Comparison of Hospital Building’s Energy Consumption Prediction Using Artificial Neural Networks, ANFIS, and LSTM Network

Since accurate load forecasting plays an important role in the improvisation of buildings and as described in EU’s “Green Deal”, financial resources saved through improvisation of the efficiency of buildings with social importance such as hospitals, will be the funds to support their mission, the so...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 15; no. 17; p. 6453
Main Authors: Panagiotou, Dimitrios K., Dounis, Anastasios I.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.09.2022
Subjects:
ISSN:1996-1073, 1996-1073
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Since accurate load forecasting plays an important role in the improvisation of buildings and as described in EU’s “Green Deal”, financial resources saved through improvisation of the efficiency of buildings with social importance such as hospitals, will be the funds to support their mission, the social impact of load forecasting is significant. In the present paper, eight different machine learning predictors will be examined for the short-term load forecasting of a hospital’s facility building. The challenge is to qualify the most suitable predictors for the abovementioned task, which is beneficial for an in-depth study on accurate predictors’ applications in Intelligent Energy Management Systems (IEMS). Three Artificial Neural Networks using a backpropagation algorithm, three Artificial Neural Networks using metaheuristic optimization algorithms for training, an Adaptive Neuro-Fuzzy Inference System (ANFIS), and a Long-Short Term Memory (LSTM) network were tested using timeseries generated from a simulated healthcare facility. ANFIS and backpropagation-based trained models outperformed all other models since they both deal well with complex nonlinear problems. LSTM also performed adequately. The models trained with metaheuristic algorithms demonstrated poor performance.
AbstractList Since accurate load forecasting plays an important role in the improvisation of buildings and as described in EU’s “Green Deal”, financial resources saved through improvisation of the efficiency of buildings with social importance such as hospitals, will be the funds to support their mission, the social impact of load forecasting is significant. In the present paper, eight different machine learning predictors will be examined for the short-term load forecasting of a hospital’s facility building. The challenge is to qualify the most suitable predictors for the abovementioned task, which is beneficial for an in-depth study on accurate predictors’ applications in Intelligent Energy Management Systems (IEMS). Three Artificial Neural Networks using a backpropagation algorithm, three Artificial Neural Networks using metaheuristic optimization algorithms for training, an Adaptive Neuro-Fuzzy Inference System (ANFIS), and a Long-Short Term Memory (LSTM) network were tested using timeseries generated from a simulated healthcare facility. ANFIS and backpropagation-based trained models outperformed all other models since they both deal well with complex nonlinear problems. LSTM also performed adequately. The models trained with metaheuristic algorithms demonstrated poor performance.
Audience Academic
Author Panagiotou, Dimitrios K.
Dounis, Anastasios I.
Author_xml – sequence: 1
  givenname: Dimitrios K.
  orcidid: 0000-0003-4497-9559
  surname: Panagiotou
  fullname: Panagiotou, Dimitrios K.
– sequence: 2
  givenname: Anastasios I.
  orcidid: 0000-0002-2204-3955
  surname: Dounis
  fullname: Dounis, Anastasios I.
BookMark eNptUctuEzEUtVCRKKUbvsASO9S09vg1XoaopZHSgtR2bXn8iBwm9mDPqKrY8Bv8Hl-Ck1CBEPbiXh2fc3Svz2twFFN0ALzF6JwQiS5cxAwLThl5AY6xlHyGkSBHf_WvwGkpG1QPIZgQcgy-LdJ20DmUFGHy8DqVIYy6hx-m0NsQ1z-__yjwMrq8foKLFMu0HcZQuZ-zs8Hs24dSeXCex-CDCVV766a8L-Njyl_KGZzfXi3vzqCOFq7u7m-eX96Al173xZ3-rifg4eryfnE9W336uFzMVzNDERpngolGS9013LYSd11LUCek0Ngh03W05byCklBupZGWM-6940x4agWz2DNyApYHX5v0Rg05bHV-UkkHtQdSXitdpze9U5xWdyOpZ5pS2iLJGdOt8x3hVHPZVq93B68hp6-TK6PapCnHOr5qBMYEM4ppZZ0fWGtdTUP0acza1GvdNpiamg8VnwtKMG2adjciOghMTqVk55WpMey-twpDrzBSu4jVn4ir5P0_kufN_kP-BcXXp9A
CitedBy_id crossref_primary_10_3390_en18030668
crossref_primary_10_1371_journal_pone_0325747
crossref_primary_10_3390_su142114322
crossref_primary_10_3390_atmos13122121
crossref_primary_10_3390_su16177805
crossref_primary_10_3389_fenrg_2023_1202904
crossref_primary_10_3389_fenrg_2023_1239542
crossref_primary_10_1016_j_engappai_2023_107670
crossref_primary_10_1016_j_jobe_2025_112295
crossref_primary_10_3390_su15108419
crossref_primary_10_1016_j_sciaf_2025_e02560
crossref_primary_10_3390_app12189386
crossref_primary_10_3390_buildings13071675
crossref_primary_10_3390_buildings13010074
Cites_doi 10.3390/en11113012
10.1109/21.256541
10.3390/en12071301
10.3390/en15093382
10.1177/1729881420968702
10.3390/en9010057
10.1016/j.rser.2013.03.004
10.1109/ISIE.2019.8781349
10.1109/ICCV.2005.128
10.3390/app10238323
10.1002/0470101024
10.1016/0169-2070(94)90045-0
10.1016/j.eswa.2021.116423
10.3390/en12173254
10.3390/su12187379
10.1016/j.rser.2012.02.049
10.1016/j.advengsoft.2005.04.005
10.3390/en11030493
10.3390/en13174363
10.3390/app9132630
10.1016/j.jobe.2022.104323
10.1016/S0893-6080(05)80056-5
10.1109/JAS.2019.1911348
10.1016/B978-0-12-381543-9.00020-8
10.3390/en14164971
10.3390/en15030958
10.3390/en13030571
10.3390/en14030752
10.3390/en9090684
10.4236/ojs.2017.73029
10.1016/j.enbuild.2019.109408
10.1109/ETFA.2017.8247667
10.1016/j.enbuild.2015.05.056
10.1016/j.egyr.2020.10.005
10.1109/ChiCC.2015.7260948
10.1186/s40327-018-0064-7
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en15176453
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_64830c94f5a444809655a8efb364a698
A743142285
10_3390_en15176453
GeographicLocations Greece
GeographicLocations_xml – name: Greece
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c400t-7572a9ab26d891bb830b797a1e0cbb48661bb9346d9c9d656ffe657f4d75d1f53
IEDL.DBID DOA
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000851160600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Mon Nov 10 04:33:55 EST 2025
Mon Jun 30 07:31:07 EDT 2025
Tue Nov 04 18:16:56 EST 2025
Sat Nov 29 07:14:52 EST 2025
Tue Nov 18 21:03:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-7572a9ab26d891bb830b797a1e0cbb48661bb9346d9c9d656ffe657f4d75d1f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2204-3955
0000-0003-4497-9559
OpenAccessLink https://doaj.org/article/64830c94f5a444809655a8efb364a698
PQID 2711315414
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_64830c94f5a444809655a8efb364a698
proquest_journals_2711315414
gale_infotracacademiconefile_A743142285
crossref_citationtrail_10_3390_en15176453
crossref_primary_10_3390_en15176453
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hill (ref_22) 1994; 10
Pek (ref_46) 2017; 07
Bagnasco (ref_13) 2015; 103
ref_14
ref_36
ref_35
ref_12
ref_34
ref_11
ref_10
ref_32
ref_31
Seyedzadeh (ref_17) 2018; 6
Cao (ref_20) 2020; 6
ref_19
ref_18
ref_39
ref_38
ref_37
Zhao (ref_15) 2012; 16
(ref_33) 1993; 6
Foucquier (ref_16) 2013; 23
Ghenai (ref_24) 2022; 52
ref_47
ref_23
ref_45
ref_44
Coccagna (ref_6) 2017; 2
ref_21
ref_43
ref_1
ref_3
ref_2
Si (ref_25) 2022; 193
ref_29
ref_28
Erol (ref_40) 2006; 37
ref_27
ref_26
ref_8
Dagdougui (ref_9) 2019; 203
Muhammad (ref_30) 2021; 31
Jang (ref_42) 1993; 23
ref_5
ref_4
ref_7
Wang (ref_41) 2019; 6
References_xml – ident: ref_12
  doi: 10.3390/en11113012
– volume: 23
  start-page: 665
  year: 1993
  ident: ref_42
  article-title: ANFIS: Adaptive-Network-Based Fuzzy Inference System
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/21.256541
– ident: ref_21
  doi: 10.3390/en12071301
– ident: ref_5
– ident: ref_11
  doi: 10.3390/en15093382
– ident: ref_45
  doi: 10.1177/1729881420968702
– ident: ref_34
  doi: 10.3390/en9010057
– volume: 23
  start-page: 272
  year: 2013
  ident: ref_16
  article-title: State of the art in building modelling and energy performances prediction: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.03.004
– ident: ref_23
  doi: 10.1109/ISIE.2019.8781349
– ident: ref_31
  doi: 10.1109/ICCV.2005.128
– ident: ref_14
  doi: 10.3390/app10238323
– ident: ref_47
  doi: 10.1002/0470101024
– volume: 10
  start-page: 5
  year: 1994
  ident: ref_22
  article-title: Artificial neural network models for forecasting and decision making
  publication-title: Int. J. Forecast.
  doi: 10.1016/0169-2070(94)90045-0
– volume: 193
  start-page: 116423
  year: 2022
  ident: ref_25
  article-title: Artificial Neural Network training using metaheuristics for medical data classification: An experimental study
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116423
– ident: ref_29
  doi: 10.3390/en12173254
– ident: ref_39
– ident: ref_3
  doi: 10.3390/su12187379
– ident: ref_37
– volume: 16
  start-page: 3586
  year: 2012
  ident: ref_15
  article-title: A review on the prediction of building energy consumption
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.02.049
– volume: 37
  start-page: 106
  year: 2006
  ident: ref_40
  article-title: A new optimization method: Big Bang-Big Crunch
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2005.04.005
– ident: ref_1
– ident: ref_35
– ident: ref_44
– ident: ref_2
  doi: 10.3390/en11030493
– volume: 31
  start-page: e12967
  year: 2021
  ident: ref_30
  article-title: Optimal BRA based electric demand prediction strategy considering instance-based learning of the forecast factors
  publication-title: Int. Trans. Electr. Energy Syst.
– ident: ref_27
  doi: 10.3390/en13174363
– ident: ref_38
  doi: 10.3390/app9132630
– volume: 52
  start-page: 104323
  year: 2022
  ident: ref_24
  article-title: Short-term building electrical load forecasting using adaptive neuro-fuzzy inference system (ANFIS)
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2022.104323
– volume: 6
  start-page: 525
  year: 1993
  ident: ref_33
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 6
  start-page: 247
  year: 2019
  ident: ref_41
  article-title: Parameter optimization of interval Type-2 fuzzy neural networks based on PSO and BBBC methods
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2019.1911348
– ident: ref_7
  doi: 10.1016/B978-0-12-381543-9.00020-8
– ident: ref_19
  doi: 10.3390/en14164971
– ident: ref_10
  doi: 10.3390/en15030958
– ident: ref_8
– ident: ref_4
– ident: ref_18
  doi: 10.3390/en13030571
– ident: ref_43
  doi: 10.3390/en14030752
– ident: ref_32
  doi: 10.3390/en9090684
– volume: 07
  start-page: 405
  year: 2017
  ident: ref_46
  article-title: Confidence Intervals for the Mean of Non-Normal Distribution: Transform or Not to Transform
  publication-title: Open J. Stat.
  doi: 10.4236/ojs.2017.73029
– volume: 203
  start-page: 109408
  year: 2019
  ident: ref_9
  article-title: Neural network model for short-term and very-short-term load forecasting in district buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109408
– ident: ref_28
  doi: 10.1109/ETFA.2017.8247667
– ident: ref_36
– volume: 2
  start-page: 443
  year: 2017
  ident: ref_6
  article-title: Energy Consumption in Hospital Buildings: Functional and Morphological Evaluations of Six Case Studies
  publication-title: Int. J. Environ. Sci.
– volume: 103
  start-page: 261
  year: 2015
  ident: ref_13
  article-title: Electrical consumption forecasting in hospital facilities: An application case
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.05.056
– volume: 6
  start-page: 2751
  year: 2020
  ident: ref_20
  article-title: Electrical load prediction of healthcare buildings through single and ensemble learning
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.10.005
– ident: ref_26
  doi: 10.1109/ChiCC.2015.7260948
– volume: 6
  start-page: 5
  year: 2018
  ident: ref_17
  article-title: Machine learning for estimation of building energy consumption and performance: A review
  publication-title: Vis. Eng.
  doi: 10.1186/s40327-018-0064-7
SSID ssj0000331333
Score 2.3954875
Snippet Since accurate load forecasting plays an important role in the improvisation of buildings and as described in EU’s “Green Deal”, financial resources saved...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 6453
SubjectTerms adaptive neuro-fuzzy adaptive inference system
artificial neural networks
Back propagation
backpropagation algorithms
Buildings
Comparative analysis
Electricity
Emissions
Energy consumption
Energy efficiency
Energy management
Energy use
Forecasting
Forecasts and trends
Genetic algorithms
Greece
Greenhouse gases
Health facilities
Hospitals
long short-term memory networks
Machine learning
metaheuristic algorithms
Neural networks
Neurons
Prediction theory
Public buildings
Public health
Support vector machines
Technology application
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA4660ERH6vi6CoBBRG2me7Oq3OS2WEHF3aHgV1hPYU8F0F61unRixf_hn_PX2IqnZ5VUE-euumE7oSq_lKVVH2F0EtTl9pa5oqS6LqI9r8uZFx4Cu6lkbq0nIqUKHwsFovm_Fwuc3p0l8MqB0xMQN2zPUPcdgThiVtZ2DGf1KKqSAUlrN9cfiqghhScteaCGtfRDhBvlSO0szw6Wb7f7rmUhESXjPQspSR6-xPfxhVPcMrIb-tSou__G0inlWd-9_-O-R66ky1QPO1V5j665ttddOsXXsJddLvfzMN9jtID9HW2rVaIVwEPtUbwQa6p_ePb9w4fpixCPEs5nQmI8HINx0DpNoUmpI_2lBUYWEHSJYWhd_t4upgfne5j3Tp8fHp2MrQ8RO_mh2ezt0Wu2lDYiAebQjBRa6lNzV0jK2MaUhohha58aY2hTTQIjJGEcietdNGcDMFzJgJ1grkqMPIIjdpV6x8jrG10TqONalg6gaXaU8tEfFtd--ACG6PXg8yUzZTmUFnjo4quDchXXcl3jF5s-172RB5_7HUAot_2APLt9GC1vlD5X1acxjlZSQPTNGo38Ocw3fhgCKeay2aMXoHiKICIOByrc6ZDnBSQbakpWG1AvRYnsDcojsrY0akrPXny7-an6GYNyRgp4m0PjTbrz_4ZumG_bD506-dZ-X8CVeQVLw
  priority: 102
  providerName: ProQuest
Title Comparison of Hospital Building’s Energy Consumption Prediction Using Artificial Neural Networks, ANFIS, and LSTM Network
URI https://www.proquest.com/docview/2711315414
https://doaj.org/article/64830c94f5a444809655a8efb364a698
Volume 15
WOSCitedRecordID wos000851160600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1faxQxEA-l9kEfRKviaS2BFkTo0t3Nv83j3XGHhd6xtBXqU0iyCRTKttydvgji1_Dr-UmczO6dJyi--LK7ZEP-zSQzQ2Z-Q8ixK3PrvWiynNkyA_3fZhoETyaDdtrmXnKFgcLnaj6vrq91vZXqK_mEdfDA3cKdSl6x3GseheXQVAIrEbYK0THJrdQY5psrvWVM4RnMGBhfrMMjZWDXn4YWZJuSXLDfJBAC9f_tOEYZM31CHvfKIR12g3pKdkK7Tx5tQQY-I1_Gm8SB9C7SddoPOurTW__49n1JJxjQR8cYXolnAq0X6UYGP9FLADvp0CNoAujAF3qEL0_ocD49uzyhtm3o-eXVbP3nOfkwnVyN32d9AoXMw9ZcZUqo0mrrStlUunAOVtIprWwRcu8cr0A2O6cZl432ugHNLsYghYq8UaIpomAvyG5714aXhFoPdiKoi07gZSi3gXuhoLWyDLGJYkDerRfV-B5dPCW5uDVgZSQCmF8EGJCjTd37DlPjj7VGiTabGgkHGwuAO0zPHeZf3DEgbxNlTdqtMBxv-6ADmFTCvTLDpEAlFDSYwMGa-KbfxktTqqJgRcqU_up_jOY1eVim6Al0UTsgu6vFp_CG7PnPq5vl4pA8GE3m9cUhcjI8Z18nUFafzeqPPwFcJ_iZ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3ditQwFD4ss4KK-LMqjq4aUBFhy7ZJ2jQXIrPjDjvszDCwI-xexSRNRZDOOjMq4o2v4Uv4UD6JJ2k7q6De7YVXLU1om_TrOSc_5_sAHhsaa2vTIoqZphHG_zqS6HiizEkjdWwzLkKi8EhMJvnxsZxuwPc2F8Zvq2xtYjDUxdz6OfJdKpKEJV60-sXp-8irRvnV1VZCo4bFofv8CYdsy-fDl_h9n1A62J_1D6JGVSCyiNdVJFJBtdSGZkUuE2NyFhshhU5cbI3hOTosYyTjWSGtLDDcKUuXpaLkhUiLpPQqEWjyNzmCPe7A5nQ4np6sZ3VixnDQx2oeVMZkvOsq9Kki4yn7zfMFgYC_uYHg2wbX_rdeuQ5Xmyia9GrY34ANV23B5V-4FbfgSj0hSeo8q5vwpb9WXCTzkrR6KWSv0QX_8fXbkuyHTEjSD3mpwZiS6cIvZYXTsL0iPLSm3SCe2SQcwlb65Q7pTQbDox2iq4KMjmbjtuQWvDqX3rgNnWpeuTtAtMUBNsbZJg2ryFw7blOBd6PUlUWZduFZiwplG1p2rw7yTuHwzCNInSGoC4_WdU9rMpI_1trz4FrX8ATi4cJ88UY19khlHNtkJS9TzfEP9RxAqc5daVjGdSbzLjz10FTezOHrWN1ka2CjPGGY6vnI09PHYQO2W2iqxv4t1Rku7_67-CFcPJiNR2o0nBzeg0vUJ5eEHXzb0FktPrj7cMF-XL1dLh40vxqB1-eN45_YLmaf
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dihMxFA5LV0QRf1bF6qoBFRF26EySmUwuRNpui2XrUNwV9i4mmUQEma6dqog3voav4uP4JJ5kZroK6t1eeNXSCe1k-uX8JOd8H0IPNYmVMWkZxVSRCOJ_FQlwPFFmhRYqNhnjoVF4zosiPz4Wiy30veuF8WWVnU0MhrpcGr9HPiA8SWjiRasHri2LWOxPn528j7yClD9p7eQ0Gogc2M-fIH2rn8724b9-RMh0cjR-HrUKA5EB7K4jnnKihNIkK3ORaJ3TWHPBVWJjozXLwXlpLSjLSmFECaGPczZLuWMlT8vEecUIMP_bnELS00Pbo0mxeLnZ4YkphQSQNpyolIp4YCvwrzxjKf3NCwaxgL-5hODnplf-5yd0FV1uo2s8bJbDNbRlqx108RfOxR10qdmoxE3_1XX0ZbxRYsRLhzsdFTxq9cJ_fP1W40nokMTj0K8ajCxerPwRV3gbyi7CjzZ0HNgznoSXUGJf7-FhMZ0d7mFVlXh-ePSiu3IDvTqTp3ET9aplZW8hrAwk3hB_6zScLjNlmUk5fBsh1pUu7aMnHUKkaenavWrIOwlpm0eTPEVTHz3YjD1pSEr-OGrkgbYZ4YnFwwfL1RvZ2imZMZiTEcylisHK9dxAqcqt0zRjKhN5Hz32MJXe_MHtGNV2ccCkPJGYHPqI1NPKwQR2O5jK1i7W8hSjt_99-T46D-CV81lxcAddIL7nJBT27aLeevXB3kXnzMf123p1r111GL0-axj_BK46bzk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Hospital+Building%E2%80%99s+Energy+Consumption+Prediction+Using+Artificial+Neural+Networks%2C+ANFIS%2C+and+LSTM+Network&rft.jtitle=Energies+%28Basel%29&rft.au=Dimitrios+K.+Panagiotou&rft.au=Anastasios+I.+Dounis&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=15&rft.issue=17&rft.spage=6453&rft_id=info:doi/10.3390%2Fen15176453&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_64830c94f5a444809655a8efb364a698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon