Comparison of Hospital Building’s Energy Consumption Prediction Using Artificial Neural Networks, ANFIS, and LSTM Network
Since accurate load forecasting plays an important role in the improvisation of buildings and as described in EU’s “Green Deal”, financial resources saved through improvisation of the efficiency of buildings with social importance such as hospitals, will be the funds to support their mission, the so...
Saved in:
| Published in: | Energies (Basel) Vol. 15; no. 17; p. 6453 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.09.2022
|
| Subjects: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Since accurate load forecasting plays an important role in the improvisation of buildings and as described in EU’s “Green Deal”, financial resources saved through improvisation of the efficiency of buildings with social importance such as hospitals, will be the funds to support their mission, the social impact of load forecasting is significant. In the present paper, eight different machine learning predictors will be examined for the short-term load forecasting of a hospital’s facility building. The challenge is to qualify the most suitable predictors for the abovementioned task, which is beneficial for an in-depth study on accurate predictors’ applications in Intelligent Energy Management Systems (IEMS). Three Artificial Neural Networks using a backpropagation algorithm, three Artificial Neural Networks using metaheuristic optimization algorithms for training, an Adaptive Neuro-Fuzzy Inference System (ANFIS), and a Long-Short Term Memory (LSTM) network were tested using timeseries generated from a simulated healthcare facility. ANFIS and backpropagation-based trained models outperformed all other models since they both deal well with complex nonlinear problems. LSTM also performed adequately. The models trained with metaheuristic algorithms demonstrated poor performance. |
|---|---|
| AbstractList | Since accurate load forecasting plays an important role in the improvisation of buildings and as described in EU’s “Green Deal”, financial resources saved through improvisation of the efficiency of buildings with social importance such as hospitals, will be the funds to support their mission, the social impact of load forecasting is significant. In the present paper, eight different machine learning predictors will be examined for the short-term load forecasting of a hospital’s facility building. The challenge is to qualify the most suitable predictors for the abovementioned task, which is beneficial for an in-depth study on accurate predictors’ applications in Intelligent Energy Management Systems (IEMS). Three Artificial Neural Networks using a backpropagation algorithm, three Artificial Neural Networks using metaheuristic optimization algorithms for training, an Adaptive Neuro-Fuzzy Inference System (ANFIS), and a Long-Short Term Memory (LSTM) network were tested using timeseries generated from a simulated healthcare facility. ANFIS and backpropagation-based trained models outperformed all other models since they both deal well with complex nonlinear problems. LSTM also performed adequately. The models trained with metaheuristic algorithms demonstrated poor performance. |
| Audience | Academic |
| Author | Panagiotou, Dimitrios K. Dounis, Anastasios I. |
| Author_xml | – sequence: 1 givenname: Dimitrios K. orcidid: 0000-0003-4497-9559 surname: Panagiotou fullname: Panagiotou, Dimitrios K. – sequence: 2 givenname: Anastasios I. orcidid: 0000-0002-2204-3955 surname: Dounis fullname: Dounis, Anastasios I. |
| BookMark | eNptUctuEzEUtVCRKKUbvsASO9S09vg1XoaopZHSgtR2bXn8iBwm9mDPqKrY8Bv8Hl-Ck1CBEPbiXh2fc3Svz2twFFN0ALzF6JwQiS5cxAwLThl5AY6xlHyGkSBHf_WvwGkpG1QPIZgQcgy-LdJ20DmUFGHy8DqVIYy6hx-m0NsQ1z-__yjwMrq8foKLFMu0HcZQuZ-zs8Hs24dSeXCex-CDCVV766a8L-Njyl_KGZzfXi3vzqCOFq7u7m-eX96Al173xZ3-rifg4eryfnE9W336uFzMVzNDERpngolGS9013LYSd11LUCek0Ngh03W05byCklBupZGWM-6940x4agWz2DNyApYHX5v0Rg05bHV-UkkHtQdSXitdpze9U5xWdyOpZ5pS2iLJGdOt8x3hVHPZVq93B68hp6-TK6PapCnHOr5qBMYEM4ppZZ0fWGtdTUP0acza1GvdNpiamg8VnwtKMG2adjciOghMTqVk55WpMey-twpDrzBSu4jVn4ir5P0_kufN_kP-BcXXp9A |
| CitedBy_id | crossref_primary_10_3390_en18030668 crossref_primary_10_1371_journal_pone_0325747 crossref_primary_10_3390_su142114322 crossref_primary_10_3390_atmos13122121 crossref_primary_10_3390_su16177805 crossref_primary_10_3389_fenrg_2023_1202904 crossref_primary_10_3389_fenrg_2023_1239542 crossref_primary_10_1016_j_engappai_2023_107670 crossref_primary_10_1016_j_jobe_2025_112295 crossref_primary_10_3390_su15108419 crossref_primary_10_1016_j_sciaf_2025_e02560 crossref_primary_10_3390_app12189386 crossref_primary_10_3390_buildings13071675 crossref_primary_10_3390_buildings13010074 |
| Cites_doi | 10.3390/en11113012 10.1109/21.256541 10.3390/en12071301 10.3390/en15093382 10.1177/1729881420968702 10.3390/en9010057 10.1016/j.rser.2013.03.004 10.1109/ISIE.2019.8781349 10.1109/ICCV.2005.128 10.3390/app10238323 10.1002/0470101024 10.1016/0169-2070(94)90045-0 10.1016/j.eswa.2021.116423 10.3390/en12173254 10.3390/su12187379 10.1016/j.rser.2012.02.049 10.1016/j.advengsoft.2005.04.005 10.3390/en11030493 10.3390/en13174363 10.3390/app9132630 10.1016/j.jobe.2022.104323 10.1016/S0893-6080(05)80056-5 10.1109/JAS.2019.1911348 10.1016/B978-0-12-381543-9.00020-8 10.3390/en14164971 10.3390/en15030958 10.3390/en13030571 10.3390/en14030752 10.3390/en9090684 10.4236/ojs.2017.73029 10.1016/j.enbuild.2019.109408 10.1109/ETFA.2017.8247667 10.1016/j.enbuild.2015.05.056 10.1016/j.egyr.2020.10.005 10.1109/ChiCC.2015.7260948 10.1186/s40327-018-0064-7 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en15176453 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Public Health |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_64830c94f5a444809655a8efb364a698 A743142285 10_3390_en15176453 |
| GeographicLocations | Greece |
| GeographicLocations_xml | – name: Greece |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c400t-7572a9ab26d891bb830b797a1e0cbb48661bb9346d9c9d656ffe657f4d75d1f53 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000851160600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Mon Nov 10 04:33:55 EST 2025 Mon Jun 30 07:31:07 EDT 2025 Tue Nov 04 18:16:56 EST 2025 Sat Nov 29 07:14:52 EST 2025 Tue Nov 18 21:03:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-7572a9ab26d891bb830b797a1e0cbb48661bb9346d9c9d656ffe657f4d75d1f53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2204-3955 0000-0003-4497-9559 |
| OpenAccessLink | https://doaj.org/article/64830c94f5a444809655a8efb364a698 |
| PQID | 2711315414 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_64830c94f5a444809655a8efb364a698 proquest_journals_2711315414 gale_infotracacademiconefile_A743142285 crossref_citationtrail_10_3390_en15176453 crossref_primary_10_3390_en15176453 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Hill (ref_22) 1994; 10 Pek (ref_46) 2017; 07 Bagnasco (ref_13) 2015; 103 ref_14 ref_36 ref_35 ref_12 ref_34 ref_11 ref_10 ref_32 ref_31 Seyedzadeh (ref_17) 2018; 6 Cao (ref_20) 2020; 6 ref_19 ref_18 ref_39 ref_38 ref_37 Zhao (ref_15) 2012; 16 (ref_33) 1993; 6 Foucquier (ref_16) 2013; 23 Ghenai (ref_24) 2022; 52 ref_47 ref_23 ref_45 ref_44 Coccagna (ref_6) 2017; 2 ref_21 ref_43 ref_1 ref_3 ref_2 Si (ref_25) 2022; 193 ref_29 ref_28 Erol (ref_40) 2006; 37 ref_27 ref_26 ref_8 Dagdougui (ref_9) 2019; 203 Muhammad (ref_30) 2021; 31 Jang (ref_42) 1993; 23 ref_5 ref_4 ref_7 Wang (ref_41) 2019; 6 |
| References_xml | – ident: ref_12 doi: 10.3390/en11113012 – volume: 23 start-page: 665 year: 1993 ident: ref_42 article-title: ANFIS: Adaptive-Network-Based Fuzzy Inference System publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/21.256541 – ident: ref_21 doi: 10.3390/en12071301 – ident: ref_5 – ident: ref_11 doi: 10.3390/en15093382 – ident: ref_45 doi: 10.1177/1729881420968702 – ident: ref_34 doi: 10.3390/en9010057 – volume: 23 start-page: 272 year: 2013 ident: ref_16 article-title: State of the art in building modelling and energy performances prediction: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.03.004 – ident: ref_23 doi: 10.1109/ISIE.2019.8781349 – ident: ref_31 doi: 10.1109/ICCV.2005.128 – ident: ref_14 doi: 10.3390/app10238323 – ident: ref_47 doi: 10.1002/0470101024 – volume: 10 start-page: 5 year: 1994 ident: ref_22 article-title: Artificial neural network models for forecasting and decision making publication-title: Int. J. Forecast. doi: 10.1016/0169-2070(94)90045-0 – volume: 193 start-page: 116423 year: 2022 ident: ref_25 article-title: Artificial Neural Network training using metaheuristics for medical data classification: An experimental study publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116423 – ident: ref_29 doi: 10.3390/en12173254 – ident: ref_39 – ident: ref_3 doi: 10.3390/su12187379 – ident: ref_37 – volume: 16 start-page: 3586 year: 2012 ident: ref_15 article-title: A review on the prediction of building energy consumption publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.02.049 – volume: 37 start-page: 106 year: 2006 ident: ref_40 article-title: A new optimization method: Big Bang-Big Crunch publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2005.04.005 – ident: ref_1 – ident: ref_35 – ident: ref_44 – ident: ref_2 doi: 10.3390/en11030493 – volume: 31 start-page: e12967 year: 2021 ident: ref_30 article-title: Optimal BRA based electric demand prediction strategy considering instance-based learning of the forecast factors publication-title: Int. Trans. Electr. Energy Syst. – ident: ref_27 doi: 10.3390/en13174363 – ident: ref_38 doi: 10.3390/app9132630 – volume: 52 start-page: 104323 year: 2022 ident: ref_24 article-title: Short-term building electrical load forecasting using adaptive neuro-fuzzy inference system (ANFIS) publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2022.104323 – volume: 6 start-page: 525 year: 1993 ident: ref_33 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80056-5 – volume: 6 start-page: 247 year: 2019 ident: ref_41 article-title: Parameter optimization of interval Type-2 fuzzy neural networks based on PSO and BBBC methods publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2019.1911348 – ident: ref_7 doi: 10.1016/B978-0-12-381543-9.00020-8 – ident: ref_19 doi: 10.3390/en14164971 – ident: ref_10 doi: 10.3390/en15030958 – ident: ref_8 – ident: ref_4 – ident: ref_18 doi: 10.3390/en13030571 – ident: ref_43 doi: 10.3390/en14030752 – ident: ref_32 doi: 10.3390/en9090684 – volume: 07 start-page: 405 year: 2017 ident: ref_46 article-title: Confidence Intervals for the Mean of Non-Normal Distribution: Transform or Not to Transform publication-title: Open J. Stat. doi: 10.4236/ojs.2017.73029 – volume: 203 start-page: 109408 year: 2019 ident: ref_9 article-title: Neural network model for short-term and very-short-term load forecasting in district buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.109408 – ident: ref_28 doi: 10.1109/ETFA.2017.8247667 – ident: ref_36 – volume: 2 start-page: 443 year: 2017 ident: ref_6 article-title: Energy Consumption in Hospital Buildings: Functional and Morphological Evaluations of Six Case Studies publication-title: Int. J. Environ. Sci. – volume: 103 start-page: 261 year: 2015 ident: ref_13 article-title: Electrical consumption forecasting in hospital facilities: An application case publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.05.056 – volume: 6 start-page: 2751 year: 2020 ident: ref_20 article-title: Electrical load prediction of healthcare buildings through single and ensemble learning publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.10.005 – ident: ref_26 doi: 10.1109/ChiCC.2015.7260948 – volume: 6 start-page: 5 year: 2018 ident: ref_17 article-title: Machine learning for estimation of building energy consumption and performance: A review publication-title: Vis. Eng. doi: 10.1186/s40327-018-0064-7 |
| SSID | ssj0000331333 |
| Score | 2.3954875 |
| Snippet | Since accurate load forecasting plays an important role in the improvisation of buildings and as described in EU’s “Green Deal”, financial resources saved... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 6453 |
| SubjectTerms | adaptive neuro-fuzzy adaptive inference system artificial neural networks Back propagation backpropagation algorithms Buildings Comparative analysis Electricity Emissions Energy consumption Energy efficiency Energy management Energy use Forecasting Forecasts and trends Genetic algorithms Greece Greenhouse gases Health facilities Hospitals long short-term memory networks Machine learning metaheuristic algorithms Neural networks Neurons Prediction theory Public buildings Public health Support vector machines Technology application |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA4660ERH6vi6CoBBRG2me7Oq3OS2WEHF3aHgV1hPYU8F0F61unRixf_hn_PX2IqnZ5VUE-euumE7oSq_lKVVH2F0EtTl9pa5oqS6LqI9r8uZFx4Cu6lkbq0nIqUKHwsFovm_Fwuc3p0l8MqB0xMQN2zPUPcdgThiVtZ2DGf1KKqSAUlrN9cfiqghhScteaCGtfRDhBvlSO0szw6Wb7f7rmUhESXjPQspSR6-xPfxhVPcMrIb-tSou__G0inlWd-9_-O-R66ky1QPO1V5j665ttddOsXXsJddLvfzMN9jtID9HW2rVaIVwEPtUbwQa6p_ePb9w4fpixCPEs5nQmI8HINx0DpNoUmpI_2lBUYWEHSJYWhd_t4upgfne5j3Tp8fHp2MrQ8RO_mh2ezt0Wu2lDYiAebQjBRa6lNzV0jK2MaUhohha58aY2hTTQIjJGEcietdNGcDMFzJgJ1grkqMPIIjdpV6x8jrG10TqONalg6gaXaU8tEfFtd--ACG6PXg8yUzZTmUFnjo4quDchXXcl3jF5s-172RB5_7HUAot_2APLt9GC1vlD5X1acxjlZSQPTNGo38Ocw3fhgCKeay2aMXoHiKICIOByrc6ZDnBSQbakpWG1AvRYnsDcojsrY0akrPXny7-an6GYNyRgp4m0PjTbrz_4ZumG_bD506-dZ-X8CVeQVLw priority: 102 providerName: ProQuest |
| Title | Comparison of Hospital Building’s Energy Consumption Prediction Using Artificial Neural Networks, ANFIS, and LSTM Network |
| URI | https://www.proquest.com/docview/2711315414 https://doaj.org/article/64830c94f5a444809655a8efb364a698 |
| Volume | 15 |
| WOSCitedRecordID | wos000851160600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1faxQxEA-l9kEfRKviaS2BFkTo0t3Nv83j3XGHhd6xtBXqU0iyCRTKttydvgji1_Dr-UmczO6dJyi--LK7ZEP-zSQzQ2Z-Q8ixK3PrvWiynNkyA_3fZhoETyaDdtrmXnKFgcLnaj6vrq91vZXqK_mEdfDA3cKdSl6x3GseheXQVAIrEbYK0THJrdQY5psrvWVM4RnMGBhfrMMjZWDXn4YWZJuSXLDfJBAC9f_tOEYZM31CHvfKIR12g3pKdkK7Tx5tQQY-I1_Gm8SB9C7SddoPOurTW__49n1JJxjQR8cYXolnAq0X6UYGP9FLADvp0CNoAujAF3qEL0_ocD49uzyhtm3o-eXVbP3nOfkwnVyN32d9AoXMw9ZcZUqo0mrrStlUunAOVtIprWwRcu8cr0A2O6cZl432ugHNLsYghYq8UaIpomAvyG5714aXhFoPdiKoi07gZSi3gXuhoLWyDLGJYkDerRfV-B5dPCW5uDVgZSQCmF8EGJCjTd37DlPjj7VGiTabGgkHGwuAO0zPHeZf3DEgbxNlTdqtMBxv-6ADmFTCvTLDpEAlFDSYwMGa-KbfxktTqqJgRcqU_up_jOY1eVim6Al0UTsgu6vFp_CG7PnPq5vl4pA8GE3m9cUhcjI8Z18nUFafzeqPPwFcJ_iZ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3ditQwFD4ss4KK-LMqjq4aUBFhy7ZJ2jQXIrPjDjvszDCwI-xexSRNRZDOOjMq4o2v4Uv4UD6JJ2k7q6De7YVXLU1om_TrOSc_5_sAHhsaa2vTIoqZphHG_zqS6HiizEkjdWwzLkKi8EhMJvnxsZxuwPc2F8Zvq2xtYjDUxdz6OfJdKpKEJV60-sXp-8irRvnV1VZCo4bFofv8CYdsy-fDl_h9n1A62J_1D6JGVSCyiNdVJFJBtdSGZkUuE2NyFhshhU5cbI3hOTosYyTjWSGtLDDcKUuXpaLkhUiLpPQqEWjyNzmCPe7A5nQ4np6sZ3VixnDQx2oeVMZkvOsq9Kki4yn7zfMFgYC_uYHg2wbX_rdeuQ5Xmyia9GrY34ANV23B5V-4FbfgSj0hSeo8q5vwpb9WXCTzkrR6KWSv0QX_8fXbkuyHTEjSD3mpwZiS6cIvZYXTsL0iPLSm3SCe2SQcwlb65Q7pTQbDox2iq4KMjmbjtuQWvDqX3rgNnWpeuTtAtMUBNsbZJg2ryFw7blOBd6PUlUWZduFZiwplG1p2rw7yTuHwzCNInSGoC4_WdU9rMpI_1trz4FrX8ATi4cJ88UY19khlHNtkJS9TzfEP9RxAqc5daVjGdSbzLjz10FTezOHrWN1ka2CjPGGY6vnI09PHYQO2W2iqxv4t1Rku7_67-CFcPJiNR2o0nBzeg0vUJ5eEHXzb0FktPrj7cMF-XL1dLh40vxqB1-eN45_YLmaf |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dihMxFA5LV0QRf1bF6qoBFRF26EySmUwuRNpui2XrUNwV9i4mmUQEma6dqog3voav4uP4JJ5kZroK6t1eeNXSCe1k-uX8JOd8H0IPNYmVMWkZxVSRCOJ_FQlwPFFmhRYqNhnjoVF4zosiPz4Wiy30veuF8WWVnU0MhrpcGr9HPiA8SWjiRasHri2LWOxPn528j7yClD9p7eQ0Gogc2M-fIH2rn8724b9-RMh0cjR-HrUKA5EB7K4jnnKihNIkK3ORaJ3TWHPBVWJjozXLwXlpLSjLSmFECaGPczZLuWMlT8vEecUIMP_bnELS00Pbo0mxeLnZ4YkphQSQNpyolIp4YCvwrzxjKf3NCwaxgL-5hODnplf-5yd0FV1uo2s8bJbDNbRlqx108RfOxR10qdmoxE3_1XX0ZbxRYsRLhzsdFTxq9cJ_fP1W40nokMTj0K8ajCxerPwRV3gbyi7CjzZ0HNgznoSXUGJf7-FhMZ0d7mFVlXh-ePSiu3IDvTqTp3ET9aplZW8hrAwk3hB_6zScLjNlmUk5fBsh1pUu7aMnHUKkaenavWrIOwlpm0eTPEVTHz3YjD1pSEr-OGrkgbYZ4YnFwwfL1RvZ2imZMZiTEcylisHK9dxAqcqt0zRjKhN5Hz32MJXe_MHtGNV2ccCkPJGYHPqI1NPKwQR2O5jK1i7W8hSjt_99-T46D-CV81lxcAddIL7nJBT27aLeevXB3kXnzMf123p1r111GL0-axj_BK46bzk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Hospital+Building%E2%80%99s+Energy+Consumption+Prediction+Using+Artificial+Neural+Networks%2C+ANFIS%2C+and+LSTM+Network&rft.jtitle=Energies+%28Basel%29&rft.au=Dimitrios+K.+Panagiotou&rft.au=Anastasios+I.+Dounis&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=15&rft.issue=17&rft.spage=6453&rft_id=info:doi/10.3390%2Fen15176453&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_64830c94f5a444809655a8efb364a698 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |