A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms

As an important energy storage device, lithium-ion batteries (LIBs) have been widely used in various fields due to their remarkable advantages. The high level of precision in estimating the battery’s state of health greatly enhances the safety and dependability of the application process. In contras...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energies (Basel) Ročník 16; číslo 7; s. 3167
Hlavní autoři: Zhang, Ming, Yang, Dongfang, Du, Jiaxuan, Sun, Hanlei, Li, Liwei, Wang, Licheng, Wang, Kai
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.04.2023
Témata:
ISSN:1996-1073, 1996-1073
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As an important energy storage device, lithium-ion batteries (LIBs) have been widely used in various fields due to their remarkable advantages. The high level of precision in estimating the battery’s state of health greatly enhances the safety and dependability of the application process. In contrast to traditional model-based prediction methods that are complex and have limited accuracy, data-driven prediction methods, which are considered mainstream, rely on direct data analysis and offer higher accuracy. Therefore, this paper reviews how to use the latest data-driven algorithms to predict the SOH of LIBs, and proposes a general prediction process, including the acquisition of datasets for the charging and discharging process of LIBs, the processing of data and features, and the selection of algorithms. The advantages and limitations of various processing methods and cutting-edge data-driven algorithms are summarized and compared, and methods with potential applications are proposed. Effort was also made to point out their application methods and application scenarios, providing guidance for researchers in this area.
AbstractList As an important energy storage device, lithium-ion batteries (LIBs) have been widely used in various fields due to their remarkable advantages. The high level of precision in estimating the battery’s state of health greatly enhances the safety and dependability of the application process. In contrast to traditional model-based prediction methods that are complex and have limited accuracy, data-driven prediction methods, which are considered mainstream, rely on direct data analysis and offer higher accuracy. Therefore, this paper reviews how to use the latest data-driven algorithms to predict the SOH of LIBs, and proposes a general prediction process, including the acquisition of datasets for the charging and discharging process of LIBs, the processing of data and features, and the selection of algorithms. The advantages and limitations of various processing methods and cutting-edge data-driven algorithms are summarized and compared, and methods with potential applications are proposed. Effort was also made to point out their application methods and application scenarios, providing guidance for researchers in this area.
Audience Academic
Author Du, Jiaxuan
Yang, Dongfang
Li, Liwei
Sun, Hanlei
Wang, Kai
Wang, Licheng
Zhang, Ming
Author_xml – sequence: 1
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
– sequence: 2
  givenname: Dongfang
  surname: Yang
  fullname: Yang, Dongfang
– sequence: 3
  givenname: Jiaxuan
  surname: Du
  fullname: Du, Jiaxuan
– sequence: 4
  givenname: Hanlei
  surname: Sun
  fullname: Sun, Hanlei
– sequence: 5
  givenname: Liwei
  surname: Li
  fullname: Li, Liwei
– sequence: 6
  givenname: Licheng
  surname: Wang
  fullname: Wang, Licheng
– sequence: 7
  givenname: Kai
  orcidid: 0000-0002-3513-3511
  surname: Wang
  fullname: Wang, Kai
BookMark eNptUV1PHCEUJY0mtepLf8EkvpmMvcDMAI_rR-smm2ps-0z4uLNlsztYQBv_vWy3TY0RHjic3HO43POB7E1xQkI-UjjjXMEnnOgAgtNBvCMHVKmhpfW69wK_J8c5r6Auzinn_IB8nTV3-BjwdxPH5tvNdXOb0AdXQpy2zCK084rOTSmYAuaKMvqmUpemmPYyhUecmtl6GVMoPzf5iOyPZp3x-O95SH58vvp-cd0ubr7ML2aL1nUApR2YoqNgHo3y0nlrB0ADgwWwAszArBRS9T36TjJLjeqc76WxUjoqgNXuD8l85-ujWen7FDYmPelogv5DxLTUJpXg1qhl56kSzoOpPlJZi9QxxWSPsuO976rXyc7rPsVfD5iLXsWHNNX2NRN1cgCd3L54tqtammoapjGWZFzdHjfB1SDGUPmZ6AbFBACrAtgJXIo5Jxy1C8VsB1uFYa0p6G1q-n9qVXL6SvLvZ28UPwM3GZXD
CitedBy_id crossref_primary_10_1016_j_energy_2025_135625
crossref_primary_10_1016_j_ress_2025_111297
crossref_primary_10_1016_j_aitf_2025_100014
crossref_primary_10_1002_admt_202300616
crossref_primary_10_1002_ente_202300473
crossref_primary_10_1016_j_measurement_2023_113412
crossref_primary_10_1016_j_energy_2025_136555
crossref_primary_10_1051_e3sconf_202448801005
crossref_primary_10_1002_aenm_202405300
crossref_primary_10_1016_j_engappai_2024_108033
crossref_primary_10_4018_IJITWE_338998
crossref_primary_10_1016_j_jallcom_2023_171303
crossref_primary_10_1016_j_jpowsour_2024_234413
crossref_primary_10_1016_j_eswa_2023_121675
crossref_primary_10_3390_en16176318
crossref_primary_10_1002_ente_202400488
crossref_primary_10_3390_electronics14010097
crossref_primary_10_1016_j_energy_2024_132464
crossref_primary_10_23919_PCMP_2023_000167
crossref_primary_10_1016_j_est_2025_116377
crossref_primary_10_1016_j_electacta_2024_144449
crossref_primary_10_1016_j_engappai_2023_106816
crossref_primary_10_1177_09576509241299000
crossref_primary_10_3390_vehicles6020038
crossref_primary_10_3390_en16083597
crossref_primary_10_1007_s11581_024_05857_y
crossref_primary_10_3390_en16155603
crossref_primary_10_1016_j_jallcom_2023_171555
crossref_primary_10_1186_s41601_023_00300_2
crossref_primary_10_1016_j_ecolind_2025_113850
crossref_primary_10_3390_gels9120989
crossref_primary_10_3390_electronics13101940
crossref_primary_10_1002_batt_202300152
crossref_primary_10_1007_s11581_025_06065_y
crossref_primary_10_1016_j_geits_2023_100130
crossref_primary_10_1016_j_est_2024_113387
crossref_primary_10_3390_en16155750
crossref_primary_10_1016_j_est_2024_112330
crossref_primary_10_1016_j_energy_2023_128742
crossref_primary_10_1016_j_engappai_2023_106991
crossref_primary_10_1049_2023_8839034
crossref_primary_10_1007_s11581_024_05982_8
crossref_primary_10_1016_j_ifacol_2025_01_080
crossref_primary_10_3390_su15108122
crossref_primary_10_1016_j_seta_2023_103442
crossref_primary_10_1016_j_est_2024_112907
crossref_primary_10_1016_j_conengprac_2025_106552
crossref_primary_10_3390_en18133542
crossref_primary_10_3390_en16186613
crossref_primary_10_1016_j_apsusc_2023_157592
crossref_primary_10_1016_j_est_2025_115345
crossref_primary_10_3390_electrochem6030033
crossref_primary_10_1007_s40866_025_00254_4
crossref_primary_10_1016_j_jallcom_2023_172467
crossref_primary_10_3390_en16104243
crossref_primary_10_1016_j_est_2023_108347
crossref_primary_10_1016_j_egyr_2025_02_007
crossref_primary_10_1016_j_jallcom_2023_172581
crossref_primary_10_3390_en16135099
crossref_primary_10_1186_s41601_023_00314_w
crossref_primary_10_32604_ee_2023_043004
crossref_primary_10_1016_j_geits_2024_100151
crossref_primary_10_1016_j_jallcom_2023_171188
crossref_primary_10_1149_1945_7111_adfa45
crossref_primary_10_23919_PCMP_2023_000234
crossref_primary_10_1016_j_clet_2025_101072
crossref_primary_10_3390_pr12091806
crossref_primary_10_3390_technologies11020060
crossref_primary_10_3390_en16186555
crossref_primary_10_1016_j_rineng_2024_102532
crossref_primary_10_3389_frobt_2024_1493869
crossref_primary_10_1149_1945_7111_adf09b
crossref_primary_10_1002_ente_202300567
crossref_primary_10_3390_su152015084
crossref_primary_10_3390_batteries9110539
crossref_primary_10_1016_j_compeleceng_2024_110048
crossref_primary_10_3390_en18061324
crossref_primary_10_1016_j_rser_2024_114915
crossref_primary_10_1016_j_est_2024_113172
crossref_primary_10_3390_en16155809
crossref_primary_10_3390_en18102459
crossref_primary_10_1109_TTE_2025_3556447
crossref_primary_10_1016_j_est_2023_107628
crossref_primary_10_1016_j_est_2025_116460
crossref_primary_10_3390_en16165964
crossref_primary_10_3390_physchem5010012
crossref_primary_10_3390_en16155682
crossref_primary_10_1016_j_rser_2023_114224
crossref_primary_10_1007_s10008_023_05594_8
crossref_primary_10_1016_j_compeleceng_2024_109930
crossref_primary_10_3390_en16176334
crossref_primary_10_1016_j_jallcom_2023_171564
crossref_primary_10_1002_est2_70066
crossref_primary_10_1093_ijlct_ctae139
crossref_primary_10_3390_machines13090799
crossref_primary_10_1016_j_est_2023_109248
crossref_primary_10_1016_j_measurement_2023_113361
crossref_primary_10_3390_en16145240
crossref_primary_10_1016_j_est_2023_107979
crossref_primary_10_1016_j_est_2025_118253
crossref_primary_10_1016_j_est_2025_116078
crossref_primary_10_1016_j_measurement_2025_118579
crossref_primary_10_1007_s11581_025_06226_z
crossref_primary_10_3390_wevj15090385
crossref_primary_10_1109_TAES_2025_3540806
crossref_primary_10_1155_2024_5822106
crossref_primary_10_3390_batteries11050180
crossref_primary_10_1016_j_est_2023_108384
crossref_primary_10_1038_s41598_025_03786_y
crossref_primary_10_1016_j_measurement_2024_116263
crossref_primary_10_1016_j_eswa_2023_123123
crossref_primary_10_3390_electronics12244951
Cites_doi 10.1002/er.8709
10.3390/en12173271
10.1109/ITEC51675.2021.9490177
10.1109/ICASSP.2013.6638963
10.1016/j.jpowsour.2020.228863
10.1038/s41560-019-0356-8
10.1016/j.energy.2019.03.177
10.1016/j.jclepro.2020.120813
10.1109/TVT.2018.2805189
10.3390/en16041599
10.1109/TPEL.2016.2636180
10.1016/j.energy.2021.120333
10.3390/en15186665
10.1016/j.electacta.2010.05.072
10.1016/j.renene.2022.08.123
10.1016/j.energy.2018.11.008
10.1109/TTE.2020.3017090
10.1016/j.jpowsour.2005.01.006
10.1002/ente.202200699
10.1109/TIE.2016.2623260
10.1109/ACCESS.2021.3061478
10.1063/5.0092074
10.3390/technologies11020038
10.1002/er.8671
10.1109/ACCESS.2019.2925468
10.1109/TIE.2018.2880703
10.1109/TSG.2023.3236724
10.1186/s41601-022-00261-y
10.14201/ADCAIJ2020927990
10.1109/TII.2019.2951843
10.1016/j.energy.2021.121986
10.1016/j.energy.2020.117664
10.1109/ITEC.2019.8790533
10.1007/s11705-022-2271-y
10.1016/j.applthermaleng.2017.05.010
10.1109/ICPHM.2017.7998298
10.1109/ACCESS.2017.2716353
10.1109/TII.2020.3008223
10.1007/s00521-013-1520-x
10.1109/TPEL.2020.3041876
10.1016/j.energy.2022.124933
10.1021/acsaelm.2c01476
10.1016/j.etran.2019.100005
10.3390/technologies11020042
10.1109/TPEL.2020.2987383
10.1109/TIE.2020.2973876
10.3390/app12031398
10.1021/jp510071d
10.1109/TIE.2017.2787586
10.1016/j.apenergy.2021.116897
10.1016/j.energy.2011.03.059
10.1109/TIM.2016.2534258
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en16073167
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_84d197cd0aa9489bbe1c29285e8435d4
A746927002
10_3390_en16073167
GeographicLocations Peru
GeographicLocations_xml – name: Peru
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c400t-6291f72dea9d8cdbb60ea06b00b70a62b878955ed482b1a94cd58ab88c1702003
IEDL.DBID DOA
ISICitedReferencesCount 147
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000969458400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:47:40 EDT 2025
Mon Jun 30 11:11:47 EDT 2025
Tue Nov 04 18:15:23 EST 2025
Sat Nov 29 07:18:25 EST 2025
Tue Nov 18 21:24:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-6291f72dea9d8cdbb60ea06b00b70a62b878955ed482b1a94cd58ab88c1702003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3513-3511
OpenAccessLink https://doaj.org/article/84d197cd0aa9489bbe1c29285e8435d4
PQID 2799600480
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_84d197cd0aa9489bbe1c29285e8435d4
proquest_journals_2799600480
gale_infotracacademiconefile_A746927002
crossref_citationtrail_10_3390_en16073167
crossref_primary_10_3390_en16073167
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_1) 2023; 16
Zhang (ref_29) 2017; 32
Fatima (ref_38) 2020; 9
ref_11
Sun (ref_50) 2022; 46
ref_53
Zhang (ref_21) 2018; 67
ref_15
Zhang (ref_28) 2020; 35
Yang (ref_47) 2020; 201
Qu (ref_18) 2019; 7
Tian (ref_25) 2020; 261
ref_24
Li (ref_46) 2021; 482
Liu (ref_23) 2014; 25
Zhang (ref_54) 2023; 5
Liu (ref_26) 2021; 68
Zhang (ref_36) 2022; 239
Han (ref_6) 2019; 1
Panchal (ref_10) 2017; 122
She (ref_4) 2020; 16
Hannan (ref_32) 2021; 36
Vetter (ref_2) 2005; 147
Yang (ref_52) 2021; 292
Cui (ref_48) 2022; 198
Verma (ref_8) 2010; 55
Guo (ref_19) 2022; 7
ref_39
Hu (ref_12) 2021; 7
Deng (ref_22) 2019; 176
Dai (ref_31) 2019; 66
Sun (ref_13) 2011; 36
Wang (ref_14) 2016; 65
Qian (ref_51) 2021; 227
Wang (ref_7) 2022; 10
Khalid (ref_41) 2021; 9
Chemali (ref_45) 2018; 65
Guo (ref_16) 2022; 46
Zhang (ref_27) 2017; 5
Cai (ref_37) 2020; 35
ref_44
ref_43
Ren (ref_33) 2021; 17
ref_42
Wang (ref_30) 2019; 167
ref_40
Khelif (ref_35) 2017; 64
ref_49
Liu (ref_5) 2022; 10
ref_9
Hu (ref_17) 2016; 63
Severson (ref_34) 2019; 4
Aguesse (ref_3) 2015; 119
Cui (ref_20) 2022; 259
References_xml – volume: 46
  start-page: 24091
  year: 2022
  ident: ref_50
  article-title: A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.8709
– ident: ref_15
  doi: 10.3390/en12173271
– ident: ref_44
  doi: 10.1109/ITEC51675.2021.9490177
– ident: ref_40
  doi: 10.1109/ICASSP.2013.6638963
– volume: 482
  start-page: 228863
  year: 2021
  ident: ref_46
  article-title: Online capacity estimation of lithium-ion batteries with deep long short-term memory networks
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228863
– volume: 4
  start-page: 383
  year: 2019
  ident: ref_34
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0356-8
– volume: 176
  start-page: 91
  year: 2019
  ident: ref_22
  article-title: Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.177
– volume: 261
  start-page: 120813
  year: 2020
  ident: ref_25
  article-title: A review of the state of health for lithium -ion batteries: Research status and suggestions
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120813
– volume: 67
  start-page: 5695
  year: 2018
  ident: ref_21
  article-title: Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2805189
– volume: 16
  start-page: 1599
  year: 2023
  ident: ref_1
  article-title: Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries
  publication-title: Energies
  doi: 10.3390/en16041599
– volume: 32
  start-page: 7626
  year: 2017
  ident: ref_29
  article-title: SOC Estimation of Lithium-Ion Batteries with AEKF and Wavelet Transform Matrix
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2016.2636180
– volume: 227
  start-page: 120333
  year: 2021
  ident: ref_51
  article-title: Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120333
– ident: ref_49
  doi: 10.3390/en15186665
– volume: 55
  start-page: 6332
  year: 2010
  ident: ref_8
  article-title: A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.05.072
– volume: 198
  start-page: 1328
  year: 2022
  ident: ref_48
  article-title: A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.08.123
– volume: 167
  start-page: 661
  year: 2019
  ident: ref_30
  article-title: State of health estimation of lithium-ion batteries based on the constant voltage charging curve
  publication-title: Energy
  doi: 10.1016/j.energy.2018.11.008
– volume: 7
  start-page: 382
  year: 2021
  ident: ref_12
  article-title: Battery Health Prediction Using Fusion-Based Feature Selection and Machine Learning
  publication-title: IEEE Trans. Transp. Electrif.
  doi: 10.1109/TTE.2020.3017090
– volume: 147
  start-page: 269
  year: 2005
  ident: ref_2
  article-title: Ageing mechanisms in lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.01.006
– volume: 10
  start-page: 2200699
  year: 2022
  ident: ref_7
  article-title: Electrodeless Nanogenerator for Dust Recover
  publication-title: Energy Technol.
  doi: 10.1002/ente.202200699
– volume: 64
  start-page: 2276
  year: 2017
  ident: ref_35
  article-title: Direct Remaining Useful Life Estimation Based on Support Vector Regression
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2623260
– volume: 9
  start-page: 39154
  year: 2021
  ident: ref_41
  article-title: Unified Univariate-Neural Network Models for Lithium-Ion Battery State-of-Charge Forecasting Using Minimized Akaike Information Criterion Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3061478
– volume: 10
  start-page: 061106
  year: 2022
  ident: ref_5
  article-title: Strong robustness and high accuracy in predicting remaining useful life of supercapacitors
  publication-title: APL Mater.
  doi: 10.1063/5.0092074
– ident: ref_9
  doi: 10.3390/technologies11020038
– volume: 46
  start-page: 23730
  year: 2022
  ident: ref_16
  article-title: A state-of-health estimation method considering capacity recovery of lithium batteries
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.8671
– volume: 7
  start-page: 87178
  year: 2019
  ident: ref_18
  article-title: A Neural-Network-Based Method for RUL Prediction and SOH Monitoring of Lithium-Ion Battery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2925468
– volume: 66
  start-page: 7706
  year: 2019
  ident: ref_31
  article-title: A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2880703
– ident: ref_39
  doi: 10.1109/TSG.2023.3236724
– volume: 7
  start-page: 40
  year: 2022
  ident: ref_19
  article-title: Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network
  publication-title: Prot. Control Mod. Power Syst.
  doi: 10.1186/s41601-022-00261-y
– volume: 9
  start-page: 79
  year: 2020
  ident: ref_38
  article-title: Enhancing Performance of a Deep Neural Network: A Comparative Analysis of Optimization Algorithms
  publication-title: Adcaij-Adv. Distrib. Comput. Artif. Intell. J.
  doi: 10.14201/ADCAIJ2020927990
– volume: 16
  start-page: 3345
  year: 2020
  ident: ref_4
  article-title: Battery Aging Assessment for Real-World Electric Buses Based on Incremental Capacity Analysis and Radial Basis Function Neural Network
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2951843
– volume: 239
  start-page: 121986
  year: 2022
  ident: ref_36
  article-title: State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121986
– volume: 201
  start-page: 117664
  year: 2020
  ident: ref_47
  article-title: State-of-charge estimation of lithium-ion batteries using LSTM and UKF
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117664
– ident: ref_43
  doi: 10.1109/ITEC.2019.8790533
– ident: ref_53
  doi: 10.1007/s11705-022-2271-y
– volume: 122
  start-page: 80
  year: 2017
  ident: ref_10
  article-title: Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.05.010
– ident: ref_24
  doi: 10.1109/ICPHM.2017.7998298
– volume: 5
  start-page: 12061
  year: 2017
  ident: ref_27
  article-title: Capacity Prognostics of Lithium-Ion Batteries using EMD Denoising and Multiple Kernel RVM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2716353
– volume: 17
  start-page: 3478
  year: 2021
  ident: ref_33
  article-title: A Data-Driven Auto-CNN-LSTM Prediction Model for Lithium-Ion Battery Remaining Useful Life
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3008223
– volume: 25
  start-page: 557
  year: 2014
  ident: ref_23
  article-title: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1520-x
– volume: 36
  start-page: 7349
  year: 2021
  ident: ref_32
  article-title: SOC Estimation of Li-ion Batteries With Learning Rate-Optimized Deep Fully Convolutional Network
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.3041876
– volume: 35
  start-page: 3126
  year: 2020
  ident: ref_28
  article-title: Capacity Prediction of Lithium-Ion Batteries Based on Wavelet Noise Reduction and Support Vector Machine
  publication-title: Trans. China Electrotech. Soc.
– volume: 259
  start-page: 124933
  year: 2022
  ident: ref_20
  article-title: A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124933
– volume: 5
  start-page: 498
  year: 2023
  ident: ref_54
  article-title: Self-Powered Electronic Skin for Remote Human–Machine Synchronization
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.2c01476
– volume: 1
  start-page: 100005
  year: 2019
  ident: ref_6
  article-title: A review on the key issues of the lithium ion battery degradation among the whole life cycle
  publication-title: Etransportation
  doi: 10.1016/j.etran.2019.100005
– ident: ref_11
  doi: 10.3390/technologies11020042
– volume: 35
  start-page: 11855
  year: 2020
  ident: ref_37
  article-title: Multiobjective Optimization of Data-Driven Model for Lithium-Ion Battery SOH Estimation With Short-Term Feature
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.2987383
– volume: 68
  start-page: 3170
  year: 2021
  ident: ref_26
  article-title: A Data-Driven Approach with Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-ion Battery
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2973876
– ident: ref_42
  doi: 10.3390/app12031398
– volume: 119
  start-page: 896
  year: 2015
  ident: ref_3
  article-title: Understanding Lithium Inventory Loss and Sudden Performance Fade in Cylindrical Cells during Cycling with Deep-Discharge Steps
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp510071d
– volume: 65
  start-page: 6730
  year: 2018
  ident: ref_45
  article-title: Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2787586
– volume: 292
  start-page: 116897
  year: 2021
  ident: ref_52
  article-title: A machine-learning prediction method of lithium-ion battery life based on charge process for different applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116897
– volume: 36
  start-page: 3531
  year: 2011
  ident: ref_13
  article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.059
– volume: 63
  start-page: 2645
  year: 2016
  ident: ref_17
  article-title: Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian Predictive Modeling
  publication-title: IEEE Trans. Ind. Electron.
– volume: 65
  start-page: 1282
  year: 2016
  ident: ref_14
  article-title: Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Spherical Cubature Particle Filter
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2534258
SSID ssj0000331333
Score 2.6512237
SecondaryResourceType review_article
Snippet As an important energy storage device, lithium-ion batteries (LIBs) have been widely used in various fields due to their remarkable advantages. The high level...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3167
SubjectTerms Accuracy
Aging
Algorithms
Analysis
Batteries
Data processing
data-driven algorithms
Datasets
Decomposition
Electrodes
Electrolytes
Energy industry
Graphite
Information management
LIB
Lithium
Machine learning
Methods
Neural networks
Power
SOH
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUocGgPFNqibqEoUpFQDxGOncT2CS0FBFK1rKCVuFn-CiDBLiShv5-ZxLsUqeXCzXJGyiTPM_Z47DeEbCsI0GjmCwhyFE9hBQ4mJalKYbIKQXkuwT90xSbEaCQvLtQ4brg18VjlzCd2jtpPHe6R7zKBPCJ4A3rv7j7FqlGYXY0lNN6QJWQqg3G-tH84Gp_Nd1ko5xCE8Z6XlEN8vxsmSKmG97-fzUQdYf__3HI31xy9f62Wq2QlrjKTYT8s1shCmHwg7_7iHvxIRsOkzwsk0yo5Pz1OxjXmbBAn7Pl5nZ5Aq6ffhGgaWk3wCXQdmNakBzV6yWR4cwlvb69um0_k99Hhrx_HaSyukDow2zYtmcoqwXwwCgsYWVvSYGgJVmgFNSWzUkhVFMHnktnMqNz5QhorpcsExRNt62RxMp2EzySxwRRcWZpVkuc2VybQUorgKi9ZxWk-IN9nP1q7yDyOBTBuNEQgCIp-AmVAvs1l73q-jX9K7SNecwnkyO46pvWljianZe4zJZynBrSXytqQOaaYLIKENaIHtXYQbY2WDOo4Ey8kwEchJ5YeirxUmJdnA7I5Q1tHE2_0E9RfXn68Qd5ijfr-uM8mWWzrh_CVLLs_7XVTb8UR-whZuvJ8
  priority: 102
  providerName: ProQuest
Title A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms
URI https://www.proquest.com/docview/2799600480
https://doaj.org/article/84d197cd0aa9489bbe1c29285e8435d4
Volume 16
WOSCitedRecordID wos000969458400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VtIf2gKAPdQtFkYpU9RDh2ElsH5eyCCRYoj4kerL8SrsS3UXZ0GN_OzNJoIsE6oVLZI18cGYyM_7i8TcAuxoBGstCgSBHixR34OhSiukUk1WMOgiF8aFrNiGnU3V-rquVVl9UE9bTA_eK21N5yLT0gVmrc6Wdi5nnmqsiKsz0oWMCZVKvgKkuBguB4Ev0fKQCcf1enBOVGt37vpOBOqL-h8Jxl2MON2B92Bwm435Rm_Akzl_CixXKwFcwHSf97_xkUSdfz46SqqGjFlIvSU5m6TGOetZMBME4WsaQoOjAtjY9aCi4JeOLn4tm1v76vXwN3w8n3z4fpUNPhNSjt7VpyXVWSx6i1dR3yLmSRctKdB4nmS25U1LpooghV9xlqDIfCmWdUj6TjArR3sDafDGPbyFx0RZCO5bVSuQu1zayUsno66B4LVg-gk83ejJ-IAynvhUXBoED6dT80-kIPtzOvexpMu6dtU_qvp1B1NadAA1uBoOb_xl8BB_JWIYcEJfj7XCPAF-KqKzMWCLip-N0PoLtG3uawTOXhkvio6Gb9O8eYzVb8Jwa0Pe1PNuw1jZX8T0883_a2bLZgaf7k2n1Zaf7OPF5-neCsur4tPpxDRAk52U
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I26UCASIMQhqmPnYR8QWliqXXW7rESR2lPwK-1KZbckAcSf4jcyk2S3IAG3HrhFjhXZ8ed52DPfADxV6KCxyCXo5CgRogWOW0oyFaKy8l45IVE-NMUmsulUHh6q2Qb8WOXCUFjlSiY2gtotLZ2R7_CMeEQoA_rV2eeQqkbR7eqqhEYLiz3__Ru6bNXL8RDX9xnnu28P3ozCrqpAaBGvdZhyFRUZd14rqtxjTMq8ZinCz2RMp9zITKok8S6W3ERaxdYlUhspbZQxCuXC716CzZjA3oPN2Xh_drQ-1WFCoNMnWh5UIRTb8QuicKN88980X1Mg4G9qoNFtuzf-t79yE653VnQwaGF_Czb84jZc-4Vb8Q5MB0F77xEsi-D9u1EwK-lOinBILZN5OManll507it8qrwLsGmoax0OS9ICweD0GGdbn3yq7sKHC5nQPegtlgu_BYHxOhHKsKiQIjax0p6lMvO2cJIXgsV9eLFa2Nx2zOpU4OM0Rw-LQJCfg6APT9Z9z1o-kT_2ek34WPcgDvCmYVke551IyWXsIpVZxzSOXipjfGS54jLxEm1gh8N6TujKSVLhcKzuEi5wUsT5lQ-yOFUUd8D7sL1CV96JsCo_h9b9f79-DFdGB_uTfDKe7j2AqxytwDa0aRt6dfnFP4TL9ms9r8pH3W4J4ONFQ_EnWBVPHg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYTgwBtRWCASIMQhquO87ANChVJttUuJBEi7J-NXlkpLuyQBxF_j1zHTJF2QgNseuEWOFdnx53nYM98APJLooLHIpejkyDhECxy3lGAyRGXlvXSxQPmwLjaRz-fi4EAWW_Cjz4WhsMpeJq4FtVtZOiMf8Zx4RCgDelR2YRHFZPr85HNIFaToprUvp9FCZM9__4buW_1sNsG1fsz59NW7l7thV2EgtIjdJsy4jMqcO68lVfExJmNeswyhaHKmM25ELmSaepcIbiItE-tSoY0QNsoZhXXhd8_BNprkCR_AdjF7XRxuTnhYHKMDGLecqHEs2cgvic6Ncs9_04LrYgF_UwlrPTe98j__oatwubOug3G7Ha7Bll9eh0u_cC7egPk4aO9DglUZvH2zGxQV3VURPqllfxHO8KmlHV34Gp9q7wJsmuhGh5OKtEMwPj7C2TYfP9U34f2ZTOgWDJarpb8NgfE6jaVhUSnixCRSe5aJ3NvSCV7GLBnC036Rle0Y16nwx7FCz4sAoU4BMYSHm74nLc_IH3u9IKxsehA3-LphVR2pTtQokbhI5tYxjaMX0hgfWS65SL1A29jhsJ4Q0hRJMByO1V0iBk6KuMDUOE8ySfEIfAg7PdJUJ9pqdQqzO_9-_QAuIP7U_my-dxcucjQO24inHRg01Rd_D87br82iru53GyeAD2eNxJ9KZ1fe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+SOH+Prediction+of+Li-Ion+Batteries+Based+on+Data-Driven+Algorithms&rft.jtitle=Energies+%28Basel%29&rft.au=Zhang%2C+Ming&rft.au=Yang%2C+Dongfang&rft.au=Du%2C+Jiaxuan&rft.au=Sun%2C+Hanlei&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=7&rft_id=info:doi/10.3390%2Fen16073167&rft.externalDocID=A746927002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon