Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal
•Classification of normal, CAD, MI and CHF classes using ECG beat is proposed•CWT transform is performed on ECG beat•Contourlet and shearlet transforms are performed on scalogram•First and second order statistical features are extracted•Obtained an accuracy of 99.55% using contourlet transform Undia...
Saved in:
| Published in: | Knowledge-based systems Vol. 132; pp. 156 - 166 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
15.09.2017
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0950-7051, 1872-7409 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Classification of normal, CAD, MI and CHF classes using ECG beat is proposed•CWT transform is performed on ECG beat•Contourlet and shearlet transforms are performed on scalogram•First and second order statistical features are extracted•Obtained an accuracy of 99.55% using contourlet transform
Undiagnosed coronary artery disease (CAD) progresses rapidly and leads to myocardial infarction (MI) by reducing the blood flow to the cardiac muscles. Timely diagnosis of MI and its location is significant, else, it expands and may impair the left ventricular (LV) function. Thus, if CAD and MI are not picked up by electrocardiogram (ECG) during diagnostic test, it can lead to congestive heart failure (CHF). Therefore, in this paper, the characterization of three cardiac abnormalities namely, CAD, MI and CHF are compared. Performance of novel algorithms is based on contourlet and shearlet transformations of the ECG signals. Continuous wavelet transform (CWT) is performed on normal, CAD, MI and CHF ECG beat to obtain scalograms. Subsequently, contourlet and shearlet transformations are applied on the scalograms to obtain the respective coefficients. Entropies, first and second order statistical features namely, mean (Mni), min (Mini), max (Mxi), standard deviation (Dsti), average power (Pavgi), inter-quartile range (IQRi), Shannon entropy (Eshi), mean Tsallis entropy (Emtsi), kurtosis (Kuri), mean absolute deviation (MADi), and mean energy (Ωmi), are extracted from each contourlet and shearlet coefficients. Only significant features are selected using improved binary particle swarm optimization (IBPSO) feature selection method. Selected features are ranked using analysis of variance (ANOVA) and relieff techniques. The highly ranked features are subjected to decision tree (DT) and K-nearest neighbor (KNN) classifiers. Proposed method has achieved accuracy, sensitivity and specificity of (i) 99.55%, 99.93% and 99.24% using contourlet transform, and (ii) 99.01%, 99.82% and 98.75% using shearlet transform. Among the two proposed techniques, contourlet transform method performed marginally better than shearlet transform technique in classifying the four classes. The proposed CWT combined with contourlet-based technique can be implemented in hospitals to speed up the diagnosis of three different cardiac abnormalities using a single ECG test. This technique, minimizes the unnecessary diagnostic tests required to confirm the diagnosis. |
|---|---|
| AbstractList | Undiagnosed coronary artery disease (CAD) progresses rapidly and leads to myocardial infarction (MI) by reducing the blood flow to the cardiac muscles. Timely diagnosis of MI and its location is significant, else, it expands and may impair the left ventricular (LV) function. Thus, if CAD and MI are not picked up by electrocardiogram (ECG) during diagnostic test, it can lead to congestive heart failure (CHF). Therefore, in this paper, the characterization of three cardiac abnormalities namely, CAD, MI and CHF are compared. Performance of novel algorithms is based on contourlet and shearlet transformations of the ECG signals. Continuous wavelet transform (CWT) is performed on normal, CAD, MI and CHF ECG beat to obtain scalograms. Subsequently, contourlet and shearlet transformations are applied on the scalograms to obtain the respective coefficients. Entropies, first and second order statistical features namely, mean (Min), min (Min), max (Mix), standard deviation (Dist), average power (Piavg), inter-quartile range (IQRi ), Shannon entropy (Eish), mean Tsallis entropy (Eimt s), kurtosis (Kiur), mean absolute deviation (MiAD), and mean energy (Ωim), are extracted from each contourlet and shearlet coefficients. Only significant features are selected using improved binary particle swarm optimization (IBPSO) feature selection method. Selected features are ranked using analysis of variance (ANOVA) and relief techniques. The highly ranked features are subjected to decision tree (DT) and K-nearest neighbor (KNN) classifiers. Proposed method has achieved accuracy, sensitivity and specificity of (i) 99.55%, 99.93% and 99.24% using contourlet transform, and (ii) 99.01%, 99.82% and 98.75% using shearlet transform. Among the two proposed techniques, contourlet transform method performed marginally better than shearlet transform technique in classifying the four classes. The proposed CWT combined with contourlet-based technique can be implemented in hospitals to speed up the diagnosis of three different cardiac abnormalities using a single ECG test. This technique, minimizes the unnecessary diagnostic tests required to confirm the diagnosis. •Classification of normal, CAD, MI and CHF classes using ECG beat is proposed•CWT transform is performed on ECG beat•Contourlet and shearlet transforms are performed on scalogram•First and second order statistical features are extracted•Obtained an accuracy of 99.55% using contourlet transform Undiagnosed coronary artery disease (CAD) progresses rapidly and leads to myocardial infarction (MI) by reducing the blood flow to the cardiac muscles. Timely diagnosis of MI and its location is significant, else, it expands and may impair the left ventricular (LV) function. Thus, if CAD and MI are not picked up by electrocardiogram (ECG) during diagnostic test, it can lead to congestive heart failure (CHF). Therefore, in this paper, the characterization of three cardiac abnormalities namely, CAD, MI and CHF are compared. Performance of novel algorithms is based on contourlet and shearlet transformations of the ECG signals. Continuous wavelet transform (CWT) is performed on normal, CAD, MI and CHF ECG beat to obtain scalograms. Subsequently, contourlet and shearlet transformations are applied on the scalograms to obtain the respective coefficients. Entropies, first and second order statistical features namely, mean (Mni), min (Mini), max (Mxi), standard deviation (Dsti), average power (Pavgi), inter-quartile range (IQRi), Shannon entropy (Eshi), mean Tsallis entropy (Emtsi), kurtosis (Kuri), mean absolute deviation (MADi), and mean energy (Ωmi), are extracted from each contourlet and shearlet coefficients. Only significant features are selected using improved binary particle swarm optimization (IBPSO) feature selection method. Selected features are ranked using analysis of variance (ANOVA) and relieff techniques. The highly ranked features are subjected to decision tree (DT) and K-nearest neighbor (KNN) classifiers. Proposed method has achieved accuracy, sensitivity and specificity of (i) 99.55%, 99.93% and 99.24% using contourlet transform, and (ii) 99.01%, 99.82% and 98.75% using shearlet transform. Among the two proposed techniques, contourlet transform method performed marginally better than shearlet transform technique in classifying the four classes. The proposed CWT combined with contourlet-based technique can be implemented in hospitals to speed up the diagnosis of three different cardiac abnormalities using a single ECG test. This technique, minimizes the unnecessary diagnostic tests required to confirm the diagnosis. |
| Author | Oh, Shu Lih Tan, Jen Hong Chua, Kuang Chua Fujita, Hamido Adam, Muhammad Lim, Choo Min Acharya, U Rajendra Koo, Jie Hui Jain, Arihant Sudarshan, Vidya K |
| Author_xml | – sequence: 1 givenname: U Rajendra surname: Acharya fullname: Acharya, U Rajendra email: aru@np.edu.sg organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 2 givenname: Hamido surname: Fujita fullname: Fujita, Hamido organization: Iwate Prefectural University (IPU), Faculty of Software and Information Science, Iwate 020-0693, Japan – sequence: 3 givenname: Vidya K surname: Sudarshan fullname: Sudarshan, Vidya K organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 4 givenname: Shu Lih surname: Oh fullname: Oh, Shu Lih organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 5 givenname: Muhammad surname: Adam fullname: Adam, Muhammad organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 6 givenname: Jen Hong surname: Tan fullname: Tan, Jen Hong organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 7 givenname: Jie Hui surname: Koo fullname: Koo, Jie Hui organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 8 givenname: Arihant surname: Jain fullname: Jain, Arihant organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 9 givenname: Choo Min surname: Lim fullname: Lim, Choo Min organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 10 givenname: Kuang Chua surname: Chua fullname: Chua, Kuang Chua organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore |
| BookMark | eNqFUctu1TAQtVCRuC38AQtLbJtg-zovFkhVVR5SJTawtqbO-NaXxC5jp9Llp_hFnIYVC1hZ1nnMzDnn7CzEgIy9lqKWQrZvj_X3ENMp1UrIrhZtLVT7jO1k36mq02I4YzsxNKLqRCNfsPOUjkIIpWS_Y7-ulhxnyDhyew8ENiP5n5B9DDw6biPFAHTiQAU48dEnhISXfD5FCzR6mLgPDsiuiksOofjEcMCU_SPyeyw67sBPCyFfkg-HFc5xoQnzEzutnPWTCUJykea0DsYJbaZtRjwQzDz5Q4DpJXvuYEr46s97wb59uPl6_am6_fLx8_XVbWW1ELlqnWtbKe-aph-htXqPzYCIDgdQuG9s1zqp3eCUdXfDHpTtCwyge9VraR3uL9ibzfeB4o-lnGOOZemyQDJy0LITQsuhsPTGshRTInTmgfxc8jJSmLUaczRbNWatxojWlGqK7N1fMuvzU-YlBD_9T_x-E2M5_9EjmWQ9Boujp5KZGaP_t8FvDD22fg |
| CitedBy_id | crossref_primary_10_1016_j_bbe_2018_03_001 crossref_primary_10_1016_j_knosys_2019_105446 crossref_primary_10_1016_j_compbiomed_2021_104457 crossref_primary_10_1016_j_bspc_2022_103663 crossref_primary_10_3389_fphys_2020_554838 crossref_primary_10_1016_j_cmpb_2020_105400 crossref_primary_10_1016_j_asoc_2023_110482 crossref_primary_10_26599_TST_2022_9010008 crossref_primary_10_1007_s11036_020_01549_9 crossref_primary_10_1016_j_patrec_2019_02_016 crossref_primary_10_1016_j_compbiomed_2017_12_023 crossref_primary_10_1109_ACCESS_2020_3042594 crossref_primary_10_1016_j_ejmp_2020_01_007 crossref_primary_10_1088_1361_6579_ad6529 crossref_primary_10_3389_fpubh_2025_1569887 crossref_primary_10_4018_IJECME_2019070105 crossref_primary_10_1016_j_eswa_2023_122402 crossref_primary_10_1016_j_ejmp_2019_05_004 crossref_primary_10_1016_j_bbe_2018_05_005 crossref_primary_10_1007_s10489_018_1179_1 crossref_primary_10_1007_s42452_021_04185_4 crossref_primary_10_1016_j_compbiomed_2018_07_005 crossref_primary_10_3389_fcvm_2022_860032 crossref_primary_10_1016_j_compbiomed_2019_103346 crossref_primary_10_1016_j_asoc_2019_04_007 crossref_primary_10_1016_j_knosys_2018_09_001 crossref_primary_10_1007_s10489_021_02696_6 crossref_primary_10_1007_s10489_024_05364_7 crossref_primary_10_1016_j_knosys_2020_106589 crossref_primary_10_1016_j_bspc_2021_102683 crossref_primary_10_1007_s12652_020_02536_4 crossref_primary_10_1016_j_future_2018_08_008 crossref_primary_10_1016_j_artmed_2021_102179 crossref_primary_10_1016_j_jksuci_2018_01_004 crossref_primary_10_1016_j_artmed_2019_101789 crossref_primary_10_1016_j_bspc_2017_09_030 crossref_primary_10_1109_JSEN_2025_3575848 crossref_primary_10_1111_exsy_12904 crossref_primary_10_1038_s41597_019_0206_3 crossref_primary_10_1016_j_energy_2019_07_111 crossref_primary_10_1016_j_measurement_2023_113239 crossref_primary_10_1016_j_displa_2021_102070 crossref_primary_10_1049_iet_spr_2019_0458 crossref_primary_10_1109_ACCESS_2019_2955555 crossref_primary_10_1016_j_bspc_2022_104497 crossref_primary_10_1016_j_cmpb_2021_106035 crossref_primary_10_1016_j_knosys_2019_104973 crossref_primary_10_1007_s12652_021_03324_4 crossref_primary_10_1016_j_cmpb_2018_10_006 crossref_primary_10_1007_s13042_022_01718_0 crossref_primary_10_1016_j_jbi_2018_04_013 crossref_primary_10_1016_j_knosys_2020_106083 crossref_primary_10_1016_j_cmpb_2020_105770 crossref_primary_10_1016_j_ins_2021_04_036 crossref_primary_10_1016_j_bbe_2022_02_003 crossref_primary_10_1016_j_smhl_2023_100433 crossref_primary_10_1109_ACCESS_2019_2904095 crossref_primary_10_3390_s20174777 crossref_primary_10_3390_biomimetics8020235 crossref_primary_10_1515_bmt_2022_0406 crossref_primary_10_1016_j_knosys_2019_04_023 crossref_primary_10_3390_s20216318 crossref_primary_10_3390_e19090488 |
| Cites_doi | 10.1016/j.eswa.2016.06.038 10.1371/journal.pone.0093399 10.1587/elex.11.20140556 10.1016/j.knosys.2012.08.011 10.1109/TIP.2010.2041410 10.1109/78.370620 10.1016/j.compbiomed.2014.08.010 10.1016/j.knosys.2016.05.027 10.1016/j.ins.2016.10.013 10.1109/TCOM.1983.1095851 10.1016/j.cmpb.2016.03.020 10.1111/j.1475-097X.2007.00761.x 10.1111/j.1527-5299.2006.05518.x 10.1016/j.ins.2017.04.012 10.1016/j.compchemeng.2006.05.016 10.1109/TIP.2006.873450 10.1007/s10851-013-0476-x 10.1016/j.bspc.2016.08.018 10.1038/39043 10.1007/978-3-540-36841-0_880 10.1007/s10916-010-9474-3 10.1016/j.knosys.2016.01.040 10.1023/A:1010627527026 10.1016/j.bspc.2016.07.003 10.1142/S0219519416400029 10.1161/01.CIR.101.23.e215 10.1109/TITB.2011.2167756 10.1109/78.127960 10.1016/j.jbmt.2004.04.001 10.1002/cpa.3160450502 10.1007/s10916-009-9314-5 10.1142/S0129065713500093 10.1016/j.compbiomed.2013.07.015 10.1016/j.medengphy.2012.03.001 10.1016/j.eswa.2016.09.037 10.4236/jbise.2014.710081 |
| ContentType | Journal Article |
| Copyright | 2017 Copyright Elsevier Science Ltd. Sep 15, 2017 |
| Copyright_xml | – notice: 2017 – notice: Copyright Elsevier Science Ltd. Sep 15, 2017 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2017.06.026 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| EndPage | 166 |
| ExternalDocumentID | 10_1016_j_knosys_2017_06_026 S0950705117303064 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c400t-6ff6611b558da6c43e59eeefe9a2e35c76f14f9f2cfb93a2c89eeaa482841cfe3 |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407184900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Fri Nov 14 22:22:22 EST 2025 Sat Nov 29 06:41:31 EST 2025 Tue Nov 18 22:45:32 EST 2025 Fri Feb 23 02:28:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Myocardial infarction Contourlet and shearlet transforms Congestive heart failure Coronary artery disease Electrocardiogram Continuous wavelet transform |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c400t-6ff6611b558da6c43e59eeefe9a2e35c76f14f9f2cfb93a2c89eeaa482841cfe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1941700419 |
| PQPubID | 2035257 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_1941700419 crossref_primary_10_1016_j_knosys_2017_06_026 crossref_citationtrail_10_1016_j_knosys_2017_06_026 elsevier_sciencedirect_doi_10_1016_j_knosys_2017_06_026 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-15 |
| PublicationDateYYYYMMDD | 2017-09-15 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Sadowsky (bib0068) 1996; 17 Babaoglu, Findik, Ulker (bib0015) 2010; 37 Kennedy, Eberhart (bib0038) 1995; 4 Banerjee, Mitra (bib0019) 2012; 1 Larose (bib0043) 2004 Kumar, Pachori, Acharya (bib0040) 2017; 31 Masetic, Subasi (bib0056) 2013; 2 Acharya, Yanti, Zheng, Krishnan, Jenh, Martis, Lim (bib0007) 2013; 23 Bamberger, Smith (bib0016) 1992; 40 Liao, Chiu, Yeh (bib0048) 2015; Vol I Pan, Tompkins (bib0062) 2006 Safdarian, Dabanloo, Attarodi (bib0069) 2014; 7 Chang, Hsieh, Lin, Chou, Liu (bib0022) 2009 Orhan (bib0061) 2013; 43 Amorim, Moraes, Fazanaro, Silva, Pedrini (bib0010) 2017; 67 Arif, Malagore, Afsar (bib0011) 2012; 36 Acharya, Sudarshan, Koh, Martis, Tan, Oh, Adam, Hagiwara, Mookiah, Chua, Chua, Tan (bib0005) 2017; 31 Kamath (bib0034) 2015; 10 Jiang, Xiong, Wu (bib0032) 2005; 25 Sharma, Tripathy, Dandapat (bib0071) 2015; 62 Lee, Noh, Ryu (bib0045) 2008 Boashash, Ouelha (bib0020) 2016; 106 Luo, Yuan, Liu (bib0053) 2007; 31 Grech (bib0030) 2011 Masetic, Subasi (bib0055) 2016; 130 Kamath (bib0033) 2012; 34 Jayachandran, Joseph, Acharya (bib0031) 2010; 34 Acharya, Fujita, Lih, Hagiwara, Tan, Adam (bib0006) 2017; 405 Do, Vetterli (bib0024) 2003 Acharya, Kannathal, Hua, Yi (bib0002) 2005; 9 Burt, Adelson (bib0021) 1983; 31 Banerjee, Mitra (bib0018) 2011 Mehra, Ventura (bib0057) 2006; 12 Gertsch (bib0026) 2009 Lee, Noh, Ryu (bib0046) 2007 Ashley, Niebauer (bib0013) 2004 Schwartz, Silva, Davis, Pedrini (bib0070) 2011 Giri, Acharya, Martis, Sree, Lim, Ahamed, Suri (bib0027) 2013; 37 Sun, Lu, Yang, Li (bib0073) 2012; 59 Omar, Mohamed (bib0060) 2011 Po, Do (bib0064) 2006; 15 Phoong, Kim, Vaidyanathan, Ansari (bib0063) 1995; 43 Arif, Malagore, Afsar (bib0012) 2010 Oliver, Rajendra, Krishnan, Lim (bib0059) 2004; 3 Liu, Liu, Wang, Huang, Li, Zheng, Luo, Zhou (bib0051) 2015; 61 Cohen, Daubechies, Feauveau (bib0023) 1992; 45 Kumar, Pachori, Acharya (bib0041) 2016; 63 Price (bib0066) 2010; 3 Sood, Kumar, Pachori, Acharya (bib0072) 2016; 16 Liu, Wang, Wang, Zhou, Wang, Jiang (bib0050) 2014; 9 Kim, Jin, Park, Choi (bib0039) 2007; 14 Babaoglu, Findik, Bayrak (bib0014) 2010; 37 Wang, Liu, Yang (bib0075) 2014; 49 Poon, Merrill (bib0065) 1997; 389 Kaveh, Chung (bib0036) 2013 Kamath (bib0035) 2015; 6 Yang, Chuang, Li (bib0076) 2008 Larose (bib0044) 2004 Lehtinen, Holst, Turjanmaa, Edenbrandt, Pahlm, Malmivuo (bib0047) February 1998 Acharya, Fujita, Sudarshan, Oh, Adam, Koh, Tan, Ghista, Martis, Chua, Poo, Tan (bib0001) 2016; 99 Faust, Acharya, Tamura (bib0025) 2012; 5 Mohamad, Omatu, Deris, Yoshioka (bib0058) 2011; 15 Saarenmaa, Salminen, Geiger, Heikkinen, Hyvarinen, Isola, Kataja, Kokko, Kokko, Kumpulainen, Karkkainen, Pakkanen, Peltonen, Piironen, Salo, Ta;viala, Haka (bib0067) 2001; 67 Zhang, Yang, Cheng, Wetering, Ikuta, Nishio (bib0078) 2014; 11 Aggarwal, Agrawal (bib0008) 2012; 3 Martis, Acharya, Lim (bib0054) 2012; 8 Goldberger (bib0029) 2006 Lim (bib0049) 2010; 19 Yin, Chen, Ji (bib0077) 2011 Al-Kindi, Ali, Farghaly (bib0009) 2011 Lahiri, Kumar, Mishra, Sarkar, Roy (bib0042) 2009; 68 Banerjee, Mitra (bib0017) 2010 Acharya, Fujita, Adam, Lih, Sudarshan, Hong, Koh, Hagiwara, Chua, Poo, San (bib0004) 2017; 377 Kennedy, Eberhart (bib0037) 1997; 5 Acharya, Fujita, Sudarshan, Oh, Adam, Koh, Tan, Chua, Chua, Tan (bib0003) 2016 Goldberger, Amaral, Glass, Hausdorff, PCh, Mark, Mietus, Moody, Peng, Stanley (bib0028) 2000; 101 Lu, Ong, Chia (bib0052) 2000; 27 Tragardh, Claesson, Wagner, Zhou, Pahlm (bib0074) 2007; 27 Grech (10.1016/j.knosys.2017.06.026_bib0030) 2011 Cohen (10.1016/j.knosys.2017.06.026_bib0023) 1992; 45 Arif (10.1016/j.knosys.2017.06.026_bib0012) 2010 Babaoglu (10.1016/j.knosys.2017.06.026_bib0015) 2010; 37 Kennedy (10.1016/j.knosys.2017.06.026_bib0037) 1997; 5 Faust (10.1016/j.knosys.2017.06.026_bib0025) 2012; 5 Larose (10.1016/j.knosys.2017.06.026_bib0043) 2004 Bamberger (10.1016/j.knosys.2017.06.026_bib0016) 1992; 40 Schwartz (10.1016/j.knosys.2017.06.026_bib0070) 2011 Kumar (10.1016/j.knosys.2017.06.026_bib0041) 2016; 63 Saarenmaa (10.1016/j.knosys.2017.06.026_bib0067) 2001; 67 Goldberger (10.1016/j.knosys.2017.06.026_bib0028) 2000; 101 Do (10.1016/j.knosys.2017.06.026_bib0024) 2003 Banerjee (10.1016/j.knosys.2017.06.026_bib0017) 2010 Martis (10.1016/j.knosys.2017.06.026_bib0054) 2012; 8 Liao (10.1016/j.knosys.2017.06.026_bib0048) 2015; Vol I Ashley (10.1016/j.knosys.2017.06.026_bib0013) 2004 Burt (10.1016/j.knosys.2017.06.026_bib0021) 1983; 31 Phoong (10.1016/j.knosys.2017.06.026_bib0063) 1995; 43 Lahiri (10.1016/j.knosys.2017.06.026_bib0042) 2009; 68 Amorim (10.1016/j.knosys.2017.06.026_bib0010) 2017; 67 Kaveh (10.1016/j.knosys.2017.06.026_bib0036) 2013 Lee (10.1016/j.knosys.2017.06.026_bib0046) 2007 Babaoglu (10.1016/j.knosys.2017.06.026_bib0014) 2010; 37 Sadowsky (10.1016/j.knosys.2017.06.026_bib0068) 1996; 17 Lu (10.1016/j.knosys.2017.06.026_bib0052) 2000; 27 Kim (10.1016/j.knosys.2017.06.026_bib0039) 2007; 14 Orhan (10.1016/j.knosys.2017.06.026_bib0061) 2013; 43 Mohamad (10.1016/j.knosys.2017.06.026_bib0058) 2011; 15 Safdarian (10.1016/j.knosys.2017.06.026_bib0069) 2014; 7 Masetic (10.1016/j.knosys.2017.06.026_bib0055) 2016; 130 Zhang (10.1016/j.knosys.2017.06.026_bib0078) 2014; 11 Po (10.1016/j.knosys.2017.06.026_bib0064) 2006; 15 Jayachandran (10.1016/j.knosys.2017.06.026_bib0031) 2010; 34 Masetic (10.1016/j.knosys.2017.06.026_bib0056) 2013; 2 Sood (10.1016/j.knosys.2017.06.026_bib0072) 2016; 16 Banerjee (10.1016/j.knosys.2017.06.026_bib0019) 2012; 1 Aggarwal (10.1016/j.knosys.2017.06.026_bib0008) 2012; 3 Omar (10.1016/j.knosys.2017.06.026_bib0060) 2011 Acharya (10.1016/j.knosys.2017.06.026_bib0007) 2013; 23 Price (10.1016/j.knosys.2017.06.026_bib0066) 2010; 3 Acharya (10.1016/j.knosys.2017.06.026_bib0001) 2016; 99 Kumar (10.1016/j.knosys.2017.06.026_bib0040) 2017; 31 Boashash (10.1016/j.knosys.2017.06.026_bib0020) 2016; 106 Sun (10.1016/j.knosys.2017.06.026_bib0073) 2012; 59 Tragardh (10.1016/j.knosys.2017.06.026_bib0074) 2007; 27 Lee (10.1016/j.knosys.2017.06.026_bib0045) 2008 Giri (10.1016/j.knosys.2017.06.026_bib0027) 2013; 37 Poon (10.1016/j.knosys.2017.06.026_bib0065) 1997; 389 Chang (10.1016/j.knosys.2017.06.026_bib0022) 2009 Al-Kindi (10.1016/j.knosys.2017.06.026_bib0009) 2011 Gertsch (10.1016/j.knosys.2017.06.026_bib0026) 2009 Yin (10.1016/j.knosys.2017.06.026_bib0077) 2011 Arif (10.1016/j.knosys.2017.06.026_bib0011) 2012; 36 Banerjee (10.1016/j.knosys.2017.06.026_bib0018) 2011 Yang (10.1016/j.knosys.2017.06.026_bib0076) 2008 Larose (10.1016/j.knosys.2017.06.026_bib0044) 2004 Sharma (10.1016/j.knosys.2017.06.026_bib0071) 2015; 62 Kamath (10.1016/j.knosys.2017.06.026_bib0033) 2012; 34 Acharya (10.1016/j.knosys.2017.06.026_bib0005) 2017; 31 Goldberger (10.1016/j.knosys.2017.06.026_bib0029) 2006 Kamath (10.1016/j.knosys.2017.06.026_bib0035) 2015; 6 Liu (10.1016/j.knosys.2017.06.026_bib0050) 2014; 9 Liu (10.1016/j.knosys.2017.06.026_bib0051) 2015; 61 Jiang (10.1016/j.knosys.2017.06.026_bib0032) 2005; 25 Acharya (10.1016/j.knosys.2017.06.026_bib0003) 2016 Acharya (10.1016/j.knosys.2017.06.026_bib0004) 2017; 377 Acharya (10.1016/j.knosys.2017.06.026_bib0006) 2017; 405 Luo (10.1016/j.knosys.2017.06.026_bib0053) 2007; 31 Kennedy (10.1016/j.knosys.2017.06.026_bib0038) 1995; 4 Lehtinen (10.1016/j.knosys.2017.06.026_bib0047) 1998 Kamath (10.1016/j.knosys.2017.06.026_bib0034) 2015; 10 Acharya (10.1016/j.knosys.2017.06.026_bib0002) 2005; 9 Mehra (10.1016/j.knosys.2017.06.026_bib0057) 2006; 12 Lim (10.1016/j.knosys.2017.06.026_bib0049) 2010; 19 Pan (10.1016/j.knosys.2017.06.026_bib0062) 2006 Oliver (10.1016/j.knosys.2017.06.026_bib0059) 2004; 3 Wang (10.1016/j.knosys.2017.06.026_bib0075) 2014; 49 |
| References_xml | – year: 2010 ident: bib0017 article-title: ECG feature extraction and classification of anteroseptal myocardial infarction and normal subjects using discrete wavelet transform publication-title: International Conference on Systems in medicine and biology – year: 2008 ident: bib0045 article-title: A data mining approach for coronary heart disease prediction using HRV features and carotid arterial wall thickness publication-title: International Conference on Biomedical Engineering and Informatics – start-page: 218 year: 2007 end-page: 228 ident: bib0046 article-title: Mining biosignal data: coronary artery disease diagnosis using linear and nonlinear features of HRV – start-page: 108 year: 2004 end-page: 126 ident: bib0044 article-title: Discovering knowledge in data: An Introduction to data mining publication-title: Chapter 6: Decision Trees – volume: 31 start-page: 301 year: 2017 end-page: 308 ident: bib0040 article-title: Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals publication-title: Biomed. Signal Process. Control – volume: 16 year: 2016 ident: bib0072 article-title: Application of empirical mode decomposition–based features for analysis of normal and CAD heart rate signals publication-title: J. Mech. Med. Biol. – volume: 43 start-page: 649 year: 1995 end-page: 665 ident: bib0063 article-title: A new class of two-channel biorthogonal filter banks and wavelet bases publication-title: IEEE Trans. Signal Process. – volume: 43 start-page: 1556 year: 2013 end-page: 1562 ident: bib0061 article-title: Real-time CHF detection from ECG signals using a novel discretization method publication-title: Comput. Biol. Med. – year: 2011 ident: bib0060 article-title: Application of the empirical mode decomposition to ECG and HRV signals for congestive heart failure classification publication-title: Conference: Biomedical Engineering (MECBME), 1st Middle East Conference on – volume: 34 start-page: 985 year: 2010 end-page: 992 ident: bib0031 article-title: Analysis of myocardial infarction using discrete wavelet transform publication-title: J Med. Syst. – volume: 49 start-page: 434 year: 2014 end-page: 453 ident: bib0075 article-title: An efficient remote sensing image denoising method in extended discrete shearlet domain publication-title: J. Math. Imaging Vision – year: 2011 ident: bib0030 article-title: ABC of Interventional Cardiology – volume: 68 start-page: 866 year: 2009 end-page: 870 ident: bib0042 article-title: Analysis of ECG signal by chaos principle to help automatic diagnosis of myocardial infarction publication-title: J. Sci. Ind. Res. – year: 2013 ident: bib0036 article-title: Automated classification of coronary atherosclerosis using single lead ECG publication-title: IEEE Conference on Wireless Sensors – volume: 389 start-page: 492 year: 1997 end-page: 495 ident: bib0065 article-title: Decrease of cardiac chaos in congestive heart failure publication-title: Nature – year: 2011 ident: bib0009 article-title: Towards real-time detection of myocardial infarction by digital analysis of electrocardiograms publication-title: 1st Middle East Conference on Biomedical Engineering – volume: 10 start-page: 145 year: 2015 end-page: 159 ident: bib0034 article-title: A new approach to detect congestive heart failure using detrended fluctuation analysis of electrocardiogram signals publication-title: J. Eng. Sci. Technol. – volume: 61 start-page: 178 year: 2015 end-page: 184 ident: bib0051 article-title: A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection publication-title: Comput. Biol. Med. – volume: 6 start-page: 1 year: 2015 end-page: 11 ident: bib0035 article-title: Entropy measures of irregularity and complexity for surface electrocardiogram time series in patients with congestive heart failure publication-title: J. Adv. Comput. Res. – volume: 67 start-page: 140 year: 2017 end-page: 147 ident: bib0010 article-title: Electroencephalogram signal classification based on shearlet and contourlet transforms publication-title: Expert Syst. Appl. – volume: 7 start-page: 818 year: 2014 end-page: 824 ident: bib0069 article-title: A new pattern recognition method for detection and localization of myocardial infarction using T-wave integral and total integral as extracted features from one cycle of ECG signal publication-title: J. Biomed. Sci. Eng. – year: 2010 ident: bib0012 article-title: Automatic detection and localization of myocardial infarction using back propagation neural networks publication-title: 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE) – volume: 37 start-page: 274 year: 2013 end-page: 282 ident: bib0027 article-title: Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform publication-title: Knowledge-Based Syst. – volume: 9 start-page: 134 year: 2005 end-page: 141 ident: bib0002 article-title: Study of heart rate variability signals at sitting and lying postures publication-title: J. Bodyw. Mov. Ther. – year: 2004 ident: bib0013 article-title: Cardiology explained publication-title: Remedica Explained Series – volume: 67 start-page: 117 year: 2001 end-page: 123 ident: bib0067 article-title: The effect of age and density of the breast on the sensitivity of breast cancer diagnostic by mammography and ultrasonography publication-title: Breast Cancer Res. Treat. – start-page: 90 year: 2004 end-page: 106 ident: bib0043 article-title: 'Discovering Knowledge in Data: An Introduction to Data Mining – volume: 9 start-page: e93399 year: 2014 ident: bib0050 article-title: A new approach to detect congestive heart failure using short-term heart rate variability measures publication-title: PLoS One – volume: 34 start-page: 1503 year: 2012 end-page: 1509 ident: bib0033 article-title: A new approach to detect congestive heart failure using sequential spectrum of electrocardiogram signals publication-title: Med. Eng. Phys. – volume: 27 start-page: 387 year: 2000 end-page: 390 ident: bib0052 article-title: An automated ECG classification system based on a neuro-fuzzy system publication-title: IEEE, Comput. Cardiol. – volume: 31 start-page: 532 year: 1983 end-page: 540 ident: bib0021 article-title: The Laplacian pyramid as a compact image code publication-title: IEEE Trans. Commun. – volume: 5 start-page: 15 year: 2012 end-page: 28 ident: bib0025 article-title: Formal design methods for reliable computer-aided diagnosis: a review publication-title: IEEE Rev. Biomed. Eng – volume: 59 year: 2012 ident: bib0073 article-title: ECG analysis using multiple instance learning for myocardial infarction detection publication-title: Transaction on Biomedical Engineering – year: February 1998 ident: bib0047 article-title: Artificial neural network for exercise electrocardiographic detection of coronary artery disease publication-title: 2nd International Conference on Bioelectromagnetism – volume: 8 start-page: 437 year: 2012 end-page: 448 ident: bib0054 article-title: ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform publication-title: Knowledge Based Syst. – year: 2006 ident: bib0062 article-title: A Real Time QRS Detection Algorithm – volume: 23 year: 2013 ident: bib0007 article-title: Automated diagnosis of epilepsy using CWT, HOS and texture parameters publication-title: Int. J. Neural Syst. – start-page: 107 year: 2008 end-page: 112 ident: bib0076 article-title: Chaotic maps in binary particle swarm optimization for feature selection publication-title: IEEE Conference on Soft Computing in Industrial Applications – volume: 45 start-page: 485 year: 1992 end-page: 560 ident: bib0023 article-title: Biorthogonal bases of compactly supported wavelets publication-title: Commun. Pure Appl. Math. – volume: 63 start-page: 165 year: 2016 end-page: 172 ident: bib0041 article-title: An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals publication-title: Expert Syst. Appl. – volume: 62 year: 2015 ident: bib0071 article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction publication-title: Transaction on Biomedical Engineering – volume: 12 start-page: 277 year: 2006 end-page: 283 ident: bib0057 article-title: Difficult cases in heart failure: ECG changes in response to diuretics in an ambulatory patient with congestive heart failure publication-title: Congestive Heart Failure – volume: 106 start-page: 38 year: 2016 end-page: 50 ident: bib0020 article-title: Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study publication-title: Knowledge Based Syst. – volume: 3 year: 2010 ident: bib0066 article-title: How to read an electrocardiogram (ECG). Part one: Basic principles of the ECG. The normal ECG publication-title: Southern Sudan Med. J. – volume: 37 start-page: 2182 year: 2010 end-page: 2185 ident: bib0014 article-title: Effects of principle component analysis on assessment of coronary artery diseases using support vector machine publication-title: Expert Systems with Applications – volume: 1 start-page: 88 year: 2012 end-page: 92 ident: bib0019 article-title: Cross wavelet transform based analysis of electrocardiogram signals publication-title: Int. J. Electr. Electron. Comput. Eng. – volume: 27 start-page: 368 year: 2007 end-page: 374 ident: bib0074 article-title: Detection of acute myocardial infarction using 12-lead ECG plus inverted leads versus the 16-lead ECG (with additional posterior and right-sided chest electrodes) publication-title: Clin. Physiol. Funct. Imaging – volume: 11 start-page: 1 year: 2014 end-page: 11 ident: bib0078 article-title: A novel optimization design approach for contourlet directional filter banks publication-title: IEICE Electron. Express – year: 2016 ident: bib0003 article-title: Application of empirical mode decomposition (EMD) for automated identification of congestive heart failure using heart rate signals publication-title: Neural Comput. Appl. – volume: 31 start-page: 31 year: 2017 end-page: 43 ident: bib0005 article-title: Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals publication-title: Biomed. Signal Process. Control – volume: 5 start-page: 4104 year: 1997 end-page: 4108 ident: bib0037 article-title: A discrete binary version of the particle swarm algorithm publication-title: Proceedings of the IEEE International Conference on Systems – volume: 36 start-page: 279 year: 2012 end-page: 289 ident: bib0011 article-title: Detection and localization of myocardial infarction using k-nearest neighbor classifier publication-title: J. Med. Syst. – volume: 130 start-page: 54 year: 2016 end-page: 64 ident: bib0055 article-title: Congestive heart failure detection using random forest classifier publication-title: Comput. Methods. Programs. Biomed. – volume: 377 start-page: 17 year: 2017 end-page: 29 ident: bib0004 article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study publication-title: Inf. Sci. – volume: 31 start-page: 153 year: 2007 end-page: 162 ident: bib0053 article-title: An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints publication-title: Comput. Chem. Eng. – volume: 405 start-page: 81 year: 2017 end-page: 90 ident: bib0006 article-title: Automated Detection of Arrhythmias Using Different Intervals of Tachycardia ECG Segments with Convolutional Neural Network publication-title: Inf. Sci. – volume: 14 start-page: 3480 year: 2007 end-page: 3483 ident: bib0039 article-title: A study on development pf multi-parameter measure of heart rate variability diagnosing cardiovascular disease publication-title: IFMBE Proc. – volume: 25 start-page: 37 year: 2005 end-page: 40 ident: bib0032 article-title: Improved PSO algorithm and its application in short-term generation scheduling publication-title: Dianli Zidonghua Shebei/Electric power automation equipment – volume: 2 year: 2013 ident: bib0056 article-title: Detection of congestive heart failures using C4.5 decision tree publication-title: Southeast Eur. J. Soft Comput. – volume: 15 start-page: 1610 year: 2006 end-page: 1620 ident: bib0064 article-title: Directional multiscale modeling of images using the contourlet transform publication-title: IEEE Trans. Image Process. – start-page: 1033 year: 2011 end-page: 1036 ident: bib0070 article-title: A novel feature descriptor based on the shearlet transform publication-title: 18th IEEE International Conference On Image Processing – volume: 3 start-page: 1 year: 2004 end-page: 11 ident: bib0059 article-title: Analysis of cardiac signals using spatial filling index and time-frequency domain publication-title: Biomed. Eng. Online – year: 2011 ident: bib0077 article-title: A novel method of diagnosing coronary heart disease by analyzing ECG signals combined with motion activity publication-title: IEEE International workshop on machine learning for signal processing – volume: 99 start-page: 146 year: 2016 end-page: 156 ident: bib0001 article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads publication-title: Knowledge Based Syst. – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: bib0028 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals publication-title: Circulation. – year: 2006 ident: bib0029 article-title: Clinical Electrocardiography: A Simplified Approach – volume: 37 start-page: 3177 year: 2010 end-page: 3183 ident: bib0015 article-title: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine publication-title: Expert Systems with Applications – volume: 19 start-page: 1166 year: 2010 end-page: 1180 ident: bib0049 article-title: The discrete shearlet transform: A new directional transform and compactly supported shearlet frames publication-title: IEEE Trans. Image Process. – year: 2003 ident: bib0024 article-title: In Beyond Wavelets, ed. – volume: Vol I year: 2015 ident: bib0048 article-title: A novel approach for classification of congestive heart failure using relatively short-term ECG waveforms and SVM classifier publication-title: Proceedings of the International MultiConference of Engineers and Computer Scientists IMECS – volume: 3 start-page: 146 year: 2012 end-page: 153 ident: bib0008 article-title: First and second order statistics features for classification of magnetic resonance brain images publication-title: J. Signal Inf. Process. – year: 2011 ident: bib0018 article-title: A classification approach for myocardial infarction using voltage features extracted from four standard ECG Leads publication-title: International Conference on Recent Trends in Information Systems – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: bib0038 article-title: Particle swarm optimization publication-title: Proceedings of the IEEE International Conference on Neural Networks – year: 2009 ident: bib0022 article-title: A hybrid system with hidden markov models and Gaussian mixture models for myocardial infarction classification with 12-lead ECGs publication-title: 11th IEEE Conference on Hugh Performance Computing and Communications – volume: 40 start-page: 882 year: 1992 end-page: 893 ident: bib0016 article-title: A filter bank for the directional decomposition of images: theory and design publication-title: IEEE Trans. Signal Process. – volume: 15 start-page: 813 year: 2011 end-page: 822 ident: bib0058 article-title: A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data publication-title: IEEE Trans. Inf. Technol. Biomed. – start-page: 17 year: 2009 end-page: 36 ident: bib0026 article-title: The normal electrocardiogram and its (normal) variants publication-title: The ECG Manual – volume: 17 year: 1996 ident: bib0068 article-title: Investigation of signal characteristics using continuous wavelet transform publication-title: Johns Hopkins Apl. Tech. Dig. – year: 2011 ident: 10.1016/j.knosys.2017.06.026_bib0018 article-title: A classification approach for myocardial infarction using voltage features extracted from four standard ECG Leads – volume: 63 start-page: 165 year: 2016 ident: 10.1016/j.knosys.2017.06.026_bib0041 article-title: An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.06.038 – volume: 9 start-page: e93399 year: 2014 ident: 10.1016/j.knosys.2017.06.026_bib0050 article-title: A new approach to detect congestive heart failure using short-term heart rate variability measures publication-title: PLoS One doi: 10.1371/journal.pone.0093399 – start-page: 1033 year: 2011 ident: 10.1016/j.knosys.2017.06.026_bib0070 article-title: A novel feature descriptor based on the shearlet transform – volume: 11 start-page: 1 year: 2014 ident: 10.1016/j.knosys.2017.06.026_bib0078 article-title: A novel optimization design approach for contourlet directional filter banks publication-title: IEICE Electron. Express doi: 10.1587/elex.11.20140556 – year: 2008 ident: 10.1016/j.knosys.2017.06.026_bib0045 article-title: A data mining approach for coronary heart disease prediction using HRV features and carotid arterial wall thickness – volume: 5 start-page: 15 year: 2012 ident: 10.1016/j.knosys.2017.06.026_bib0025 article-title: Formal design methods for reliable computer-aided diagnosis: a review – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.knosys.2017.06.026_bib0035 article-title: Entropy measures of irregularity and complexity for surface electrocardiogram time series in patients with congestive heart failure publication-title: J. Adv. Comput. Res. – volume: 25 start-page: 37 year: 2005 ident: 10.1016/j.knosys.2017.06.026_bib0032 article-title: Improved PSO algorithm and its application in short-term generation scheduling publication-title: Dianli Zidonghua Shebei/Electric power automation equipment – volume: Vol I year: 2015 ident: 10.1016/j.knosys.2017.06.026_bib0048 article-title: A novel approach for classification of congestive heart failure using relatively short-term ECG waveforms and SVM classifier – volume: 37 start-page: 274 year: 2013 ident: 10.1016/j.knosys.2017.06.026_bib0027 article-title: Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2012.08.011 – volume: 19 start-page: 1166 year: 2010 ident: 10.1016/j.knosys.2017.06.026_bib0049 article-title: The discrete shearlet transform: A new directional transform and compactly supported shearlet frames publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2041410 – volume: 43 start-page: 649 year: 1995 ident: 10.1016/j.knosys.2017.06.026_bib0063 article-title: A new class of two-channel biorthogonal filter banks and wavelet bases publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.370620 – volume: 68 start-page: 866 year: 2009 ident: 10.1016/j.knosys.2017.06.026_bib0042 article-title: Analysis of ECG signal by chaos principle to help automatic diagnosis of myocardial infarction publication-title: J. Sci. Ind. Res. – year: 1998 ident: 10.1016/j.knosys.2017.06.026_bib0047 article-title: Artificial neural network for exercise electrocardiographic detection of coronary artery disease – volume: 61 start-page: 178 year: 2015 ident: 10.1016/j.knosys.2017.06.026_bib0051 article-title: A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.08.010 – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.knosys.2017.06.026_bib0038 article-title: Particle swarm optimization – volume: 106 start-page: 38 year: 2016 ident: 10.1016/j.knosys.2017.06.026_bib0020 article-title: Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study publication-title: Knowledge Based Syst. doi: 10.1016/j.knosys.2016.05.027 – start-page: 17 year: 2009 ident: 10.1016/j.knosys.2017.06.026_bib0026 article-title: The normal electrocardiogram and its (normal) variants publication-title: The ECG Manual – volume: 377 start-page: 17 year: 2017 ident: 10.1016/j.knosys.2017.06.026_bib0004 article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.10.013 – volume: 31 start-page: 532 year: 1983 ident: 10.1016/j.knosys.2017.06.026_bib0021 article-title: The Laplacian pyramid as a compact image code publication-title: IEEE Trans. Commun. doi: 10.1109/TCOM.1983.1095851 – volume: 130 start-page: 54 year: 2016 ident: 10.1016/j.knosys.2017.06.026_bib0055 article-title: Congestive heart failure detection using random forest classifier publication-title: Comput. Methods. Programs. Biomed. doi: 10.1016/j.cmpb.2016.03.020 – volume: 59 year: 2012 ident: 10.1016/j.knosys.2017.06.026_bib0073 article-title: ECG analysis using multiple instance learning for myocardial infarction detection – year: 2006 ident: 10.1016/j.knosys.2017.06.026_bib0029 – volume: 27 start-page: 368 year: 2007 ident: 10.1016/j.knosys.2017.06.026_bib0074 article-title: Detection of acute myocardial infarction using 12-lead ECG plus inverted leads versus the 16-lead ECG (with additional posterior and right-sided chest electrodes) publication-title: Clin. Physiol. Funct. Imaging doi: 10.1111/j.1475-097X.2007.00761.x – year: 2011 ident: 10.1016/j.knosys.2017.06.026_bib0009 article-title: Towards real-time detection of myocardial infarction by digital analysis of electrocardiograms – volume: 37 start-page: 3177 year: 2010 ident: 10.1016/j.knosys.2017.06.026_bib0015 article-title: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine – year: 2016 ident: 10.1016/j.knosys.2017.06.026_bib0003 article-title: Application of empirical mode decomposition (EMD) for automated identification of congestive heart failure using heart rate signals publication-title: Neural Comput. Appl. – volume: 10 start-page: 145 year: 2015 ident: 10.1016/j.knosys.2017.06.026_bib0034 article-title: A new approach to detect congestive heart failure using detrended fluctuation analysis of electrocardiogram signals publication-title: J. Eng. Sci. Technol. – volume: 12 start-page: 277 year: 2006 ident: 10.1016/j.knosys.2017.06.026_bib0057 article-title: Difficult cases in heart failure: ECG changes in response to diuretics in an ambulatory patient with congestive heart failure publication-title: Congestive Heart Failure doi: 10.1111/j.1527-5299.2006.05518.x – volume: 37 start-page: 2182 year: 2010 ident: 10.1016/j.knosys.2017.06.026_bib0014 article-title: Effects of principle component analysis on assessment of coronary artery diseases using support vector machine – volume: 405 start-page: 81 year: 2017 ident: 10.1016/j.knosys.2017.06.026_bib0006 article-title: Automated Detection of Arrhythmias Using Different Intervals of Tachycardia ECG Segments with Convolutional Neural Network publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.04.012 – volume: 8 start-page: 437 year: 2012 ident: 10.1016/j.knosys.2017.06.026_bib0054 article-title: ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform publication-title: Knowledge Based Syst. – year: 2010 ident: 10.1016/j.knosys.2017.06.026_bib0012 article-title: Automatic detection and localization of myocardial infarction using back propagation neural networks – volume: 31 start-page: 153 year: 2007 ident: 10.1016/j.knosys.2017.06.026_bib0053 article-title: An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2006.05.016 – volume: 15 start-page: 1610 year: 2006 ident: 10.1016/j.knosys.2017.06.026_bib0064 article-title: Directional multiscale modeling of images using the contourlet transform publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.873450 – volume: 49 start-page: 434 year: 2014 ident: 10.1016/j.knosys.2017.06.026_bib0075 article-title: An efficient remote sensing image denoising method in extended discrete shearlet domain publication-title: J. Math. Imaging Vision doi: 10.1007/s10851-013-0476-x – volume: 62 year: 2015 ident: 10.1016/j.knosys.2017.06.026_bib0071 article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction – year: 2010 ident: 10.1016/j.knosys.2017.06.026_bib0017 article-title: ECG feature extraction and classification of anteroseptal myocardial infarction and normal subjects using discrete wavelet transform – volume: 31 start-page: 301 year: 2017 ident: 10.1016/j.knosys.2017.06.026_bib0040 article-title: Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.08.018 – year: 2011 ident: 10.1016/j.knosys.2017.06.026_bib0060 article-title: Application of the empirical mode decomposition to ECG and HRV signals for congestive heart failure classification – year: 2011 ident: 10.1016/j.knosys.2017.06.026_bib0077 article-title: A novel method of diagnosing coronary heart disease by analyzing ECG signals combined with motion activity – volume: 389 start-page: 492 year: 1997 ident: 10.1016/j.knosys.2017.06.026_bib0065 article-title: Decrease of cardiac chaos in congestive heart failure publication-title: Nature doi: 10.1038/39043 – start-page: 107 year: 2008 ident: 10.1016/j.knosys.2017.06.026_bib0076 article-title: Chaotic maps in binary particle swarm optimization for feature selection – year: 2011 ident: 10.1016/j.knosys.2017.06.026_bib0030 – year: 2013 ident: 10.1016/j.knosys.2017.06.026_bib0036 article-title: Automated classification of coronary atherosclerosis using single lead ECG – volume: 1 start-page: 88 year: 2012 ident: 10.1016/j.knosys.2017.06.026_bib0019 article-title: Cross wavelet transform based analysis of electrocardiogram signals publication-title: Int. J. Electr. Electron. Comput. Eng. – volume: 14 start-page: 3480 year: 2007 ident: 10.1016/j.knosys.2017.06.026_bib0039 article-title: A study on development pf multi-parameter measure of heart rate variability diagnosing cardiovascular disease publication-title: IFMBE Proc. doi: 10.1007/978-3-540-36841-0_880 – volume: 3 start-page: 1 issue: 30 year: 2004 ident: 10.1016/j.knosys.2017.06.026_bib0059 article-title: Analysis of cardiac signals using spatial filling index and time-frequency domain publication-title: Biomed. Eng. Online – start-page: 90 year: 2004 ident: 10.1016/j.knosys.2017.06.026_bib0043 – volume: 2 year: 2013 ident: 10.1016/j.knosys.2017.06.026_bib0056 article-title: Detection of congestive heart failures using C4.5 decision tree publication-title: Southeast Eur. J. Soft Comput. – volume: 36 start-page: 279 year: 2012 ident: 10.1016/j.knosys.2017.06.026_bib0011 article-title: Detection and localization of myocardial infarction using k-nearest neighbor classifier publication-title: J. Med. Syst. doi: 10.1007/s10916-010-9474-3 – start-page: 108 year: 2004 ident: 10.1016/j.knosys.2017.06.026_bib0044 article-title: Discovering knowledge in data: An Introduction to data mining – volume: 99 start-page: 146 year: 2016 ident: 10.1016/j.knosys.2017.06.026_bib0001 article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads publication-title: Knowledge Based Syst. doi: 10.1016/j.knosys.2016.01.040 – volume: 67 start-page: 117 year: 2001 ident: 10.1016/j.knosys.2017.06.026_bib0067 article-title: The effect of age and density of the breast on the sensitivity of breast cancer diagnostic by mammography and ultrasonography publication-title: Breast Cancer Res. Treat. doi: 10.1023/A:1010627527026 – volume: 31 start-page: 31 year: 2017 ident: 10.1016/j.knosys.2017.06.026_bib0005 article-title: Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.07.003 – volume: 16 issue: 01 year: 2016 ident: 10.1016/j.knosys.2017.06.026_bib0072 article-title: Application of empirical mode decomposition–based features for analysis of normal and CAD heart rate signals publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519416400029 – start-page: 218 year: 2007 ident: 10.1016/j.knosys.2017.06.026_bib0046 – volume: 101 start-page: e215 year: 2000 ident: 10.1016/j.knosys.2017.06.026_bib0028 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals publication-title: Circulation. doi: 10.1161/01.CIR.101.23.e215 – volume: 15 start-page: 813 year: 2011 ident: 10.1016/j.knosys.2017.06.026_bib0058 article-title: A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2011.2167756 – volume: 27 start-page: 387 year: 2000 ident: 10.1016/j.knosys.2017.06.026_bib0052 article-title: An automated ECG classification system based on a neuro-fuzzy system publication-title: IEEE, Comput. Cardiol. – volume: 40 start-page: 882 year: 1992 ident: 10.1016/j.knosys.2017.06.026_bib0016 article-title: A filter bank for the directional decomposition of images: theory and design publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.127960 – volume: 9 start-page: 134 issue: 2 year: 2005 ident: 10.1016/j.knosys.2017.06.026_bib0002 article-title: Study of heart rate variability signals at sitting and lying postures publication-title: J. Bodyw. Mov. Ther. doi: 10.1016/j.jbmt.2004.04.001 – volume: 45 start-page: 485 year: 1992 ident: 10.1016/j.knosys.2017.06.026_bib0023 article-title: Biorthogonal bases of compactly supported wavelets publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160450502 – volume: 5 start-page: 4104 year: 1997 ident: 10.1016/j.knosys.2017.06.026_bib0037 article-title: A discrete binary version of the particle swarm algorithm – year: 2004 ident: 10.1016/j.knosys.2017.06.026_bib0013 article-title: Cardiology explained – volume: 34 start-page: 985 year: 2010 ident: 10.1016/j.knosys.2017.06.026_bib0031 article-title: Analysis of myocardial infarction using discrete wavelet transform publication-title: J Med. Syst. doi: 10.1007/s10916-009-9314-5 – volume: 23 issue: 03 year: 2013 ident: 10.1016/j.knosys.2017.06.026_bib0007 article-title: Automated diagnosis of epilepsy using CWT, HOS and texture parameters publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065713500093 – year: 2009 ident: 10.1016/j.knosys.2017.06.026_bib0022 article-title: A hybrid system with hidden markov models and Gaussian mixture models for myocardial infarction classification with 12-lead ECGs – volume: 43 start-page: 1556 year: 2013 ident: 10.1016/j.knosys.2017.06.026_bib0061 article-title: Real-time CHF detection from ECG signals using a novel discretization method publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2013.07.015 – volume: 34 start-page: 1503 year: 2012 ident: 10.1016/j.knosys.2017.06.026_bib0033 article-title: A new approach to detect congestive heart failure using sequential spectrum of electrocardiogram signals publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2012.03.001 – volume: 17 year: 1996 ident: 10.1016/j.knosys.2017.06.026_bib0068 article-title: Investigation of signal characteristics using continuous wavelet transform publication-title: Johns Hopkins Apl. Tech. Dig. – volume: 67 start-page: 140 year: 2017 ident: 10.1016/j.knosys.2017.06.026_bib0010 article-title: Electroencephalogram signal classification based on shearlet and contourlet transforms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.09.037 – year: 2006 ident: 10.1016/j.knosys.2017.06.026_bib0062 – volume: 3 year: 2010 ident: 10.1016/j.knosys.2017.06.026_bib0066 article-title: How to read an electrocardiogram (ECG). Part one: Basic principles of the ECG. The normal ECG publication-title: Southern Sudan Med. J. – volume: 3 start-page: 146 year: 2012 ident: 10.1016/j.knosys.2017.06.026_bib0008 article-title: First and second order statistics features for classification of magnetic resonance brain images publication-title: J. Signal Inf. Process. – year: 2003 ident: 10.1016/j.knosys.2017.06.026_bib0024 article-title: In Beyond Wavelets, ed. – volume: 7 start-page: 818 year: 2014 ident: 10.1016/j.knosys.2017.06.026_bib0069 article-title: A new pattern recognition method for detection and localization of myocardial infarction using T-wave integral and total integral as extracted features from one cycle of ECG signal publication-title: J. Biomed. Sci. Eng. doi: 10.4236/jbise.2014.710081 |
| SSID | ssj0002218 |
| Score | 2.4673705 |
| Snippet | •Classification of normal, CAD, MI and CHF classes using ECG beat is proposed•CWT transform is performed on ECG beat•Contourlet and shearlet transforms are... Undiagnosed coronary artery disease (CAD) progresses rapidly and leads to myocardial infarction (MI) by reducing the blood flow to the cardiac muscles. Timely... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 156 |
| SubjectTerms | Abnormalities Algorithms Automatic classification Averages Blood flow Cardiovascular disease Classifiers Congestive heart failure Continuous wavelet transform Contourlet and shearlet transforms Coronary artery disease Decision making Deviation Diagnostic systems Diagnostic tests Disease Echocardiography Electrocardiogram Electrocardiography Entropy Entropy (Information theory) Feature extraction Function words Heart failure Hospitals Kurtosis Muscles Myocardial infarction Optimization Particle swarm optimization Ultrasonic imaging Undiagnosed Variance analysis |
| Title | Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal |
| URI | https://dx.doi.org/10.1016/j.knosys.2017.06.026 https://www.proquest.com/docview/1941700419 |
| Volume | 132 |
| WOSCitedRecordID | wos000407184900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3ohCQXvglhr5be8xQq0KVBWiLcrN2qx3VYfUqRKnavhT_DN-AzP7sEMiVEDiYiUbP9aeLzvfjOdByJtY5ZEUZewBFwADJWWhx1LFPeGPRVoGoYoDnSh8nJ2c5KMR-9Tr_XC5MNfTrK7zmxt29V9FDWMgbEyd_QtxtyeFAfgMQoctiB22fyT44bKZAQ0FIinaYszfWmIosGIBRsrpWM6Ve0GDT_pyBXptrhNJYB7wVHTch43uBLMZ30RhnBH2wG4GilcY0T5Y2rTduoHJTaUJWF_gPvilcbxYR4zYnjv6KjosbIDhI_aGLEP-6Jx8HirY0paabpn_EG9qpRnv-eAzn8i6nLea5XA5qQwbPuKXVTnr3niVYL9fGF_vl6pc8bX-29qvdHqxHBxXF-s-ENCr2MMh6RxzW8k51sPpe5lv69lKs77nGRgUsc9-UQDWw2qW8CBJ19hAYHrCbCka4_OYvP1az-A5YIhgpuvAhht1vTVTOMWp4EwCWE_R5LtDdsIsYXmf7AzfH4w-tNwhDLVHup26S_bUEYnb1_odmdqgFZornT0k962RQ4cGnI9IT9aPyQPXQIRaffKEfG-xSjexSmeKOqxSg1VqsbpPO6TSDqn7FJBHO5xSjVNqcUo1TmmHU723wyntcIoX3sIpNTh9Ss4PD87eHXm2g4gnQDc1XqoU8M9gnCR5yVMRRzJhUkolGQ9llIgsVUGsmAqFGrOIhyKHnzmPcyBtgVAyekb69ayWzwnNlALswNYHE6QUKeOxH4ky5zCUlRnbJZETRSFseX3s8jItXBzlpDACLFCABYaThuku8dqjrkx5mVv2z5yUC0uRDfUtAJi3HLnnQFHY1WpRBCzG-pxxwF7884lfknvdX3KP9Jv5Ur4id8V1Uy3mry3AfwIgffr5 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+characterization+of+coronary+artery+disease%2C+myocardial+infarction%2C+and+congestive+heart+failure+using+contourlet+and+shearlet+transforms+of+electrocardiogram+signal&rft.jtitle=Knowledge-based+systems&rft.au=Acharya%2C+U+Rajendra&rft.au=Fujita%2C+Hamido&rft.au=Sudarshan%2C+Vidya+K&rft.au=Oh%2C+Shu+Lih&rft.date=2017-09-15&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=132&rft.spage=156&rft.epage=166&rft_id=info:doi/10.1016%2Fj.knosys.2017.06.026&rft.externalDocID=S0950705117303064 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |