Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal

•Classification of normal, CAD, MI and CHF classes using ECG beat is proposed•CWT transform is performed on ECG beat•Contourlet and shearlet transforms are performed on scalogram•First and second order statistical features are extracted•Obtained an accuracy of 99.55% using contourlet transform Undia...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems Vol. 132; pp. 156 - 166
Main Authors: Acharya, U Rajendra, Fujita, Hamido, Sudarshan, Vidya K, Oh, Shu Lih, Adam, Muhammad, Tan, Jen Hong, Koo, Jie Hui, Jain, Arihant, Lim, Choo Min, Chua, Kuang Chua
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 15.09.2017
Elsevier Science Ltd
Subjects:
ISSN:0950-7051, 1872-7409
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Classification of normal, CAD, MI and CHF classes using ECG beat is proposed•CWT transform is performed on ECG beat•Contourlet and shearlet transforms are performed on scalogram•First and second order statistical features are extracted•Obtained an accuracy of 99.55% using contourlet transform Undiagnosed coronary artery disease (CAD) progresses rapidly and leads to myocardial infarction (MI) by reducing the blood flow to the cardiac muscles. Timely diagnosis of MI and its location is significant, else, it expands and may impair the left ventricular (LV) function. Thus, if CAD and MI are not picked up by electrocardiogram (ECG) during diagnostic test, it can lead to congestive heart failure (CHF). Therefore, in this paper, the characterization of three cardiac abnormalities namely, CAD, MI and CHF are compared. Performance of novel algorithms is based on contourlet and shearlet transformations of the ECG signals. Continuous wavelet transform (CWT) is performed on normal, CAD, MI and CHF ECG beat to obtain scalograms. Subsequently, contourlet and shearlet transformations are applied on the scalograms to obtain the respective coefficients. Entropies, first and second order statistical features namely, mean (Mni), min (Mini), max (Mxi), standard deviation (Dsti), average power (Pavgi), inter-quartile range (IQRi), Shannon entropy (Eshi), mean Tsallis entropy (Emtsi), kurtosis (Kuri), mean absolute deviation (MADi), and mean energy (Ωmi), are extracted from each contourlet and shearlet coefficients. Only significant features are selected using improved binary particle swarm optimization (IBPSO) feature selection method. Selected features are ranked using analysis of variance (ANOVA) and relieff techniques. The highly ranked features are subjected to decision tree (DT) and K-nearest neighbor (KNN) classifiers. Proposed method has achieved accuracy, sensitivity and specificity of (i) 99.55%, 99.93% and 99.24% using contourlet transform, and (ii) 99.01%, 99.82% and 98.75% using shearlet transform. Among the two proposed techniques, contourlet transform method performed marginally better than shearlet transform technique in classifying the four classes. The proposed CWT combined with contourlet-based technique can be implemented in hospitals to speed up the diagnosis of three different cardiac abnormalities using a single ECG test. This technique, minimizes the unnecessary diagnostic tests required to confirm the diagnosis.
AbstractList Undiagnosed coronary artery disease (CAD) progresses rapidly and leads to myocardial infarction (MI) by reducing the blood flow to the cardiac muscles. Timely diagnosis of MI and its location is significant, else, it expands and may impair the left ventricular (LV) function. Thus, if CAD and MI are not picked up by electrocardiogram (ECG) during diagnostic test, it can lead to congestive heart failure (CHF). Therefore, in this paper, the characterization of three cardiac abnormalities namely, CAD, MI and CHF are compared. Performance of novel algorithms is based on contourlet and shearlet transformations of the ECG signals. Continuous wavelet transform (CWT) is performed on normal, CAD, MI and CHF ECG beat to obtain scalograms. Subsequently, contourlet and shearlet transformations are applied on the scalograms to obtain the respective coefficients. Entropies, first and second order statistical features namely, mean (Min), min (Min), max (Mix), standard deviation (Dist), average power (Piavg), inter-quartile range (IQRi ), Shannon entropy (Eish), mean Tsallis entropy (Eimt s), kurtosis (Kiur), mean absolute deviation (MiAD), and mean energy (Ωim), are extracted from each contourlet and shearlet coefficients. Only significant features are selected using improved binary particle swarm optimization (IBPSO) feature selection method. Selected features are ranked using analysis of variance (ANOVA) and relief techniques. The highly ranked features are subjected to decision tree (DT) and K-nearest neighbor (KNN) classifiers. Proposed method has achieved accuracy, sensitivity and specificity of (i) 99.55%, 99.93% and 99.24% using contourlet transform, and (ii) 99.01%, 99.82% and 98.75% using shearlet transform. Among the two proposed techniques, contourlet transform method performed marginally better than shearlet transform technique in classifying the four classes. The proposed CWT combined with contourlet-based technique can be implemented in hospitals to speed up the diagnosis of three different cardiac abnormalities using a single ECG test. This technique, minimizes the unnecessary diagnostic tests required to confirm the diagnosis.
•Classification of normal, CAD, MI and CHF classes using ECG beat is proposed•CWT transform is performed on ECG beat•Contourlet and shearlet transforms are performed on scalogram•First and second order statistical features are extracted•Obtained an accuracy of 99.55% using contourlet transform Undiagnosed coronary artery disease (CAD) progresses rapidly and leads to myocardial infarction (MI) by reducing the blood flow to the cardiac muscles. Timely diagnosis of MI and its location is significant, else, it expands and may impair the left ventricular (LV) function. Thus, if CAD and MI are not picked up by electrocardiogram (ECG) during diagnostic test, it can lead to congestive heart failure (CHF). Therefore, in this paper, the characterization of three cardiac abnormalities namely, CAD, MI and CHF are compared. Performance of novel algorithms is based on contourlet and shearlet transformations of the ECG signals. Continuous wavelet transform (CWT) is performed on normal, CAD, MI and CHF ECG beat to obtain scalograms. Subsequently, contourlet and shearlet transformations are applied on the scalograms to obtain the respective coefficients. Entropies, first and second order statistical features namely, mean (Mni), min (Mini), max (Mxi), standard deviation (Dsti), average power (Pavgi), inter-quartile range (IQRi), Shannon entropy (Eshi), mean Tsallis entropy (Emtsi), kurtosis (Kuri), mean absolute deviation (MADi), and mean energy (Ωmi), are extracted from each contourlet and shearlet coefficients. Only significant features are selected using improved binary particle swarm optimization (IBPSO) feature selection method. Selected features are ranked using analysis of variance (ANOVA) and relieff techniques. The highly ranked features are subjected to decision tree (DT) and K-nearest neighbor (KNN) classifiers. Proposed method has achieved accuracy, sensitivity and specificity of (i) 99.55%, 99.93% and 99.24% using contourlet transform, and (ii) 99.01%, 99.82% and 98.75% using shearlet transform. Among the two proposed techniques, contourlet transform method performed marginally better than shearlet transform technique in classifying the four classes. The proposed CWT combined with contourlet-based technique can be implemented in hospitals to speed up the diagnosis of three different cardiac abnormalities using a single ECG test. This technique, minimizes the unnecessary diagnostic tests required to confirm the diagnosis.
Author Oh, Shu Lih
Tan, Jen Hong
Chua, Kuang Chua
Fujita, Hamido
Adam, Muhammad
Lim, Choo Min
Acharya, U Rajendra
Koo, Jie Hui
Jain, Arihant
Sudarshan, Vidya K
Author_xml – sequence: 1
  givenname: U Rajendra
  surname: Acharya
  fullname: Acharya, U Rajendra
  email: aru@np.edu.sg
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 2
  givenname: Hamido
  surname: Fujita
  fullname: Fujita, Hamido
  organization: Iwate Prefectural University (IPU), Faculty of Software and Information Science, Iwate 020-0693, Japan
– sequence: 3
  givenname: Vidya K
  surname: Sudarshan
  fullname: Sudarshan, Vidya K
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 4
  givenname: Shu Lih
  surname: Oh
  fullname: Oh, Shu Lih
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 5
  givenname: Muhammad
  surname: Adam
  fullname: Adam, Muhammad
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 6
  givenname: Jen Hong
  surname: Tan
  fullname: Tan, Jen Hong
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 7
  givenname: Jie Hui
  surname: Koo
  fullname: Koo, Jie Hui
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 8
  givenname: Arihant
  surname: Jain
  fullname: Jain, Arihant
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 9
  givenname: Choo Min
  surname: Lim
  fullname: Lim, Choo Min
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 10
  givenname: Kuang Chua
  surname: Chua
  fullname: Chua, Kuang Chua
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
BookMark eNqFUctu1TAQtVCRuC38AQtLbJtg-zovFkhVVR5SJTawtqbO-NaXxC5jp9Llp_hFnIYVC1hZ1nnMzDnn7CzEgIy9lqKWQrZvj_X3ENMp1UrIrhZtLVT7jO1k36mq02I4YzsxNKLqRCNfsPOUjkIIpWS_Y7-ulhxnyDhyew8ENiP5n5B9DDw6biPFAHTiQAU48dEnhISXfD5FCzR6mLgPDsiuiksOofjEcMCU_SPyeyw67sBPCyFfkg-HFc5xoQnzEzutnPWTCUJykea0DsYJbaZtRjwQzDz5Q4DpJXvuYEr46s97wb59uPl6_am6_fLx8_XVbWW1ELlqnWtbKe-aph-htXqPzYCIDgdQuG9s1zqp3eCUdXfDHpTtCwyge9VraR3uL9ibzfeB4o-lnGOOZemyQDJy0LITQsuhsPTGshRTInTmgfxc8jJSmLUaczRbNWatxojWlGqK7N1fMuvzU-YlBD_9T_x-E2M5_9EjmWQ9Boujp5KZGaP_t8FvDD22fg
CitedBy_id crossref_primary_10_1016_j_bbe_2018_03_001
crossref_primary_10_1016_j_knosys_2019_105446
crossref_primary_10_1016_j_compbiomed_2021_104457
crossref_primary_10_1016_j_bspc_2022_103663
crossref_primary_10_3389_fphys_2020_554838
crossref_primary_10_1016_j_cmpb_2020_105400
crossref_primary_10_1016_j_asoc_2023_110482
crossref_primary_10_26599_TST_2022_9010008
crossref_primary_10_1007_s11036_020_01549_9
crossref_primary_10_1016_j_patrec_2019_02_016
crossref_primary_10_1016_j_compbiomed_2017_12_023
crossref_primary_10_1109_ACCESS_2020_3042594
crossref_primary_10_1016_j_ejmp_2020_01_007
crossref_primary_10_1088_1361_6579_ad6529
crossref_primary_10_3389_fpubh_2025_1569887
crossref_primary_10_4018_IJECME_2019070105
crossref_primary_10_1016_j_eswa_2023_122402
crossref_primary_10_1016_j_ejmp_2019_05_004
crossref_primary_10_1016_j_bbe_2018_05_005
crossref_primary_10_1007_s10489_018_1179_1
crossref_primary_10_1007_s42452_021_04185_4
crossref_primary_10_1016_j_compbiomed_2018_07_005
crossref_primary_10_3389_fcvm_2022_860032
crossref_primary_10_1016_j_compbiomed_2019_103346
crossref_primary_10_1016_j_asoc_2019_04_007
crossref_primary_10_1016_j_knosys_2018_09_001
crossref_primary_10_1007_s10489_021_02696_6
crossref_primary_10_1007_s10489_024_05364_7
crossref_primary_10_1016_j_knosys_2020_106589
crossref_primary_10_1016_j_bspc_2021_102683
crossref_primary_10_1007_s12652_020_02536_4
crossref_primary_10_1016_j_future_2018_08_008
crossref_primary_10_1016_j_artmed_2021_102179
crossref_primary_10_1016_j_jksuci_2018_01_004
crossref_primary_10_1016_j_artmed_2019_101789
crossref_primary_10_1016_j_bspc_2017_09_030
crossref_primary_10_1109_JSEN_2025_3575848
crossref_primary_10_1111_exsy_12904
crossref_primary_10_1038_s41597_019_0206_3
crossref_primary_10_1016_j_energy_2019_07_111
crossref_primary_10_1016_j_measurement_2023_113239
crossref_primary_10_1016_j_displa_2021_102070
crossref_primary_10_1049_iet_spr_2019_0458
crossref_primary_10_1109_ACCESS_2019_2955555
crossref_primary_10_1016_j_bspc_2022_104497
crossref_primary_10_1016_j_cmpb_2021_106035
crossref_primary_10_1016_j_knosys_2019_104973
crossref_primary_10_1007_s12652_021_03324_4
crossref_primary_10_1016_j_cmpb_2018_10_006
crossref_primary_10_1007_s13042_022_01718_0
crossref_primary_10_1016_j_jbi_2018_04_013
crossref_primary_10_1016_j_knosys_2020_106083
crossref_primary_10_1016_j_cmpb_2020_105770
crossref_primary_10_1016_j_ins_2021_04_036
crossref_primary_10_1016_j_bbe_2022_02_003
crossref_primary_10_1016_j_smhl_2023_100433
crossref_primary_10_1109_ACCESS_2019_2904095
crossref_primary_10_3390_s20174777
crossref_primary_10_3390_biomimetics8020235
crossref_primary_10_1515_bmt_2022_0406
crossref_primary_10_1016_j_knosys_2019_04_023
crossref_primary_10_3390_s20216318
crossref_primary_10_3390_e19090488
Cites_doi 10.1016/j.eswa.2016.06.038
10.1371/journal.pone.0093399
10.1587/elex.11.20140556
10.1016/j.knosys.2012.08.011
10.1109/TIP.2010.2041410
10.1109/78.370620
10.1016/j.compbiomed.2014.08.010
10.1016/j.knosys.2016.05.027
10.1016/j.ins.2016.10.013
10.1109/TCOM.1983.1095851
10.1016/j.cmpb.2016.03.020
10.1111/j.1475-097X.2007.00761.x
10.1111/j.1527-5299.2006.05518.x
10.1016/j.ins.2017.04.012
10.1016/j.compchemeng.2006.05.016
10.1109/TIP.2006.873450
10.1007/s10851-013-0476-x
10.1016/j.bspc.2016.08.018
10.1038/39043
10.1007/978-3-540-36841-0_880
10.1007/s10916-010-9474-3
10.1016/j.knosys.2016.01.040
10.1023/A:1010627527026
10.1016/j.bspc.2016.07.003
10.1142/S0219519416400029
10.1161/01.CIR.101.23.e215
10.1109/TITB.2011.2167756
10.1109/78.127960
10.1016/j.jbmt.2004.04.001
10.1002/cpa.3160450502
10.1007/s10916-009-9314-5
10.1142/S0129065713500093
10.1016/j.compbiomed.2013.07.015
10.1016/j.medengphy.2012.03.001
10.1016/j.eswa.2016.09.037
10.4236/jbise.2014.710081
ContentType Journal Article
Copyright 2017
Copyright Elsevier Science Ltd. Sep 15, 2017
Copyright_xml – notice: 2017
– notice: Copyright Elsevier Science Ltd. Sep 15, 2017
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2017.06.026
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 166
ExternalDocumentID 10_1016_j_knosys_2017_06_026
S0950705117303064
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c400t-6ff6611b558da6c43e59eeefe9a2e35c76f14f9f2cfb93a2c89eeaa482841cfe3
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407184900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 22:22:22 EST 2025
Sat Nov 29 06:41:31 EST 2025
Tue Nov 18 22:45:32 EST 2025
Fri Feb 23 02:28:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Myocardial infarction
Contourlet and shearlet transforms
Congestive heart failure
Coronary artery disease
Electrocardiogram
Continuous wavelet transform
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-6ff6611b558da6c43e59eeefe9a2e35c76f14f9f2cfb93a2c89eeaa482841cfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1941700419
PQPubID 2035257
PageCount 11
ParticipantIDs proquest_journals_1941700419
crossref_primary_10_1016_j_knosys_2017_06_026
crossref_citationtrail_10_1016_j_knosys_2017_06_026
elsevier_sciencedirect_doi_10_1016_j_knosys_2017_06_026
PublicationCentury 2000
PublicationDate 2017-09-15
PublicationDateYYYYMMDD 2017-09-15
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2017
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Sadowsky (bib0068) 1996; 17
Babaoglu, Findik, Ulker (bib0015) 2010; 37
Kennedy, Eberhart (bib0038) 1995; 4
Banerjee, Mitra (bib0019) 2012; 1
Larose (bib0043) 2004
Kumar, Pachori, Acharya (bib0040) 2017; 31
Masetic, Subasi (bib0056) 2013; 2
Acharya, Yanti, Zheng, Krishnan, Jenh, Martis, Lim (bib0007) 2013; 23
Bamberger, Smith (bib0016) 1992; 40
Liao, Chiu, Yeh (bib0048) 2015; Vol I
Pan, Tompkins (bib0062) 2006
Safdarian, Dabanloo, Attarodi (bib0069) 2014; 7
Chang, Hsieh, Lin, Chou, Liu (bib0022) 2009
Orhan (bib0061) 2013; 43
Amorim, Moraes, Fazanaro, Silva, Pedrini (bib0010) 2017; 67
Arif, Malagore, Afsar (bib0011) 2012; 36
Acharya, Sudarshan, Koh, Martis, Tan, Oh, Adam, Hagiwara, Mookiah, Chua, Chua, Tan (bib0005) 2017; 31
Kamath (bib0034) 2015; 10
Jiang, Xiong, Wu (bib0032) 2005; 25
Sharma, Tripathy, Dandapat (bib0071) 2015; 62
Lee, Noh, Ryu (bib0045) 2008
Boashash, Ouelha (bib0020) 2016; 106
Luo, Yuan, Liu (bib0053) 2007; 31
Grech (bib0030) 2011
Masetic, Subasi (bib0055) 2016; 130
Kamath (bib0033) 2012; 34
Jayachandran, Joseph, Acharya (bib0031) 2010; 34
Acharya, Fujita, Lih, Hagiwara, Tan, Adam (bib0006) 2017; 405
Do, Vetterli (bib0024) 2003
Acharya, Kannathal, Hua, Yi (bib0002) 2005; 9
Burt, Adelson (bib0021) 1983; 31
Banerjee, Mitra (bib0018) 2011
Mehra, Ventura (bib0057) 2006; 12
Gertsch (bib0026) 2009
Lee, Noh, Ryu (bib0046) 2007
Ashley, Niebauer (bib0013) 2004
Schwartz, Silva, Davis, Pedrini (bib0070) 2011
Giri, Acharya, Martis, Sree, Lim, Ahamed, Suri (bib0027) 2013; 37
Sun, Lu, Yang, Li (bib0073) 2012; 59
Omar, Mohamed (bib0060) 2011
Po, Do (bib0064) 2006; 15
Phoong, Kim, Vaidyanathan, Ansari (bib0063) 1995; 43
Arif, Malagore, Afsar (bib0012) 2010
Oliver, Rajendra, Krishnan, Lim (bib0059) 2004; 3
Liu, Liu, Wang, Huang, Li, Zheng, Luo, Zhou (bib0051) 2015; 61
Cohen, Daubechies, Feauveau (bib0023) 1992; 45
Kumar, Pachori, Acharya (bib0041) 2016; 63
Price (bib0066) 2010; 3
Sood, Kumar, Pachori, Acharya (bib0072) 2016; 16
Liu, Wang, Wang, Zhou, Wang, Jiang (bib0050) 2014; 9
Kim, Jin, Park, Choi (bib0039) 2007; 14
Babaoglu, Findik, Bayrak (bib0014) 2010; 37
Wang, Liu, Yang (bib0075) 2014; 49
Poon, Merrill (bib0065) 1997; 389
Kaveh, Chung (bib0036) 2013
Kamath (bib0035) 2015; 6
Yang, Chuang, Li (bib0076) 2008
Larose (bib0044) 2004
Lehtinen, Holst, Turjanmaa, Edenbrandt, Pahlm, Malmivuo (bib0047) February 1998
Acharya, Fujita, Sudarshan, Oh, Adam, Koh, Tan, Ghista, Martis, Chua, Poo, Tan (bib0001) 2016; 99
Faust, Acharya, Tamura (bib0025) 2012; 5
Mohamad, Omatu, Deris, Yoshioka (bib0058) 2011; 15
Saarenmaa, Salminen, Geiger, Heikkinen, Hyvarinen, Isola, Kataja, Kokko, Kokko, Kumpulainen, Karkkainen, Pakkanen, Peltonen, Piironen, Salo, Ta;viala, Haka (bib0067) 2001; 67
Zhang, Yang, Cheng, Wetering, Ikuta, Nishio (bib0078) 2014; 11
Aggarwal, Agrawal (bib0008) 2012; 3
Martis, Acharya, Lim (bib0054) 2012; 8
Goldberger (bib0029) 2006
Lim (bib0049) 2010; 19
Yin, Chen, Ji (bib0077) 2011
Al-Kindi, Ali, Farghaly (bib0009) 2011
Lahiri, Kumar, Mishra, Sarkar, Roy (bib0042) 2009; 68
Banerjee, Mitra (bib0017) 2010
Acharya, Fujita, Adam, Lih, Sudarshan, Hong, Koh, Hagiwara, Chua, Poo, San (bib0004) 2017; 377
Kennedy, Eberhart (bib0037) 1997; 5
Acharya, Fujita, Sudarshan, Oh, Adam, Koh, Tan, Chua, Chua, Tan (bib0003) 2016
Goldberger, Amaral, Glass, Hausdorff, PCh, Mark, Mietus, Moody, Peng, Stanley (bib0028) 2000; 101
Lu, Ong, Chia (bib0052) 2000; 27
Tragardh, Claesson, Wagner, Zhou, Pahlm (bib0074) 2007; 27
Grech (10.1016/j.knosys.2017.06.026_bib0030) 2011
Cohen (10.1016/j.knosys.2017.06.026_bib0023) 1992; 45
Arif (10.1016/j.knosys.2017.06.026_bib0012) 2010
Babaoglu (10.1016/j.knosys.2017.06.026_bib0015) 2010; 37
Kennedy (10.1016/j.knosys.2017.06.026_bib0037) 1997; 5
Faust (10.1016/j.knosys.2017.06.026_bib0025) 2012; 5
Larose (10.1016/j.knosys.2017.06.026_bib0043) 2004
Bamberger (10.1016/j.knosys.2017.06.026_bib0016) 1992; 40
Schwartz (10.1016/j.knosys.2017.06.026_bib0070) 2011
Kumar (10.1016/j.knosys.2017.06.026_bib0041) 2016; 63
Saarenmaa (10.1016/j.knosys.2017.06.026_bib0067) 2001; 67
Goldberger (10.1016/j.knosys.2017.06.026_bib0028) 2000; 101
Do (10.1016/j.knosys.2017.06.026_bib0024) 2003
Banerjee (10.1016/j.knosys.2017.06.026_bib0017) 2010
Martis (10.1016/j.knosys.2017.06.026_bib0054) 2012; 8
Liao (10.1016/j.knosys.2017.06.026_bib0048) 2015; Vol I
Ashley (10.1016/j.knosys.2017.06.026_bib0013) 2004
Burt (10.1016/j.knosys.2017.06.026_bib0021) 1983; 31
Phoong (10.1016/j.knosys.2017.06.026_bib0063) 1995; 43
Lahiri (10.1016/j.knosys.2017.06.026_bib0042) 2009; 68
Amorim (10.1016/j.knosys.2017.06.026_bib0010) 2017; 67
Kaveh (10.1016/j.knosys.2017.06.026_bib0036) 2013
Lee (10.1016/j.knosys.2017.06.026_bib0046) 2007
Babaoglu (10.1016/j.knosys.2017.06.026_bib0014) 2010; 37
Sadowsky (10.1016/j.knosys.2017.06.026_bib0068) 1996; 17
Lu (10.1016/j.knosys.2017.06.026_bib0052) 2000; 27
Kim (10.1016/j.knosys.2017.06.026_bib0039) 2007; 14
Orhan (10.1016/j.knosys.2017.06.026_bib0061) 2013; 43
Mohamad (10.1016/j.knosys.2017.06.026_bib0058) 2011; 15
Safdarian (10.1016/j.knosys.2017.06.026_bib0069) 2014; 7
Masetic (10.1016/j.knosys.2017.06.026_bib0055) 2016; 130
Zhang (10.1016/j.knosys.2017.06.026_bib0078) 2014; 11
Po (10.1016/j.knosys.2017.06.026_bib0064) 2006; 15
Jayachandran (10.1016/j.knosys.2017.06.026_bib0031) 2010; 34
Masetic (10.1016/j.knosys.2017.06.026_bib0056) 2013; 2
Sood (10.1016/j.knosys.2017.06.026_bib0072) 2016; 16
Banerjee (10.1016/j.knosys.2017.06.026_bib0019) 2012; 1
Aggarwal (10.1016/j.knosys.2017.06.026_bib0008) 2012; 3
Omar (10.1016/j.knosys.2017.06.026_bib0060) 2011
Acharya (10.1016/j.knosys.2017.06.026_bib0007) 2013; 23
Price (10.1016/j.knosys.2017.06.026_bib0066) 2010; 3
Acharya (10.1016/j.knosys.2017.06.026_bib0001) 2016; 99
Kumar (10.1016/j.knosys.2017.06.026_bib0040) 2017; 31
Boashash (10.1016/j.knosys.2017.06.026_bib0020) 2016; 106
Sun (10.1016/j.knosys.2017.06.026_bib0073) 2012; 59
Tragardh (10.1016/j.knosys.2017.06.026_bib0074) 2007; 27
Lee (10.1016/j.knosys.2017.06.026_bib0045) 2008
Giri (10.1016/j.knosys.2017.06.026_bib0027) 2013; 37
Poon (10.1016/j.knosys.2017.06.026_bib0065) 1997; 389
Chang (10.1016/j.knosys.2017.06.026_bib0022) 2009
Al-Kindi (10.1016/j.knosys.2017.06.026_bib0009) 2011
Gertsch (10.1016/j.knosys.2017.06.026_bib0026) 2009
Yin (10.1016/j.knosys.2017.06.026_bib0077) 2011
Arif (10.1016/j.knosys.2017.06.026_bib0011) 2012; 36
Banerjee (10.1016/j.knosys.2017.06.026_bib0018) 2011
Yang (10.1016/j.knosys.2017.06.026_bib0076) 2008
Larose (10.1016/j.knosys.2017.06.026_bib0044) 2004
Sharma (10.1016/j.knosys.2017.06.026_bib0071) 2015; 62
Kamath (10.1016/j.knosys.2017.06.026_bib0033) 2012; 34
Acharya (10.1016/j.knosys.2017.06.026_bib0005) 2017; 31
Goldberger (10.1016/j.knosys.2017.06.026_bib0029) 2006
Kamath (10.1016/j.knosys.2017.06.026_bib0035) 2015; 6
Liu (10.1016/j.knosys.2017.06.026_bib0050) 2014; 9
Liu (10.1016/j.knosys.2017.06.026_bib0051) 2015; 61
Jiang (10.1016/j.knosys.2017.06.026_bib0032) 2005; 25
Acharya (10.1016/j.knosys.2017.06.026_bib0003) 2016
Acharya (10.1016/j.knosys.2017.06.026_bib0004) 2017; 377
Acharya (10.1016/j.knosys.2017.06.026_bib0006) 2017; 405
Luo (10.1016/j.knosys.2017.06.026_bib0053) 2007; 31
Kennedy (10.1016/j.knosys.2017.06.026_bib0038) 1995; 4
Lehtinen (10.1016/j.knosys.2017.06.026_bib0047) 1998
Kamath (10.1016/j.knosys.2017.06.026_bib0034) 2015; 10
Acharya (10.1016/j.knosys.2017.06.026_bib0002) 2005; 9
Mehra (10.1016/j.knosys.2017.06.026_bib0057) 2006; 12
Lim (10.1016/j.knosys.2017.06.026_bib0049) 2010; 19
Pan (10.1016/j.knosys.2017.06.026_bib0062) 2006
Oliver (10.1016/j.knosys.2017.06.026_bib0059) 2004; 3
Wang (10.1016/j.knosys.2017.06.026_bib0075) 2014; 49
References_xml – year: 2010
  ident: bib0017
  article-title: ECG feature extraction and classification of anteroseptal myocardial infarction and normal subjects using discrete wavelet transform
  publication-title: International Conference on Systems in medicine and biology
– year: 2008
  ident: bib0045
  article-title: A data mining approach for coronary heart disease prediction using HRV features and carotid arterial wall thickness
  publication-title: International Conference on Biomedical Engineering and Informatics
– start-page: 218
  year: 2007
  end-page: 228
  ident: bib0046
  article-title: Mining biosignal data: coronary artery disease diagnosis using linear and nonlinear features of HRV
– start-page: 108
  year: 2004
  end-page: 126
  ident: bib0044
  article-title: Discovering knowledge in data: An Introduction to data mining
  publication-title: Chapter 6: Decision Trees
– volume: 31
  start-page: 301
  year: 2017
  end-page: 308
  ident: bib0040
  article-title: Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals
  publication-title: Biomed. Signal Process. Control
– volume: 16
  year: 2016
  ident: bib0072
  article-title: Application of empirical mode decomposition–based features for analysis of normal and CAD heart rate signals
  publication-title: J. Mech. Med. Biol.
– volume: 43
  start-page: 649
  year: 1995
  end-page: 665
  ident: bib0063
  article-title: A new class of two-channel biorthogonal filter banks and wavelet bases
  publication-title: IEEE Trans. Signal Process.
– volume: 43
  start-page: 1556
  year: 2013
  end-page: 1562
  ident: bib0061
  article-title: Real-time CHF detection from ECG signals using a novel discretization method
  publication-title: Comput. Biol. Med.
– year: 2011
  ident: bib0060
  article-title: Application of the empirical mode decomposition to ECG and HRV signals for congestive heart failure classification
  publication-title: Conference: Biomedical Engineering (MECBME), 1st Middle East Conference on
– volume: 34
  start-page: 985
  year: 2010
  end-page: 992
  ident: bib0031
  article-title: Analysis of myocardial infarction using discrete wavelet transform
  publication-title: J Med. Syst.
– volume: 49
  start-page: 434
  year: 2014
  end-page: 453
  ident: bib0075
  article-title: An efficient remote sensing image denoising method in extended discrete shearlet domain
  publication-title: J. Math. Imaging Vision
– year: 2011
  ident: bib0030
  article-title: ABC of Interventional Cardiology
– volume: 68
  start-page: 866
  year: 2009
  end-page: 870
  ident: bib0042
  article-title: Analysis of ECG signal by chaos principle to help automatic diagnosis of myocardial infarction
  publication-title: J. Sci. Ind. Res.
– year: 2013
  ident: bib0036
  article-title: Automated classification of coronary atherosclerosis using single lead ECG
  publication-title: IEEE Conference on Wireless Sensors
– volume: 389
  start-page: 492
  year: 1997
  end-page: 495
  ident: bib0065
  article-title: Decrease of cardiac chaos in congestive heart failure
  publication-title: Nature
– year: 2011
  ident: bib0009
  article-title: Towards real-time detection of myocardial infarction by digital analysis of electrocardiograms
  publication-title: 1st Middle East Conference on Biomedical Engineering
– volume: 10
  start-page: 145
  year: 2015
  end-page: 159
  ident: bib0034
  article-title: A new approach to detect congestive heart failure using detrended fluctuation analysis of electrocardiogram signals
  publication-title: J. Eng. Sci. Technol.
– volume: 61
  start-page: 178
  year: 2015
  end-page: 184
  ident: bib0051
  article-title: A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection
  publication-title: Comput. Biol. Med.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib0035
  article-title: Entropy measures of irregularity and complexity for surface electrocardiogram time series in patients with congestive heart failure
  publication-title: J. Adv. Comput. Res.
– volume: 67
  start-page: 140
  year: 2017
  end-page: 147
  ident: bib0010
  article-title: Electroencephalogram signal classification based on shearlet and contourlet transforms
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 818
  year: 2014
  end-page: 824
  ident: bib0069
  article-title: A new pattern recognition method for detection and localization of myocardial infarction using T-wave integral and total integral as extracted features from one cycle of ECG signal
  publication-title: J. Biomed. Sci. Eng.
– year: 2010
  ident: bib0012
  article-title: Automatic detection and localization of myocardial infarction using back propagation neural networks
  publication-title: 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE)
– volume: 37
  start-page: 274
  year: 2013
  end-page: 282
  ident: bib0027
  article-title: Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform
  publication-title: Knowledge-Based Syst.
– volume: 9
  start-page: 134
  year: 2005
  end-page: 141
  ident: bib0002
  article-title: Study of heart rate variability signals at sitting and lying postures
  publication-title: J. Bodyw. Mov. Ther.
– year: 2004
  ident: bib0013
  article-title: Cardiology explained
  publication-title: Remedica Explained Series
– volume: 67
  start-page: 117
  year: 2001
  end-page: 123
  ident: bib0067
  article-title: The effect of age and density of the breast on the sensitivity of breast cancer diagnostic by mammography and ultrasonography
  publication-title: Breast Cancer Res. Treat.
– start-page: 90
  year: 2004
  end-page: 106
  ident: bib0043
  article-title: 'Discovering Knowledge in Data: An Introduction to Data Mining
– volume: 9
  start-page: e93399
  year: 2014
  ident: bib0050
  article-title: A new approach to detect congestive heart failure using short-term heart rate variability measures
  publication-title: PLoS One
– volume: 34
  start-page: 1503
  year: 2012
  end-page: 1509
  ident: bib0033
  article-title: A new approach to detect congestive heart failure using sequential spectrum of electrocardiogram signals
  publication-title: Med. Eng. Phys.
– volume: 27
  start-page: 387
  year: 2000
  end-page: 390
  ident: bib0052
  article-title: An automated ECG classification system based on a neuro-fuzzy system
  publication-title: IEEE, Comput. Cardiol.
– volume: 31
  start-page: 532
  year: 1983
  end-page: 540
  ident: bib0021
  article-title: The Laplacian pyramid as a compact image code
  publication-title: IEEE Trans. Commun.
– volume: 5
  start-page: 15
  year: 2012
  end-page: 28
  ident: bib0025
  article-title: Formal design methods for reliable computer-aided diagnosis: a review
  publication-title: IEEE Rev. Biomed. Eng
– volume: 59
  year: 2012
  ident: bib0073
  article-title: ECG analysis using multiple instance learning for myocardial infarction detection
  publication-title: Transaction on Biomedical Engineering
– year: February 1998
  ident: bib0047
  article-title: Artificial neural network for exercise electrocardiographic detection of coronary artery disease
  publication-title: 2nd International Conference on Bioelectromagnetism
– volume: 8
  start-page: 437
  year: 2012
  end-page: 448
  ident: bib0054
  article-title: ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform
  publication-title: Knowledge Based Syst.
– year: 2006
  ident: bib0062
  article-title: A Real Time QRS Detection Algorithm
– volume: 23
  year: 2013
  ident: bib0007
  article-title: Automated diagnosis of epilepsy using CWT, HOS and texture parameters
  publication-title: Int. J. Neural Syst.
– start-page: 107
  year: 2008
  end-page: 112
  ident: bib0076
  article-title: Chaotic maps in binary particle swarm optimization for feature selection
  publication-title: IEEE Conference on Soft Computing in Industrial Applications
– volume: 45
  start-page: 485
  year: 1992
  end-page: 560
  ident: bib0023
  article-title: Biorthogonal bases of compactly supported wavelets
  publication-title: Commun. Pure Appl. Math.
– volume: 63
  start-page: 165
  year: 2016
  end-page: 172
  ident: bib0041
  article-title: An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals
  publication-title: Expert Syst. Appl.
– volume: 62
  year: 2015
  ident: bib0071
  article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction
  publication-title: Transaction on Biomedical Engineering
– volume: 12
  start-page: 277
  year: 2006
  end-page: 283
  ident: bib0057
  article-title: Difficult cases in heart failure: ECG changes in response to diuretics in an ambulatory patient with congestive heart failure
  publication-title: Congestive Heart Failure
– volume: 106
  start-page: 38
  year: 2016
  end-page: 50
  ident: bib0020
  article-title: Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study
  publication-title: Knowledge Based Syst.
– volume: 3
  year: 2010
  ident: bib0066
  article-title: How to read an electrocardiogram (ECG). Part one: Basic principles of the ECG. The normal ECG
  publication-title: Southern Sudan Med. J.
– volume: 37
  start-page: 2182
  year: 2010
  end-page: 2185
  ident: bib0014
  article-title: Effects of principle component analysis on assessment of coronary artery diseases using support vector machine
  publication-title: Expert Systems with Applications
– volume: 1
  start-page: 88
  year: 2012
  end-page: 92
  ident: bib0019
  article-title: Cross wavelet transform based analysis of electrocardiogram signals
  publication-title: Int. J. Electr. Electron. Comput. Eng.
– volume: 27
  start-page: 368
  year: 2007
  end-page: 374
  ident: bib0074
  article-title: Detection of acute myocardial infarction using 12-lead ECG plus inverted leads versus the 16-lead ECG (with additional posterior and right-sided chest electrodes)
  publication-title: Clin. Physiol. Funct. Imaging
– volume: 11
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib0078
  article-title: A novel optimization design approach for contourlet directional filter banks
  publication-title: IEICE Electron. Express
– year: 2016
  ident: bib0003
  article-title: Application of empirical mode decomposition (EMD) for automated identification of congestive heart failure using heart rate signals
  publication-title: Neural Comput. Appl.
– volume: 31
  start-page: 31
  year: 2017
  end-page: 43
  ident: bib0005
  article-title: Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals
  publication-title: Biomed. Signal Process. Control
– volume: 5
  start-page: 4104
  year: 1997
  end-page: 4108
  ident: bib0037
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: Proceedings of the IEEE International Conference on Systems
– volume: 36
  start-page: 279
  year: 2012
  end-page: 289
  ident: bib0011
  article-title: Detection and localization of myocardial infarction using k-nearest neighbor classifier
  publication-title: J. Med. Syst.
– volume: 130
  start-page: 54
  year: 2016
  end-page: 64
  ident: bib0055
  article-title: Congestive heart failure detection using random forest classifier
  publication-title: Comput. Methods. Programs. Biomed.
– volume: 377
  start-page: 17
  year: 2017
  end-page: 29
  ident: bib0004
  article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study
  publication-title: Inf. Sci.
– volume: 31
  start-page: 153
  year: 2007
  end-page: 162
  ident: bib0053
  article-title: An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints
  publication-title: Comput. Chem. Eng.
– volume: 405
  start-page: 81
  year: 2017
  end-page: 90
  ident: bib0006
  article-title: Automated Detection of Arrhythmias Using Different Intervals of Tachycardia ECG Segments with Convolutional Neural Network
  publication-title: Inf. Sci.
– volume: 14
  start-page: 3480
  year: 2007
  end-page: 3483
  ident: bib0039
  article-title: A study on development pf multi-parameter measure of heart rate variability diagnosing cardiovascular disease
  publication-title: IFMBE Proc.
– volume: 25
  start-page: 37
  year: 2005
  end-page: 40
  ident: bib0032
  article-title: Improved PSO algorithm and its application in short-term generation scheduling
  publication-title: Dianli Zidonghua Shebei/Electric power automation equipment
– volume: 2
  year: 2013
  ident: bib0056
  article-title: Detection of congestive heart failures using C4.5 decision tree
  publication-title: Southeast Eur. J. Soft Comput.
– volume: 15
  start-page: 1610
  year: 2006
  end-page: 1620
  ident: bib0064
  article-title: Directional multiscale modeling of images using the contourlet transform
  publication-title: IEEE Trans. Image Process.
– start-page: 1033
  year: 2011
  end-page: 1036
  ident: bib0070
  article-title: A novel feature descriptor based on the shearlet transform
  publication-title: 18th IEEE International Conference On Image Processing
– volume: 3
  start-page: 1
  year: 2004
  end-page: 11
  ident: bib0059
  article-title: Analysis of cardiac signals using spatial filling index and time-frequency domain
  publication-title: Biomed. Eng. Online
– year: 2011
  ident: bib0077
  article-title: A novel method of diagnosing coronary heart disease by analyzing ECG signals combined with motion activity
  publication-title: IEEE International workshop on machine learning for signal processing
– volume: 99
  start-page: 146
  year: 2016
  end-page: 156
  ident: bib0001
  article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads
  publication-title: Knowledge Based Syst.
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: bib0028
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals
  publication-title: Circulation.
– year: 2006
  ident: bib0029
  article-title: Clinical Electrocardiography: A Simplified Approach
– volume: 37
  start-page: 3177
  year: 2010
  end-page: 3183
  ident: bib0015
  article-title: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine
  publication-title: Expert Systems with Applications
– volume: 19
  start-page: 1166
  year: 2010
  end-page: 1180
  ident: bib0049
  article-title: The discrete shearlet transform: A new directional transform and compactly supported shearlet frames
  publication-title: IEEE Trans. Image Process.
– year: 2003
  ident: bib0024
  article-title: In Beyond Wavelets, ed.
– volume: Vol I
  year: 2015
  ident: bib0048
  article-title: A novel approach for classification of congestive heart failure using relatively short-term ECG waveforms and SVM classifier
  publication-title: Proceedings of the International MultiConference of Engineers and Computer Scientists IMECS
– volume: 3
  start-page: 146
  year: 2012
  end-page: 153
  ident: bib0008
  article-title: First and second order statistics features for classification of magnetic resonance brain images
  publication-title: J. Signal Inf. Process.
– year: 2011
  ident: bib0018
  article-title: A classification approach for myocardial infarction using voltage features extracted from four standard ECG Leads
  publication-title: International Conference on Recent Trends in Information Systems
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0038
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE International Conference on Neural Networks
– year: 2009
  ident: bib0022
  article-title: A hybrid system with hidden markov models and Gaussian mixture models for myocardial infarction classification with 12-lead ECGs
  publication-title: 11th IEEE Conference on Hugh Performance Computing and Communications
– volume: 40
  start-page: 882
  year: 1992
  end-page: 893
  ident: bib0016
  article-title: A filter bank for the directional decomposition of images: theory and design
  publication-title: IEEE Trans. Signal Process.
– volume: 15
  start-page: 813
  year: 2011
  end-page: 822
  ident: bib0058
  article-title: A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– start-page: 17
  year: 2009
  end-page: 36
  ident: bib0026
  article-title: The normal electrocardiogram and its (normal) variants
  publication-title: The ECG Manual
– volume: 17
  year: 1996
  ident: bib0068
  article-title: Investigation of signal characteristics using continuous wavelet transform
  publication-title: Johns Hopkins Apl. Tech. Dig.
– year: 2011
  ident: 10.1016/j.knosys.2017.06.026_bib0018
  article-title: A classification approach for myocardial infarction using voltage features extracted from four standard ECG Leads
– volume: 63
  start-page: 165
  year: 2016
  ident: 10.1016/j.knosys.2017.06.026_bib0041
  article-title: An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.06.038
– volume: 9
  start-page: e93399
  year: 2014
  ident: 10.1016/j.knosys.2017.06.026_bib0050
  article-title: A new approach to detect congestive heart failure using short-term heart rate variability measures
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0093399
– start-page: 1033
  year: 2011
  ident: 10.1016/j.knosys.2017.06.026_bib0070
  article-title: A novel feature descriptor based on the shearlet transform
– volume: 11
  start-page: 1
  year: 2014
  ident: 10.1016/j.knosys.2017.06.026_bib0078
  article-title: A novel optimization design approach for contourlet directional filter banks
  publication-title: IEICE Electron. Express
  doi: 10.1587/elex.11.20140556
– year: 2008
  ident: 10.1016/j.knosys.2017.06.026_bib0045
  article-title: A data mining approach for coronary heart disease prediction using HRV features and carotid arterial wall thickness
– volume: 5
  start-page: 15
  year: 2012
  ident: 10.1016/j.knosys.2017.06.026_bib0025
  article-title: Formal design methods for reliable computer-aided diagnosis: a review
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.knosys.2017.06.026_bib0035
  article-title: Entropy measures of irregularity and complexity for surface electrocardiogram time series in patients with congestive heart failure
  publication-title: J. Adv. Comput. Res.
– volume: 25
  start-page: 37
  year: 2005
  ident: 10.1016/j.knosys.2017.06.026_bib0032
  article-title: Improved PSO algorithm and its application in short-term generation scheduling
  publication-title: Dianli Zidonghua Shebei/Electric power automation equipment
– volume: Vol I
  year: 2015
  ident: 10.1016/j.knosys.2017.06.026_bib0048
  article-title: A novel approach for classification of congestive heart failure using relatively short-term ECG waveforms and SVM classifier
– volume: 37
  start-page: 274
  year: 2013
  ident: 10.1016/j.knosys.2017.06.026_bib0027
  article-title: Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2012.08.011
– volume: 19
  start-page: 1166
  year: 2010
  ident: 10.1016/j.knosys.2017.06.026_bib0049
  article-title: The discrete shearlet transform: A new directional transform and compactly supported shearlet frames
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2041410
– volume: 43
  start-page: 649
  year: 1995
  ident: 10.1016/j.knosys.2017.06.026_bib0063
  article-title: A new class of two-channel biorthogonal filter banks and wavelet bases
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.370620
– volume: 68
  start-page: 866
  year: 2009
  ident: 10.1016/j.knosys.2017.06.026_bib0042
  article-title: Analysis of ECG signal by chaos principle to help automatic diagnosis of myocardial infarction
  publication-title: J. Sci. Ind. Res.
– year: 1998
  ident: 10.1016/j.knosys.2017.06.026_bib0047
  article-title: Artificial neural network for exercise electrocardiographic detection of coronary artery disease
– volume: 61
  start-page: 178
  year: 2015
  ident: 10.1016/j.knosys.2017.06.026_bib0051
  article-title: A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.08.010
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.knosys.2017.06.026_bib0038
  article-title: Particle swarm optimization
– volume: 106
  start-page: 38
  year: 2016
  ident: 10.1016/j.knosys.2017.06.026_bib0020
  article-title: Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study
  publication-title: Knowledge Based Syst.
  doi: 10.1016/j.knosys.2016.05.027
– start-page: 17
  year: 2009
  ident: 10.1016/j.knosys.2017.06.026_bib0026
  article-title: The normal electrocardiogram and its (normal) variants
  publication-title: The ECG Manual
– volume: 377
  start-page: 17
  year: 2017
  ident: 10.1016/j.knosys.2017.06.026_bib0004
  article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.10.013
– volume: 31
  start-page: 532
  year: 1983
  ident: 10.1016/j.knosys.2017.06.026_bib0021
  article-title: The Laplacian pyramid as a compact image code
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOM.1983.1095851
– volume: 130
  start-page: 54
  year: 2016
  ident: 10.1016/j.knosys.2017.06.026_bib0055
  article-title: Congestive heart failure detection using random forest classifier
  publication-title: Comput. Methods. Programs. Biomed.
  doi: 10.1016/j.cmpb.2016.03.020
– volume: 59
  year: 2012
  ident: 10.1016/j.knosys.2017.06.026_bib0073
  article-title: ECG analysis using multiple instance learning for myocardial infarction detection
– year: 2006
  ident: 10.1016/j.knosys.2017.06.026_bib0029
– volume: 27
  start-page: 368
  year: 2007
  ident: 10.1016/j.knosys.2017.06.026_bib0074
  article-title: Detection of acute myocardial infarction using 12-lead ECG plus inverted leads versus the 16-lead ECG (with additional posterior and right-sided chest electrodes)
  publication-title: Clin. Physiol. Funct. Imaging
  doi: 10.1111/j.1475-097X.2007.00761.x
– year: 2011
  ident: 10.1016/j.knosys.2017.06.026_bib0009
  article-title: Towards real-time detection of myocardial infarction by digital analysis of electrocardiograms
– volume: 37
  start-page: 3177
  year: 2010
  ident: 10.1016/j.knosys.2017.06.026_bib0015
  article-title: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine
– year: 2016
  ident: 10.1016/j.knosys.2017.06.026_bib0003
  article-title: Application of empirical mode decomposition (EMD) for automated identification of congestive heart failure using heart rate signals
  publication-title: Neural Comput. Appl.
– volume: 10
  start-page: 145
  year: 2015
  ident: 10.1016/j.knosys.2017.06.026_bib0034
  article-title: A new approach to detect congestive heart failure using detrended fluctuation analysis of electrocardiogram signals
  publication-title: J. Eng. Sci. Technol.
– volume: 12
  start-page: 277
  year: 2006
  ident: 10.1016/j.knosys.2017.06.026_bib0057
  article-title: Difficult cases in heart failure: ECG changes in response to diuretics in an ambulatory patient with congestive heart failure
  publication-title: Congestive Heart Failure
  doi: 10.1111/j.1527-5299.2006.05518.x
– volume: 37
  start-page: 2182
  year: 2010
  ident: 10.1016/j.knosys.2017.06.026_bib0014
  article-title: Effects of principle component analysis on assessment of coronary artery diseases using support vector machine
– volume: 405
  start-page: 81
  year: 2017
  ident: 10.1016/j.knosys.2017.06.026_bib0006
  article-title: Automated Detection of Arrhythmias Using Different Intervals of Tachycardia ECG Segments with Convolutional Neural Network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.04.012
– volume: 8
  start-page: 437
  year: 2012
  ident: 10.1016/j.knosys.2017.06.026_bib0054
  article-title: ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform
  publication-title: Knowledge Based Syst.
– year: 2010
  ident: 10.1016/j.knosys.2017.06.026_bib0012
  article-title: Automatic detection and localization of myocardial infarction using back propagation neural networks
– volume: 31
  start-page: 153
  year: 2007
  ident: 10.1016/j.knosys.2017.06.026_bib0053
  article-title: An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2006.05.016
– volume: 15
  start-page: 1610
  year: 2006
  ident: 10.1016/j.knosys.2017.06.026_bib0064
  article-title: Directional multiscale modeling of images using the contourlet transform
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.873450
– volume: 49
  start-page: 434
  year: 2014
  ident: 10.1016/j.knosys.2017.06.026_bib0075
  article-title: An efficient remote sensing image denoising method in extended discrete shearlet domain
  publication-title: J. Math. Imaging Vision
  doi: 10.1007/s10851-013-0476-x
– volume: 62
  year: 2015
  ident: 10.1016/j.knosys.2017.06.026_bib0071
  article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction
– year: 2010
  ident: 10.1016/j.knosys.2017.06.026_bib0017
  article-title: ECG feature extraction and classification of anteroseptal myocardial infarction and normal subjects using discrete wavelet transform
– volume: 31
  start-page: 301
  year: 2017
  ident: 10.1016/j.knosys.2017.06.026_bib0040
  article-title: Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.08.018
– year: 2011
  ident: 10.1016/j.knosys.2017.06.026_bib0060
  article-title: Application of the empirical mode decomposition to ECG and HRV signals for congestive heart failure classification
– year: 2011
  ident: 10.1016/j.knosys.2017.06.026_bib0077
  article-title: A novel method of diagnosing coronary heart disease by analyzing ECG signals combined with motion activity
– volume: 389
  start-page: 492
  year: 1997
  ident: 10.1016/j.knosys.2017.06.026_bib0065
  article-title: Decrease of cardiac chaos in congestive heart failure
  publication-title: Nature
  doi: 10.1038/39043
– start-page: 107
  year: 2008
  ident: 10.1016/j.knosys.2017.06.026_bib0076
  article-title: Chaotic maps in binary particle swarm optimization for feature selection
– year: 2011
  ident: 10.1016/j.knosys.2017.06.026_bib0030
– year: 2013
  ident: 10.1016/j.knosys.2017.06.026_bib0036
  article-title: Automated classification of coronary atherosclerosis using single lead ECG
– volume: 1
  start-page: 88
  year: 2012
  ident: 10.1016/j.knosys.2017.06.026_bib0019
  article-title: Cross wavelet transform based analysis of electrocardiogram signals
  publication-title: Int. J. Electr. Electron. Comput. Eng.
– volume: 14
  start-page: 3480
  year: 2007
  ident: 10.1016/j.knosys.2017.06.026_bib0039
  article-title: A study on development pf multi-parameter measure of heart rate variability diagnosing cardiovascular disease
  publication-title: IFMBE Proc.
  doi: 10.1007/978-3-540-36841-0_880
– volume: 3
  start-page: 1
  issue: 30
  year: 2004
  ident: 10.1016/j.knosys.2017.06.026_bib0059
  article-title: Analysis of cardiac signals using spatial filling index and time-frequency domain
  publication-title: Biomed. Eng. Online
– start-page: 90
  year: 2004
  ident: 10.1016/j.knosys.2017.06.026_bib0043
– volume: 2
  year: 2013
  ident: 10.1016/j.knosys.2017.06.026_bib0056
  article-title: Detection of congestive heart failures using C4.5 decision tree
  publication-title: Southeast Eur. J. Soft Comput.
– volume: 36
  start-page: 279
  year: 2012
  ident: 10.1016/j.knosys.2017.06.026_bib0011
  article-title: Detection and localization of myocardial infarction using k-nearest neighbor classifier
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-010-9474-3
– start-page: 108
  year: 2004
  ident: 10.1016/j.knosys.2017.06.026_bib0044
  article-title: Discovering knowledge in data: An Introduction to data mining
– volume: 99
  start-page: 146
  year: 2016
  ident: 10.1016/j.knosys.2017.06.026_bib0001
  article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads
  publication-title: Knowledge Based Syst.
  doi: 10.1016/j.knosys.2016.01.040
– volume: 67
  start-page: 117
  year: 2001
  ident: 10.1016/j.knosys.2017.06.026_bib0067
  article-title: The effect of age and density of the breast on the sensitivity of breast cancer diagnostic by mammography and ultrasonography
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1023/A:1010627527026
– volume: 31
  start-page: 31
  year: 2017
  ident: 10.1016/j.knosys.2017.06.026_bib0005
  article-title: Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.07.003
– volume: 16
  issue: 01
  year: 2016
  ident: 10.1016/j.knosys.2017.06.026_bib0072
  article-title: Application of empirical mode decomposition–based features for analysis of normal and CAD heart rate signals
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519416400029
– start-page: 218
  year: 2007
  ident: 10.1016/j.knosys.2017.06.026_bib0046
– volume: 101
  start-page: e215
  year: 2000
  ident: 10.1016/j.knosys.2017.06.026_bib0028
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals
  publication-title: Circulation.
  doi: 10.1161/01.CIR.101.23.e215
– volume: 15
  start-page: 813
  year: 2011
  ident: 10.1016/j.knosys.2017.06.026_bib0058
  article-title: A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2167756
– volume: 27
  start-page: 387
  year: 2000
  ident: 10.1016/j.knosys.2017.06.026_bib0052
  article-title: An automated ECG classification system based on a neuro-fuzzy system
  publication-title: IEEE, Comput. Cardiol.
– volume: 40
  start-page: 882
  year: 1992
  ident: 10.1016/j.knosys.2017.06.026_bib0016
  article-title: A filter bank for the directional decomposition of images: theory and design
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.127960
– volume: 9
  start-page: 134
  issue: 2
  year: 2005
  ident: 10.1016/j.knosys.2017.06.026_bib0002
  article-title: Study of heart rate variability signals at sitting and lying postures
  publication-title: J. Bodyw. Mov. Ther.
  doi: 10.1016/j.jbmt.2004.04.001
– volume: 45
  start-page: 485
  year: 1992
  ident: 10.1016/j.knosys.2017.06.026_bib0023
  article-title: Biorthogonal bases of compactly supported wavelets
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160450502
– volume: 5
  start-page: 4104
  year: 1997
  ident: 10.1016/j.knosys.2017.06.026_bib0037
  article-title: A discrete binary version of the particle swarm algorithm
– year: 2004
  ident: 10.1016/j.knosys.2017.06.026_bib0013
  article-title: Cardiology explained
– volume: 34
  start-page: 985
  year: 2010
  ident: 10.1016/j.knosys.2017.06.026_bib0031
  article-title: Analysis of myocardial infarction using discrete wavelet transform
  publication-title: J Med. Syst.
  doi: 10.1007/s10916-009-9314-5
– volume: 23
  issue: 03
  year: 2013
  ident: 10.1016/j.knosys.2017.06.026_bib0007
  article-title: Automated diagnosis of epilepsy using CWT, HOS and texture parameters
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065713500093
– year: 2009
  ident: 10.1016/j.knosys.2017.06.026_bib0022
  article-title: A hybrid system with hidden markov models and Gaussian mixture models for myocardial infarction classification with 12-lead ECGs
– volume: 43
  start-page: 1556
  year: 2013
  ident: 10.1016/j.knosys.2017.06.026_bib0061
  article-title: Real-time CHF detection from ECG signals using a novel discretization method
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.07.015
– volume: 34
  start-page: 1503
  year: 2012
  ident: 10.1016/j.knosys.2017.06.026_bib0033
  article-title: A new approach to detect congestive heart failure using sequential spectrum of electrocardiogram signals
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2012.03.001
– volume: 17
  year: 1996
  ident: 10.1016/j.knosys.2017.06.026_bib0068
  article-title: Investigation of signal characteristics using continuous wavelet transform
  publication-title: Johns Hopkins Apl. Tech. Dig.
– volume: 67
  start-page: 140
  year: 2017
  ident: 10.1016/j.knosys.2017.06.026_bib0010
  article-title: Electroencephalogram signal classification based on shearlet and contourlet transforms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.037
– year: 2006
  ident: 10.1016/j.knosys.2017.06.026_bib0062
– volume: 3
  year: 2010
  ident: 10.1016/j.knosys.2017.06.026_bib0066
  article-title: How to read an electrocardiogram (ECG). Part one: Basic principles of the ECG. The normal ECG
  publication-title: Southern Sudan Med. J.
– volume: 3
  start-page: 146
  year: 2012
  ident: 10.1016/j.knosys.2017.06.026_bib0008
  article-title: First and second order statistics features for classification of magnetic resonance brain images
  publication-title: J. Signal Inf. Process.
– year: 2003
  ident: 10.1016/j.knosys.2017.06.026_bib0024
  article-title: In Beyond Wavelets, ed.
– volume: 7
  start-page: 818
  year: 2014
  ident: 10.1016/j.knosys.2017.06.026_bib0069
  article-title: A new pattern recognition method for detection and localization of myocardial infarction using T-wave integral and total integral as extracted features from one cycle of ECG signal
  publication-title: J. Biomed. Sci. Eng.
  doi: 10.4236/jbise.2014.710081
SSID ssj0002218
Score 2.4673705
Snippet •Classification of normal, CAD, MI and CHF classes using ECG beat is proposed•CWT transform is performed on ECG beat•Contourlet and shearlet transforms are...
Undiagnosed coronary artery disease (CAD) progresses rapidly and leads to myocardial infarction (MI) by reducing the blood flow to the cardiac muscles. Timely...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 156
SubjectTerms Abnormalities
Algorithms
Automatic classification
Averages
Blood flow
Cardiovascular disease
Classifiers
Congestive heart failure
Continuous wavelet transform
Contourlet and shearlet transforms
Coronary artery disease
Decision making
Deviation
Diagnostic systems
Diagnostic tests
Disease
Echocardiography
Electrocardiogram
Electrocardiography
Entropy
Entropy (Information theory)
Feature extraction
Function words
Heart failure
Hospitals
Kurtosis
Muscles
Myocardial infarction
Optimization
Particle swarm optimization
Ultrasonic imaging
Undiagnosed
Variance analysis
Title Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal
URI https://dx.doi.org/10.1016/j.knosys.2017.06.026
https://www.proquest.com/docview/1941700419
Volume 132
WOSCitedRecordID wos000407184900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3ohCQXvglhr5be8xQq0KVBWiLcrN2qx3VYfUqRKnavhT_DN-AzP7sEMiVEDiYiUbP9aeLzvfjOdByJtY5ZEUZewBFwADJWWhx1LFPeGPRVoGoYoDnSh8nJ2c5KMR-9Tr_XC5MNfTrK7zmxt29V9FDWMgbEyd_QtxtyeFAfgMQoctiB22fyT44bKZAQ0FIinaYszfWmIosGIBRsrpWM6Ve0GDT_pyBXptrhNJYB7wVHTch43uBLMZ30RhnBH2wG4GilcY0T5Y2rTduoHJTaUJWF_gPvilcbxYR4zYnjv6KjosbIDhI_aGLEP-6Jx8HirY0paabpn_EG9qpRnv-eAzn8i6nLea5XA5qQwbPuKXVTnr3niVYL9fGF_vl6pc8bX-29qvdHqxHBxXF-s-ENCr2MMh6RxzW8k51sPpe5lv69lKs77nGRgUsc9-UQDWw2qW8CBJ19hAYHrCbCka4_OYvP1az-A5YIhgpuvAhht1vTVTOMWp4EwCWE_R5LtDdsIsYXmf7AzfH4w-tNwhDLVHup26S_bUEYnb1_odmdqgFZornT0k962RQ4cGnI9IT9aPyQPXQIRaffKEfG-xSjexSmeKOqxSg1VqsbpPO6TSDqn7FJBHO5xSjVNqcUo1TmmHU723wyntcIoX3sIpNTh9Ss4PD87eHXm2g4gnQDc1XqoU8M9gnCR5yVMRRzJhUkolGQ9llIgsVUGsmAqFGrOIhyKHnzmPcyBtgVAyekb69ayWzwnNlALswNYHE6QUKeOxH4ky5zCUlRnbJZETRSFseX3s8jItXBzlpDACLFCABYaThuku8dqjrkx5mVv2z5yUC0uRDfUtAJi3HLnnQFHY1WpRBCzG-pxxwF7884lfknvdX3KP9Jv5Ur4id8V1Uy3mry3AfwIgffr5
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+characterization+of+coronary+artery+disease%2C+myocardial+infarction%2C+and+congestive+heart+failure+using+contourlet+and+shearlet+transforms+of+electrocardiogram+signal&rft.jtitle=Knowledge-based+systems&rft.au=Acharya%2C+U+Rajendra&rft.au=Fujita%2C+Hamido&rft.au=Sudarshan%2C+Vidya+K&rft.au=Oh%2C+Shu+Lih&rft.date=2017-09-15&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=132&rft.spage=156&rft.epage=166&rft_id=info:doi/10.1016%2Fj.knosys.2017.06.026&rft.externalDocID=S0950705117303064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon