
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the 1995 IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.
– volume: 329
  start-page: 719
  year: 2016
  end-page: 735
  ident: b92
  article-title: An effective bacterial foraging optimizer for global optimization
  publication-title: Inf. Sci.
– year: 2018
  ident: b73
  article-title: Online Vehicle routing: The edge of optimization in large-scale applications
  publication-title: Oper. Res.
– year: 1996
  ident: b85
  article-title: The Theory of Intermolecular Forces
– volume: 207
  start-page: 50
  year: 2012
  end-page: 65
  ident: b13
  article-title: Biological invasion-inspired migration in distributed evolutionary algorithms
  publication-title: Inf. Sci.
– volume: 53
  start-page: 38
  year: 2011
  end-page: 49
  ident: b17
  article-title: Differential evolution as applied to electromagnetics
  publication-title: IEEE Antennas Propag. Mag.
– volume: 26
  start-page: 69
  year: 2012
  end-page: 74
  ident: b21
  article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example
  publication-title: Knowl.-Based Syst.
– volume: 110
  start-page: 69
  year: 2017
  end-page: 84
  ident: b47
  article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization
  publication-title: Adv. Eng. Softw.
– year: 1975
  ident: b14
  article-title: Adaptation in Natural and Artificial Systems
– volume: 7
  start-page: 1955
  year: 2017
  end-page: 1963
  ident: b74
  article-title: Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm
  publication-title: Appl. Water Sci.
– volume: 427
  start-page: 161
  year: 2016
  end-page: 165
  ident: b90
  article-title: Molecular dynamics simulation of fluid sodium
  publication-title: Fluid Phase Equilib.
– volume: 17
  start-page: 4831
  year: 2012
  end-page: 4845
  ident: b57
  article-title: Krill herd: a new bio-inspired optimization algorithm
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– year: 2005
  ident: b77
  article-title: What is Matter?
– volume: 432
  start-page: 354
  year: 2016
  end-page: 360
  ident: b91
  article-title: Density effects on the structure of irradiated sodium borosilicate glass: a molecular dynamics study
  publication-title: J. Non-cryst. Solids
– volume: 217
  start-page: 65
  year: 2012
  end-page: 77
  ident: b67
  article-title: Migrating Birds Optimization: A new metaheuristic approach and its performance on quadratic assignment problem
  publication-title: Inf. Sci.
– volume: 55
  start-page: 1
  year: 2015
  end-page: 11
  ident: b43
  article-title: Water wave optimization: a new nature-inspired metaheuristic
  publication-title: Comput. Oper. Res.
– volume: 14
  start-page: 1452
  year: 1999
  end-page: 1459
  ident: b18
  article-title: An evolutionary programming solution to the unit commitment problem
  publication-title: IEEE Trans. Power Syst.
– volume: 24
  start-page: 11
  year: 2015
  end-page: 24
  ident: b72
  article-title: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation
  publication-title: Swarm Evol. Comput.
– start-page: 169
  year: 2013
  end-page: 191
  ident: b11
  article-title: A survey of swarm algorithms applied to discrete optimization problems
  publication-title: Swarm Intelligence and Bio-inspired Computation: Theory and Applications
– volume: 97
  start-page: 144
  year: 2016
  end-page: 157
  ident: b22
  article-title: Monkey King Evolution: a new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization
  publication-title: Knowl.-Based Syst.
– volume: 2
  start-page: 204
  year: 2012
  ident: b40
  article-title: BMOA: binary magnetic optimization algorithm
  publication-title: Int. J. Mach. Learn. Comput.
– reference: F.F. Moghaddam, R.F. Moghaddam, M. Cheriet, Curved space optimization: a random search based on general relativity theory, 2012. arXiv preprint
– volume: 31
  start-page: 153
  year: 2015
  end-page: 171
  ident: b23
  article-title: Artificial algae algorithm (AAA) for nonlinear global optimization
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b75
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 109
  start-page: 218
  year: 2016
  end-page: 237
  ident: b99
  article-title: A mixed-strategy based gravitational search algorithm for parameter identification of hydraulic turbine governing system
  publication-title: Knowl.-Based Syst.
– volume: 137
  start-page: 241
  year: 2014
  end-page: 251
  ident: b9
  article-title: Interactive evolutionary algorithms with decision-maker’s preferences for solving interval multi-objective optimization problems
  publication-title: Neurocomputing
– volume: 106
  start-page: 463
  year: 1924
  end-page: 477
  ident: b86
  article-title: On the determination of molecular fields
  publication-title: Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. R. Soc.
– start-page: 3157
  year: 2007
  end-page: 3164
  ident: b37
  article-title: Integrated radiation optimization: inspired by the gravitational radiation in the curvature of space–time
  publication-title: IEEE Congress on Evolutionary Computation, CEC 2007
– year: 2018
  ident: b70
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm Evol. Comput.
– volume: 47
  start-page: 2689
  year: 2017
  end-page: 2702
  ident: b4
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Trans. Cybern.
– volume: 110
  start-page: 151
  year: 2012
  end-page: 166
  ident: b51
  article-title: Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
– reference: W.F. Sacco, C.R.E. De Oliveira, A new stochastic optimization algorithm based on a particle collision metaheuristic, in: Proceedings of 6th WCSMO, 2005.
– volume: 233
  start-page: 141
  year: 2013
  end-page: 161
  ident: b8
  article-title: Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems
  publication-title: Inf. Sci.
– volume: 40
  start-page: 6374
  year: 2013
  end-page: 6384
  ident: b59
  article-title: A swarm optimization algorithm inspired in the behavior of the social-spider
  publication-title: Expert Syst. Appl.
– volume: 19
  start-page: 1213
  year: 2014
  end-page: 1228
  ident: b60
  article-title: Bird mating optimizer: an optimization algorithm inspired by bird mating strategies
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b1
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 39
  start-page: 65
  year: 2018
  end-page: 77
  ident: b5
  article-title: Solving chiller loading optimization problems using an improved teaching-learning-based optimization algorithm
  publication-title: Optim. Control Appl. Methods
– volume: 60
  start-page: 2087
  year: 2010
  end-page: 2098
  ident: b66
  article-title: A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search
  publication-title: Comput. Math. Appl.
– volume: 380
  start-page: 4039
  year: 2016
  end-page: 4043
  ident: b89
  article-title: Molecular dynamics study of the thermal expansion coefficient of silicon
  publication-title: Phys. Lett. A
– reference: .
– volume: 213
  start-page: 267
  year: 2010
  end-page: 289
  ident: b39
  article-title: A novel heuristic optimization method: charged system search
  publication-title: Acta Mech.
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: b62
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Adv. Eng. Softw.
– volume: 21
  start-page: 862
  year: 2007
  end-page: 872
  ident: b103
  article-title: Parameter identification for leaky aquifers using global optimization methods
  publication-title: Hydrol. Process.
– year: 1984
  ident: b84
  article-title: Theory of Molecular Fluids, Volume 1: Fundamentals
– volume: 129
  start-page: 348
  year: 2003
  end-page: 359
  ident: b102
  article-title: Estimation of aquifer parameters from pumping test data by genetic algorithm optimization technique
  publication-title: J. Irrig. Drain. Div.
– volume: 6
  start-page: S98
  issue: S1
  year: 2011
  ident: 10.1016/j.knosys.2018.08.030_b50
  article-title: Primary study of spiral dynamics inspired optimization
  publication-title: IEEE Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.20628
– volume: 137
  start-page: 241
  year: 2014
  ident: 10.1016/j.knosys.2018.08.030_b9
  article-title: Interactive evolutionary algorithms with decision-maker’s preferences for solving interval multi-objective optimization problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.052
– year: 2001
  ident: 10.1016/j.knosys.2018.08.030_b81
– volume: 380
  start-page: 4039
  issue: 48
  year: 2016
  ident: 10.1016/j.knosys.2018.08.030_b89
  article-title: Molecular dynamics study of the thermal expansion coefficient of silicon
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2016.08.027
– volume: 181
  start-page: 584
  year: 2018
  ident: 10.1016/j.knosys.2018.08.030_b3
  article-title: Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.02.004
– start-page: 107
  year: 2009
  ident: 10.1016/j.knosys.2018.08.030_b104
– volume: 2
  start-page: 204
  issue: 3
  year: 2012
  ident: 10.1016/j.knosys.2018.08.030_b40
  article-title: BMOA: binary magnetic optimization algorithm
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.7763/IJMLC.2012.V2.114
– ident: 10.1016/j.knosys.2018.08.030_b30
– year: 1984
  ident: 10.1016/j.knosys.2018.08.030_b84
– volume: 29
  start-page: 464
  issue: 5
  year: 2012
  ident: 10.1016/j.knosys.2018.08.030_b20
  article-title: Bat algorithm: a novel approach for global engineering optimization
  publication-title: Eng. Comput.
  doi: 10.1108/02644401211235834
– volume: 192
  start-page: 120
  year: 2012
  ident: 10.1016/j.knosys.2018.08.030_b55
  article-title: A modified artificial bee colony algorithm for real-parameter optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.07.015
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.knosys.2018.08.030_b75
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 109
  start-page: 218
  year: 2016
  ident: 10.1016/j.knosys.2018.08.030_b99
  article-title: A mixed-strategy based gravitational search algorithm for parameter identification of hydraulic turbine governing system
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.07.005
– volume: 110
  start-page: 151
  year: 2012
  ident: 10.1016/j.knosys.2018.08.030_b51
  article-title: Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.07.010
– volume: 2
  start-page: 78
  issue: 2
  year: 2010
  ident: 10.1016/j.knosys.2018.08.030_b68
  article-title: Firefly algorithm, stochastic test functions and design optimization
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2010.032124
– volume: 32
  start-page: 72
  year: 2015
  ident: 10.1016/j.knosys.2018.08.030_b42
  article-title: Ions motion algorithm for solving optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.03.035
– volume: 106
  start-page: 463
  issue: 738
  year: 1924
  ident: 10.1016/j.knosys.2018.08.030_b86
  article-title: On the determination of molecular fields
  publication-title: Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. R. Soc.
– volume: 217
  start-page: 65
  year: 2012
  ident: 10.1016/j.knosys.2018.08.030_b67
  article-title: Migrating Birds Optimization: A new metaheuristic approach and its performance on quadratic assignment problem
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.06.032
– volume: 54
  start-page: 62
  year: 2016
  ident: 10.1016/j.knosys.2018.08.030_b25
  article-title: Yin-Yang-pair Optimization: a novel lightweight optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.04.004
– volume: 42
  start-page: 6686
  issue: 19
  year: 2015
  ident: 10.1016/j.knosys.2018.08.030_b58
  article-title: TSA: Tree-seed algorithm for continuous optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.055
– volume: 136
  start-page: A405
  issue: 2A
  year: 1964
  ident: 10.1016/j.knosys.2018.08.030_b80
  article-title: Correlations in the motion of atoms in liquid argon
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.A405
– year: 1996
  ident: 10.1016/j.knosys.2018.08.030_b85
– volume: 207
  start-page: 50
  year: 2012
  ident: 10.1016/j.knosys.2018.08.030_b13
  article-title: Biological invasion-inspired migration in distributed evolutionary algorithms
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.04.027
– volume: 22
  start-page: 47
  issue: 1
  year: 2018
  ident: 10.1016/j.knosys.2018.08.030_b15
  article-title: A set-based genetic algorithm for interval many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2634625
– volume: 23
  start-page: 327
  issue: 3
  year: 1977
  ident: 10.1016/j.knosys.2018.08.030_b87
  article-title: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90098-5
– volume: 129
  start-page: 348
  issue: 5
  year: 2003
  ident: 10.1016/j.knosys.2018.08.030_b102
  article-title: Estimation of aquifer parameters from pumping test data by genetic algorithm optimization technique
  publication-title: J. Irrig. Drain. Div.
  doi: 10.1061/(ASCE)0733-9437(2003)129:5(348)
– volume: 24
  start-page: 11
  year: 2015
  ident: 10.1016/j.knosys.2018.08.030_b72
  article-title: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2015.05.002
– volume: 36
  start-page: 95
  issue: 1
  year: 1955
  ident: 10.1016/j.knosys.2018.08.030_b101
  article-title: Non-steady radial flow in an infinite leaky aquifer
  publication-title: Trans. Amer. Geophys. Union
  doi: 10.1029/TR036i001p00095
– volume: 22
  start-page: 52
  issue: 3
  year: 2002
  ident: 10.1016/j.knosys.2018.08.030_b12
  article-title: Biomimicry of bacterial foraging for distributed optimization and control
  publication-title: IEEE Control Syst.
  doi: 10.1109/MCS.2002.1004010
– start-page: 918
  year: 2009
  ident: 10.1016/j.knosys.2018.08.030_b48
  article-title: Light ray optimization and its parameter analysis
– volume: 47
  start-page: 2689
  issue: 9
  year: 2017
  ident: 10.1016/j.knosys.2018.08.030_b4
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2638902
– volume: 9
  start-page: 126
  issue: 2
  year: 2005
  ident: 10.1016/j.knosys.2018.08.030_b71
  article-title: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.843751
– start-page: 3157
  year: 2007
  ident: 10.1016/j.knosys.2018.08.030_b37
  article-title: Integrated radiation optimization: inspired by the gravitational radiation in the curvature of space–time
– year: 1870
  ident: 10.1016/j.knosys.2018.08.030_b76
  article-title: Divisions of matter
– volume: 99
  start-page: 2796
  issue: 4
  year: 1993
  ident: 10.1016/j.knosys.2018.08.030_b88
  article-title: Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465188
– volume: 167
  start-page: 69
  year: 2016
  ident: 10.1016/j.knosys.2018.08.030_b32
  article-title: Water evaporation optimization: a novel physically inspired optimization algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.01.008
– ident: 10.1016/j.knosys.2018.08.030_b52
– volume: 10
  issue: 5
  year: 1996
  ident: 10.1016/j.knosys.2018.08.030_b82
  article-title: The art of molecular dynamics simulation
  publication-title: Comput. Phys.
  doi: 10.1063/1.4822471
– ident: 10.1016/j.knosys.2018.08.030_b94
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 10.1016/j.knosys.2018.08.030_b10
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Trans. Simul.
  doi: 10.1177/003754970107600201
– volume: 1
  start-page: 355
  issue: 4
  year: 2006
  ident: 10.1016/j.knosys.2018.08.030_b26
  article-title: A novel numerical optimization algorithm inspired from weed colonization
  publication-title: Ecol. Inf.
  doi: 10.1016/j.ecoinf.2006.07.003
– start-page: 162
  year: 2007
  ident: 10.1016/j.knosys.2018.08.030_b69
  article-title: Monkey search: a novel metaheuristic search for global optimization
– volume: 142
  start-page: 190
  year: 2017
  ident: 10.1016/j.knosys.2018.08.030_b64
  article-title: Optimal power flow using moth swarm algorithm
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2016.09.025
– year: 2018
  ident: 10.1016/j.knosys.2018.08.030_b73
  article-title: Online Vehicle routing: The edge of optimization in large-scale applications
  publication-title: Oper. Res.
– volume: 6
  start-page: 132
  issue: 1–2
  year: 2011
  ident: 10.1016/j.knosys.2018.08.030_b35
  article-title: Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation
  publication-title: Int. J. Comput. Sci. Eng.
– start-page: 703
  year: 1993
  ident: 10.1016/j.knosys.2018.08.030_b53
  article-title: Swarm intelligence in cellular robotic systems
– volume: 59
  start-page: 53
  year: 2013
  ident: 10.1016/j.knosys.2018.08.030_b65
  article-title: A new optimization method: dolphin echolocation
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.03.004
– year: 2000
  ident: 10.1016/j.knosys.2018.08.030_b78
– year: 2005
  ident: 10.1016/j.knosys.2018.08.030_b77
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.knosys.2018.08.030_b1
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 293
  start-page: 125
  year: 2015
  ident: 10.1016/j.knosys.2018.08.030_b31
  article-title: A new metaheuristic for numerical function optimization: Vortex Search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.08.053
– volume: 26
  start-page: 69
  year: 2012
  ident: 10.1016/j.knosys.2018.08.030_b21
  article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.07.001
– volume: 59
  start-page: 19
  year: 2013
  ident: 10.1016/j.knosys.2018.08.030_b6
  article-title: A survey of non-gradient optimization methods in structural engineering
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.03.001
– volume: 233
  start-page: 141
  year: 2013
  ident: 10.1016/j.knosys.2018.08.030_b8
  article-title: Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.01.020
– volume: 329
  start-page: 719
  year: 2016
  ident: 10.1016/j.knosys.2018.08.030_b92
  article-title: An effective bacterial foraging optimizer for global optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.10.001
– volume: 52
  start-page: 301
  year: 2018
  ident: 10.1016/j.knosys.2018.08.030_b93
  article-title: A bare bones bacterial foraging optimization algorithm
  publication-title: Cognit. Syst. Res.
  doi: 10.1016/j.cogsys.2018.07.022
– volume: 21
  start-page: 862
  issue: 7
  year: 2007
  ident: 10.1016/j.knosys.2018.08.030_b103
  article-title: Parameter identification for leaky aquifers using global optimization methods
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6274
– year: 2018
  ident: 10.1016/j.knosys.2018.08.030_b70
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.02.013
– volume: 88
  start-page: 56
  issue: 1
  year: 2007
  ident: 10.1016/j.knosys.2018.08.030_b19
  article-title: Benchmarking a memetic algorithm for ordering microarray data
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2006.04.005
– volume: 26
  start-page: 29
  issue: 1
  year: 1996
  ident: 10.1016/j.knosys.2018.08.030_b54
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
  doi: 10.1109/3477.484436
– ident: 10.1016/j.knosys.2018.08.030_b61
  doi: 10.1109/NABIC.2009.5393690
– volume: 61
  start-page: 2745
  issue: 5
  year: 2013
  ident: 10.1016/j.knosys.2018.08.030_b96
  article-title: The wind driven optimization technique and its application in electromagnetics
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2013.2238654
– volume: 39
  start-page: 65
  issue: 1
  year: 2018
  ident: 10.1016/j.knosys.2018.08.030_b5
  article-title: Solving chiller loading optimization problems using an improved teaching-learning-based optimization algorithm
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.2334
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.knosys.2018.08.030_b56
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 55
  start-page: 1
  year: 2015
  ident: 10.1016/j.knosys.2018.08.030_b43
  article-title: Water wave optimization: a new nature-inspired metaheuristic
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2014.10.008
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.knosys.2018.08.030_b62
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 1
  start-page: 71
  issue: 1–2
  year: 2009
  ident: 10.1016/j.knosys.2018.08.030_b38
  article-title: The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2009.022775
– volume: 31
  start-page: 459
  issue: 2
  year: 1959
  ident: 10.1016/j.knosys.2018.08.030_b79
  article-title: Studies in molecular dynamics, I. general method
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1730376
– volume: 89
  start-page: 150
  issue: 15
  year: 2002
  ident: 10.1016/j.knosys.2018.08.030_b46
  article-title: Using hysteresis for optimization
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.150201
– volume: 25
  start-page: 263
  issue: 3
  year: 2003
  ident: 10.1016/j.knosys.2018.08.030_b29
  article-title: An electromagnetism-like mechanism for global optimization
  publication-title: J. Global Optim.
  doi: 10.1023/A:1022452626305
– volume: 324
  start-page: 217
  year: 2015
  ident: 10.1016/j.knosys.2018.08.030_b49
  article-title: Heat transfer search (HTS): a novel optimization algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.06.044
– volume: 60
  start-page: 2087
  issue: 7
  year: 2010
  ident: 10.1016/j.knosys.2018.08.030_b66
  article-title: A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.07.049
– volume: 36
  start-page: 844
  issue: 5
  year: 1998
  ident: 10.1016/j.knosys.2018.08.030_b100
  article-title: Practical approximations of the well function
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.1998.tb02203.x
– start-page: 881
  year: 2010
  ident: 10.1016/j.knosys.2018.08.030_b34
  article-title: Big Bang-Big Crunch optimization algorithm hybridized with local directional moves and application to target motion analysis problem
– volume: 14
  start-page: 1452
  issue: 4
  year: 1999
  ident: 10.1016/j.knosys.2018.08.030_b18
  article-title: An evolutionary programming solution to the unit commitment problem
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.801925
– volume: 31
  start-page: 153
  year: 2015
  ident: 10.1016/j.knosys.2018.08.030_b23
  article-title: Artificial algae algorithm (AAA) for nonlinear global optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.03.003
– volume: 354
  start-page: 222
  year: 2016
  ident: 10.1016/j.knosys.2018.08.030_b27
  article-title: A novel meta-heuristic algorithm: Dynamic Virtual Bats Algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.03.025
– start-page: 169
  year: 2013
  ident: 10.1016/j.knosys.2018.08.030_b11
  article-title: A survey of swarm algorithms applied to discrete optimization problems
– volume: 183
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.knosys.2018.08.030_b45
  article-title: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.08.006
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 10.1016/j.knosys.2018.08.030_b57
  article-title: Krill herd: a new bio-inspired optimization algorithm
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 213
  start-page: 267
  issue: 3
  year: 2010
  ident: 10.1016/j.knosys.2018.08.030_b39
  article-title: A novel heuristic optimization method: charged system search
  publication-title: Acta Mech.
  doi: 10.1007/s00707-009-0270-4
– ident: 10.1016/j.knosys.2018.08.030_b36
– volume: 1
  start-page: 3
  issue: 1
  year: 2002
  ident: 10.1016/j.knosys.2018.08.030_b16
  article-title: Evolution strategies-a comprehensive introduction
  publication-title: Nat. Comput.
  doi: 10.1023/A:1015059928466
– volume: 427
  start-page: 161
  year: 2016
  ident: 10.1016/j.knosys.2018.08.030_b90
  article-title: Molecular dynamics simulation of fluid sodium
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2016.07.008
– start-page: 2323
  year: 2005
  ident: 10.1016/j.knosys.2018.08.030_b33
  article-title: A novel optimization algorithm: space gravitational optimization
– volume: 40
  start-page: 6374
  issue: 16
  year: 2013
  ident: 10.1016/j.knosys.2018.08.030_b59
  article-title: A swarm optimization algorithm inspired in the behavior of the social-spider
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.05.041
– start-page: 226
  year: 2011
  ident: 10.1016/j.knosys.2018.08.030_b44
  article-title: Gravitational interactions optimization
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.knosys.2018.08.030_b28
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 17
  start-page: 489
  issue: 3
  year: 2013
  ident: 10.1016/j.knosys.2018.08.030_b97
  article-title: An optimization algorithm for multimodal functions inspired by collective animal behavior
  publication-title: Soft Comput.
  doi: 10.1007/s00500-012-0921-6
– volume: 7
  start-page: 1955
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2018.08.030_b74
  article-title: Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-015-0374-z
– volume: 110
  start-page: 69
  year: 2017
  ident: 10.1016/j.knosys.2018.08.030_b47
  article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.03.014
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.knosys.2018.08.030_b95
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 5
  start-page: 32
  issue: 1
  year: 2010
  ident: 10.1016/j.knosys.2018.08.030_b41
  article-title: Gravitation field algorithm and its application in gene cluster
  publication-title: Algorithms Mol. Biol.
  doi: 10.1186/1748-7188-5-32
– volume: 219
  start-page: 8121
  issue: 15
  year: 2013
  ident: 10.1016/j.knosys.2018.08.030_b98
  article-title: Backtracking search optimization algorithm for numerical optimization problems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.02.017
– volume: 12
  start-page: 702
  issue: 6
  year: 2009
  ident: 10.1016/j.knosys.2018.08.030_b24
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 53
  start-page: 38
  issue: 1
  year: 2011
  ident: 10.1016/j.knosys.2018.08.030_b17
  article-title: Differential evolution as applied to electromagnetics
  publication-title: IEEE Antennas Propag. Mag.
  doi: 10.1109/MAP.2011.5773566
– year: 1975
  ident: 10.1016/j.knosys.2018.08.030_b14
– volume: 7
  start-page: 65
  issue: 1
  year: 1988
  ident: 10.1016/j.knosys.2018.08.030_b7
  article-title: Evolution algorithms in combinatorial optimization
  publication-title: Parallel Comput.
  doi: 10.1016/0167-8191(88)90098-1
– volume: 19
  start-page: 1213
  issue: 4
  year: 2014
  ident: 10.1016/j.knosys.2018.08.030_b60
  article-title: Bird mating optimizer: an optimization algorithm inspired by bird mating strategies
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2013.08.027
– volume: 97
  start-page: 144
  year: 2016
  ident: 10.1016/j.knosys.2018.08.030_b22
  article-title: Monkey King Evolution: a new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.01.009
– volume: 432
  start-page: 354
  year: 2016
  ident: 10.1016/j.knosys.2018.08.030_b91
  article-title: Density effects on the structure of irradiated sodium borosilicate glass: a molecular dynamics study
  publication-title: J. Non-cryst. Solids
  doi: 10.1016/j.jnoncrysol.2015.10.031
– ident: 10.1016/j.knosys.2018.08.030_b2
  doi: 10.1109/ICNN.1995.488968
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.knosys.2018.08.030_b63
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– year: 1981
  ident: 10.1016/j.knosys.2018.08.030_b83
SSID ssj0002218
Score 2.667558
Snippet In recent years, various metaheuristic optimization methods have been proposed in scientific and engineering fields. In this study, a novel physics-inspired...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 283
SubjectTerms Algorithms
Atom search optimization
Benchmark functions
Engineering
Estimating techniques
Estimation
Global optimization
Heuristic algorithm
Heuristic methods
Lennard-Jones potential
Mathematical models
Metaheuristic
Molecular dynamics
Novels
Optimization
Optimization algorithm
Optimization algorithms
Parameter estimation
Physics
World problems
Title Atom search optimization and its application to solve a hydrogeologic parameter estimation problem
URI https://dx.doi.org/10.1016/j.knosys.2018.08.030
https://www.proquest.com/docview/2165064710
Volume 163
WOSCitedRecordID wos000454468200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLaqjgMXxvghBmPygVtklNpJnBwrNMSPaUJiQLVL5NjO2rEmU5dVncQfz3NspykVGiBxidqkSdy8L58_P_u9h9ArkBgq4VSQTI0kiahiRCheEhUqVqgkLGnrh_x6zE9O0skk-zQY_PCxMMtLXlXpapVd_VdTwz4wtgmd_QtzdxeFHfAZjA5bMDts_8jw46aeB86ZUQMhzF2kZTdN0JuzNsoTWrPUgQimt2pRn2tLhoFJCT43S2UCk4bDxjcGrvpMX9B-9D45YvpD5TJDd0L9bCpaX-w3PTu_qdfee8swx7Nb33P2fddnU12t_AHnkTBBUBseie1QGedvDAkPXXZZbdk25SDvozDboGNHeI5QbZkb1zczW6p4i_atB-Li9feqhr9pFuylbWJWN-WzmVD7s2mKaQmwmak0AmPnHcrjLB2infH7o8mHrientPUPd033oZft-sDte_1O2vzSybfK5fQheuCGHHhsobKHBrp6hHZ9OQ_s2P0xKgxysEUO7iMHA3IwIAf3kIObGrfIwQJvIAd3yMFr5GCHnCfoy9uj0zfviCvBQSSQe0O4ghFuTAsmR4wlIgt1XBYmGRZ8kzAajpMIBKziIPI0lxkXNC5ZnHDJRQQkQNlTNKzqSj9DWIiwTDMRazOElTpMRZlEBehDySnTOtlHzD-9XLr89KZMymXuFyJe5PaZ5-aZ56Z6Kgv3EenOurL5We74PfeGyZ3GtNoxByzdceaBt2PuXnc4PkpMxkeQ6c__-cIv0P31W3SAhs3iRr9E9-SymV0vDh0mfwLLtbCh
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atom+search+optimization+and+its+application+to+solve+a+hydrogeologic+parameter+estimation+problem&rft.jtitle=Knowledge-based+systems&rft.au=Zhao%2C+Weiguo&rft.au=Wang%2C+Liying&rft.au=Zhang%2C+Zhenxing&rft.date=2019-01-01&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=163&rft.spage=283&rft.epage=304&rft_id=info:doi/10.1016%2Fj.knosys.2018.08.030&rft.externalDocID=S0950705118304271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon