A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms
As an important energy storage device, lithium-ion batteries (LIBs) have been widely used in various fields due to their remarkable advantages. The high level of precision in estimating the battery’s state of health greatly enhances the safety and dependability of the application process. In contras...
Uloženo v:
| Vydáno v: | Energies (Basel) Ročník 16; číslo 7; s. 3167 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.04.2023
|
| Témata: | |
| ISSN: | 1996-1073, 1996-1073 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | As an important energy storage device, lithium-ion batteries (LIBs) have been widely used in various fields due to their remarkable advantages. The high level of precision in estimating the battery’s state of health greatly enhances the safety and dependability of the application process. In contrast to traditional model-based prediction methods that are complex and have limited accuracy, data-driven prediction methods, which are considered mainstream, rely on direct data analysis and offer higher accuracy. Therefore, this paper reviews how to use the latest data-driven algorithms to predict the SOH of LIBs, and proposes a general prediction process, including the acquisition of datasets for the charging and discharging process of LIBs, the processing of data and features, and the selection of algorithms. The advantages and limitations of various processing methods and cutting-edge data-driven algorithms are summarized and compared, and methods with potential applications are proposed. Effort was also made to point out their application methods and application scenarios, providing guidance for researchers in this area. |
|---|---|
| AbstractList | As an important energy storage device, lithium-ion batteries (LIBs) have been widely used in various fields due to their remarkable advantages. The high level of precision in estimating the battery’s state of health greatly enhances the safety and dependability of the application process. In contrast to traditional model-based prediction methods that are complex and have limited accuracy, data-driven prediction methods, which are considered mainstream, rely on direct data analysis and offer higher accuracy. Therefore, this paper reviews how to use the latest data-driven algorithms to predict the SOH of LIBs, and proposes a general prediction process, including the acquisition of datasets for the charging and discharging process of LIBs, the processing of data and features, and the selection of algorithms. The advantages and limitations of various processing methods and cutting-edge data-driven algorithms are summarized and compared, and methods with potential applications are proposed. Effort was also made to point out their application methods and application scenarios, providing guidance for researchers in this area. |
| Audience | Academic |
| Author | Du, Jiaxuan Yang, Dongfang Li, Liwei Sun, Hanlei Wang, Kai Wang, Licheng Zhang, Ming |
| Author_xml | – sequence: 1 givenname: Ming surname: Zhang fullname: Zhang, Ming – sequence: 2 givenname: Dongfang surname: Yang fullname: Yang, Dongfang – sequence: 3 givenname: Jiaxuan surname: Du fullname: Du, Jiaxuan – sequence: 4 givenname: Hanlei surname: Sun fullname: Sun, Hanlei – sequence: 5 givenname: Liwei surname: Li fullname: Li, Liwei – sequence: 6 givenname: Licheng surname: Wang fullname: Wang, Licheng – sequence: 7 givenname: Kai orcidid: 0000-0002-3513-3511 surname: Wang fullname: Wang, Kai |
| BookMark | eNptUV1PHCEUJY0mtepLf8EkvpmMvcDMAI_rR-smm2ps-0z4uLNlsztYQBv_vWy3TY0RHjic3HO43POB7E1xQkI-UjjjXMEnnOgAgtNBvCMHVKmhpfW69wK_J8c5r6Auzinn_IB8nTV3-BjwdxPH5tvNdXOb0AdXQpy2zCK084rOTSmYAuaKMvqmUpemmPYyhUecmtl6GVMoPzf5iOyPZp3x-O95SH58vvp-cd0ubr7ML2aL1nUApR2YoqNgHo3y0nlrB0ADgwWwAszArBRS9T36TjJLjeqc76WxUjoqgNXuD8l85-ujWen7FDYmPelogv5DxLTUJpXg1qhl56kSzoOpPlJZi9QxxWSPsuO976rXyc7rPsVfD5iLXsWHNNX2NRN1cgCd3L54tqtammoapjGWZFzdHjfB1SDGUPmZ6AbFBACrAtgJXIo5Jxy1C8VsB1uFYa0p6G1q-n9qVXL6SvLvZ28UPwM3GZXD |
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_135625 crossref_primary_10_1016_j_ress_2025_111297 crossref_primary_10_1016_j_aitf_2025_100014 crossref_primary_10_1002_admt_202300616 crossref_primary_10_1002_ente_202300473 crossref_primary_10_1016_j_measurement_2023_113412 crossref_primary_10_1016_j_energy_2025_136555 crossref_primary_10_1051_e3sconf_202448801005 crossref_primary_10_1002_aenm_202405300 crossref_primary_10_1016_j_engappai_2024_108033 crossref_primary_10_4018_IJITWE_338998 crossref_primary_10_1016_j_jallcom_2023_171303 crossref_primary_10_1016_j_jpowsour_2024_234413 crossref_primary_10_1016_j_eswa_2023_121675 crossref_primary_10_3390_en16176318 crossref_primary_10_1002_ente_202400488 crossref_primary_10_3390_electronics14010097 crossref_primary_10_1016_j_energy_2024_132464 crossref_primary_10_23919_PCMP_2023_000167 crossref_primary_10_1016_j_est_2025_116377 crossref_primary_10_1016_j_electacta_2024_144449 crossref_primary_10_1016_j_engappai_2023_106816 crossref_primary_10_1177_09576509241299000 crossref_primary_10_3390_vehicles6020038 crossref_primary_10_3390_en16083597 crossref_primary_10_1007_s11581_024_05857_y crossref_primary_10_3390_en16155603 crossref_primary_10_1016_j_jallcom_2023_171555 crossref_primary_10_1186_s41601_023_00300_2 crossref_primary_10_1016_j_ecolind_2025_113850 crossref_primary_10_3390_gels9120989 crossref_primary_10_3390_electronics13101940 crossref_primary_10_1002_batt_202300152 crossref_primary_10_1007_s11581_025_06065_y crossref_primary_10_1016_j_geits_2023_100130 crossref_primary_10_1016_j_est_2024_113387 crossref_primary_10_3390_en16155750 crossref_primary_10_1016_j_est_2024_112330 crossref_primary_10_1016_j_energy_2023_128742 crossref_primary_10_1016_j_engappai_2023_106991 crossref_primary_10_1049_2023_8839034 crossref_primary_10_1007_s11581_024_05982_8 crossref_primary_10_1016_j_ifacol_2025_01_080 crossref_primary_10_3390_su15108122 crossref_primary_10_1016_j_seta_2023_103442 crossref_primary_10_1016_j_est_2024_112907 crossref_primary_10_1016_j_conengprac_2025_106552 crossref_primary_10_3390_en18133542 crossref_primary_10_3390_en16186613 crossref_primary_10_1016_j_apsusc_2023_157592 crossref_primary_10_1016_j_est_2025_115345 crossref_primary_10_3390_electrochem6030033 crossref_primary_10_1007_s40866_025_00254_4 crossref_primary_10_1016_j_jallcom_2023_172467 crossref_primary_10_3390_en16104243 crossref_primary_10_1016_j_est_2023_108347 crossref_primary_10_1016_j_egyr_2025_02_007 crossref_primary_10_1016_j_jallcom_2023_172581 crossref_primary_10_3390_en16135099 crossref_primary_10_1186_s41601_023_00314_w crossref_primary_10_32604_ee_2023_043004 crossref_primary_10_1016_j_geits_2024_100151 crossref_primary_10_1016_j_jallcom_2023_171188 crossref_primary_10_1149_1945_7111_adfa45 crossref_primary_10_23919_PCMP_2023_000234 crossref_primary_10_1016_j_clet_2025_101072 crossref_primary_10_3390_pr12091806 crossref_primary_10_3390_technologies11020060 crossref_primary_10_3390_en16186555 crossref_primary_10_1016_j_rineng_2024_102532 crossref_primary_10_3389_frobt_2024_1493869 crossref_primary_10_1149_1945_7111_adf09b crossref_primary_10_1002_ente_202300567 crossref_primary_10_3390_su152015084 crossref_primary_10_3390_batteries9110539 crossref_primary_10_1016_j_compeleceng_2024_110048 crossref_primary_10_3390_en18061324 crossref_primary_10_1016_j_rser_2024_114915 crossref_primary_10_1016_j_est_2024_113172 crossref_primary_10_3390_en16155809 crossref_primary_10_3390_en18102459 crossref_primary_10_1109_TTE_2025_3556447 crossref_primary_10_1016_j_est_2023_107628 crossref_primary_10_1016_j_est_2025_116460 crossref_primary_10_3390_en16165964 crossref_primary_10_3390_physchem5010012 crossref_primary_10_3390_en16155682 crossref_primary_10_1016_j_rser_2023_114224 crossref_primary_10_1007_s10008_023_05594_8 crossref_primary_10_1016_j_compeleceng_2024_109930 crossref_primary_10_3390_en16176334 crossref_primary_10_1016_j_jallcom_2023_171564 crossref_primary_10_1002_est2_70066 crossref_primary_10_1093_ijlct_ctae139 crossref_primary_10_3390_machines13090799 crossref_primary_10_1016_j_est_2023_109248 crossref_primary_10_1016_j_measurement_2023_113361 crossref_primary_10_3390_en16145240 crossref_primary_10_1016_j_est_2023_107979 crossref_primary_10_1016_j_est_2025_118253 crossref_primary_10_1016_j_est_2025_116078 crossref_primary_10_1016_j_measurement_2025_118579 crossref_primary_10_1007_s11581_025_06226_z crossref_primary_10_3390_wevj15090385 crossref_primary_10_1109_TAES_2025_3540806 crossref_primary_10_1155_2024_5822106 crossref_primary_10_3390_batteries11050180 crossref_primary_10_1016_j_est_2023_108384 crossref_primary_10_1038_s41598_025_03786_y crossref_primary_10_1016_j_measurement_2024_116263 crossref_primary_10_1016_j_eswa_2023_123123 crossref_primary_10_3390_electronics12244951 |
| Cites_doi | 10.1002/er.8709 10.3390/en12173271 10.1109/ITEC51675.2021.9490177 10.1109/ICASSP.2013.6638963 10.1016/j.jpowsour.2020.228863 10.1038/s41560-019-0356-8 10.1016/j.energy.2019.03.177 10.1016/j.jclepro.2020.120813 10.1109/TVT.2018.2805189 10.3390/en16041599 10.1109/TPEL.2016.2636180 10.1016/j.energy.2021.120333 10.3390/en15186665 10.1016/j.electacta.2010.05.072 10.1016/j.renene.2022.08.123 10.1016/j.energy.2018.11.008 10.1109/TTE.2020.3017090 10.1016/j.jpowsour.2005.01.006 10.1002/ente.202200699 10.1109/TIE.2016.2623260 10.1109/ACCESS.2021.3061478 10.1063/5.0092074 10.3390/technologies11020038 10.1002/er.8671 10.1109/ACCESS.2019.2925468 10.1109/TIE.2018.2880703 10.1109/TSG.2023.3236724 10.1186/s41601-022-00261-y 10.14201/ADCAIJ2020927990 10.1109/TII.2019.2951843 10.1016/j.energy.2021.121986 10.1016/j.energy.2020.117664 10.1109/ITEC.2019.8790533 10.1007/s11705-022-2271-y 10.1016/j.applthermaleng.2017.05.010 10.1109/ICPHM.2017.7998298 10.1109/ACCESS.2017.2716353 10.1109/TII.2020.3008223 10.1007/s00521-013-1520-x 10.1109/TPEL.2020.3041876 10.1016/j.energy.2022.124933 10.1021/acsaelm.2c01476 10.1016/j.etran.2019.100005 10.3390/technologies11020042 10.1109/TPEL.2020.2987383 10.1109/TIE.2020.2973876 10.3390/app12031398 10.1021/jp510071d 10.1109/TIE.2017.2787586 10.1016/j.apenergy.2021.116897 10.1016/j.energy.2011.03.059 10.1109/TIM.2016.2534258 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en16073167 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_84d197cd0aa9489bbe1c29285e8435d4 A746927002 10_3390_en16073167 |
| GeographicLocations | Peru |
| GeographicLocations_xml | – name: Peru |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c400t-6291f72dea9d8cdbb60ea06b00b70a62b878955ed482b1a94cd58ab88c1702003 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 147 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000969458400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:47:40 EDT 2025 Mon Jun 30 11:11:47 EDT 2025 Tue Nov 04 18:15:23 EST 2025 Sat Nov 29 07:18:25 EST 2025 Tue Nov 18 21:24:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-6291f72dea9d8cdbb60ea06b00b70a62b878955ed482b1a94cd58ab88c1702003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3513-3511 |
| OpenAccessLink | https://www.proquest.com/docview/2799600480?pq-origsite=%requestingapplication% |
| PQID | 2799600480 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_84d197cd0aa9489bbe1c29285e8435d4 proquest_journals_2799600480 gale_infotracacademiconefile_A746927002 crossref_citationtrail_10_3390_en16073167 crossref_primary_10_3390_en16073167 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhang (ref_1) 2023; 16 Zhang (ref_29) 2017; 32 Fatima (ref_38) 2020; 9 ref_11 Sun (ref_50) 2022; 46 ref_53 Zhang (ref_21) 2018; 67 ref_15 Zhang (ref_28) 2020; 35 Yang (ref_47) 2020; 201 Qu (ref_18) 2019; 7 Tian (ref_25) 2020; 261 ref_24 Li (ref_46) 2021; 482 Liu (ref_23) 2014; 25 Zhang (ref_54) 2023; 5 Liu (ref_26) 2021; 68 Zhang (ref_36) 2022; 239 Han (ref_6) 2019; 1 Panchal (ref_10) 2017; 122 She (ref_4) 2020; 16 Hannan (ref_32) 2021; 36 Vetter (ref_2) 2005; 147 Yang (ref_52) 2021; 292 Cui (ref_48) 2022; 198 Verma (ref_8) 2010; 55 Guo (ref_19) 2022; 7 ref_39 Hu (ref_12) 2021; 7 Deng (ref_22) 2019; 176 Dai (ref_31) 2019; 66 Sun (ref_13) 2011; 36 Wang (ref_14) 2016; 65 Qian (ref_51) 2021; 227 Wang (ref_7) 2022; 10 Khalid (ref_41) 2021; 9 Chemali (ref_45) 2018; 65 Guo (ref_16) 2022; 46 Zhang (ref_27) 2017; 5 Cai (ref_37) 2020; 35 ref_44 ref_43 Ren (ref_33) 2021; 17 ref_42 Wang (ref_30) 2019; 167 ref_40 Khelif (ref_35) 2017; 64 ref_49 Liu (ref_5) 2022; 10 ref_9 Hu (ref_17) 2016; 63 Severson (ref_34) 2019; 4 Aguesse (ref_3) 2015; 119 Cui (ref_20) 2022; 259 |
| References_xml | – volume: 46 start-page: 24091 year: 2022 ident: ref_50 article-title: A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model publication-title: Int. J. Energy Res. doi: 10.1002/er.8709 – ident: ref_15 doi: 10.3390/en12173271 – ident: ref_44 doi: 10.1109/ITEC51675.2021.9490177 – ident: ref_40 doi: 10.1109/ICASSP.2013.6638963 – volume: 482 start-page: 228863 year: 2021 ident: ref_46 article-title: Online capacity estimation of lithium-ion batteries with deep long short-term memory networks publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228863 – volume: 4 start-page: 383 year: 2019 ident: ref_34 article-title: Data-driven prediction of battery cycle life before capacity degradation publication-title: Nat. Energy doi: 10.1038/s41560-019-0356-8 – volume: 176 start-page: 91 year: 2019 ident: ref_22 article-title: Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2019.03.177 – volume: 261 start-page: 120813 year: 2020 ident: ref_25 article-title: A review of the state of health for lithium -ion batteries: Research status and suggestions publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120813 – volume: 67 start-page: 5695 year: 2018 ident: ref_21 article-title: Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2805189 – volume: 16 start-page: 1599 year: 2023 ident: ref_1 article-title: Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries publication-title: Energies doi: 10.3390/en16041599 – volume: 32 start-page: 7626 year: 2017 ident: ref_29 article-title: SOC Estimation of Lithium-Ion Batteries with AEKF and Wavelet Transform Matrix publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2016.2636180 – volume: 227 start-page: 120333 year: 2021 ident: ref_51 article-title: Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2021.120333 – ident: ref_49 doi: 10.3390/en15186665 – volume: 55 start-page: 6332 year: 2010 ident: ref_8 article-title: A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.05.072 – volume: 198 start-page: 1328 year: 2022 ident: ref_48 article-title: A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures publication-title: Renew. Energy doi: 10.1016/j.renene.2022.08.123 – volume: 167 start-page: 661 year: 2019 ident: ref_30 article-title: State of health estimation of lithium-ion batteries based on the constant voltage charging curve publication-title: Energy doi: 10.1016/j.energy.2018.11.008 – volume: 7 start-page: 382 year: 2021 ident: ref_12 article-title: Battery Health Prediction Using Fusion-Based Feature Selection and Machine Learning publication-title: IEEE Trans. Transp. Electrif. doi: 10.1109/TTE.2020.3017090 – volume: 147 start-page: 269 year: 2005 ident: ref_2 article-title: Ageing mechanisms in lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.01.006 – volume: 10 start-page: 2200699 year: 2022 ident: ref_7 article-title: Electrodeless Nanogenerator for Dust Recover publication-title: Energy Technol. doi: 10.1002/ente.202200699 – volume: 64 start-page: 2276 year: 2017 ident: ref_35 article-title: Direct Remaining Useful Life Estimation Based on Support Vector Regression publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2623260 – volume: 9 start-page: 39154 year: 2021 ident: ref_41 article-title: Unified Univariate-Neural Network Models for Lithium-Ion Battery State-of-Charge Forecasting Using Minimized Akaike Information Criterion Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3061478 – volume: 10 start-page: 061106 year: 2022 ident: ref_5 article-title: Strong robustness and high accuracy in predicting remaining useful life of supercapacitors publication-title: APL Mater. doi: 10.1063/5.0092074 – ident: ref_9 doi: 10.3390/technologies11020038 – volume: 46 start-page: 23730 year: 2022 ident: ref_16 article-title: A state-of-health estimation method considering capacity recovery of lithium batteries publication-title: Int. J. Energy Res. doi: 10.1002/er.8671 – volume: 7 start-page: 87178 year: 2019 ident: ref_18 article-title: A Neural-Network-Based Method for RUL Prediction and SOH Monitoring of Lithium-Ion Battery publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2925468 – volume: 66 start-page: 7706 year: 2019 ident: ref_31 article-title: A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2880703 – ident: ref_39 doi: 10.1109/TSG.2023.3236724 – volume: 7 start-page: 40 year: 2022 ident: ref_19 article-title: Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network publication-title: Prot. Control Mod. Power Syst. doi: 10.1186/s41601-022-00261-y – volume: 9 start-page: 79 year: 2020 ident: ref_38 article-title: Enhancing Performance of a Deep Neural Network: A Comparative Analysis of Optimization Algorithms publication-title: Adcaij-Adv. Distrib. Comput. Artif. Intell. J. doi: 10.14201/ADCAIJ2020927990 – volume: 16 start-page: 3345 year: 2020 ident: ref_4 article-title: Battery Aging Assessment for Real-World Electric Buses Based on Incremental Capacity Analysis and Radial Basis Function Neural Network publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2951843 – volume: 239 start-page: 121986 year: 2022 ident: ref_36 article-title: State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression publication-title: Energy doi: 10.1016/j.energy.2021.121986 – volume: 201 start-page: 117664 year: 2020 ident: ref_47 article-title: State-of-charge estimation of lithium-ion batteries using LSTM and UKF publication-title: Energy doi: 10.1016/j.energy.2020.117664 – ident: ref_43 doi: 10.1109/ITEC.2019.8790533 – ident: ref_53 doi: 10.1007/s11705-022-2271-y – volume: 122 start-page: 80 year: 2017 ident: ref_10 article-title: Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.05.010 – ident: ref_24 doi: 10.1109/ICPHM.2017.7998298 – volume: 5 start-page: 12061 year: 2017 ident: ref_27 article-title: Capacity Prognostics of Lithium-Ion Batteries using EMD Denoising and Multiple Kernel RVM publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2716353 – volume: 17 start-page: 3478 year: 2021 ident: ref_33 article-title: A Data-Driven Auto-CNN-LSTM Prediction Model for Lithium-Ion Battery Remaining Useful Life publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.3008223 – volume: 25 start-page: 557 year: 2014 ident: ref_23 article-title: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1520-x – volume: 36 start-page: 7349 year: 2021 ident: ref_32 article-title: SOC Estimation of Li-ion Batteries With Learning Rate-Optimized Deep Fully Convolutional Network publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.3041876 – volume: 35 start-page: 3126 year: 2020 ident: ref_28 article-title: Capacity Prediction of Lithium-Ion Batteries Based on Wavelet Noise Reduction and Support Vector Machine publication-title: Trans. China Electrotech. Soc. – volume: 259 start-page: 124933 year: 2022 ident: ref_20 article-title: A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF publication-title: Energy doi: 10.1016/j.energy.2022.124933 – volume: 5 start-page: 498 year: 2023 ident: ref_54 article-title: Self-Powered Electronic Skin for Remote Human–Machine Synchronization publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.2c01476 – volume: 1 start-page: 100005 year: 2019 ident: ref_6 article-title: A review on the key issues of the lithium ion battery degradation among the whole life cycle publication-title: Etransportation doi: 10.1016/j.etran.2019.100005 – ident: ref_11 doi: 10.3390/technologies11020042 – volume: 35 start-page: 11855 year: 2020 ident: ref_37 article-title: Multiobjective Optimization of Data-Driven Model for Lithium-Ion Battery SOH Estimation With Short-Term Feature publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.2987383 – volume: 68 start-page: 3170 year: 2021 ident: ref_26 article-title: A Data-Driven Approach with Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-ion Battery publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.2973876 – ident: ref_42 doi: 10.3390/app12031398 – volume: 119 start-page: 896 year: 2015 ident: ref_3 article-title: Understanding Lithium Inventory Loss and Sudden Performance Fade in Cylindrical Cells during Cycling with Deep-Discharge Steps publication-title: J. Phys. Chem. C doi: 10.1021/jp510071d – volume: 65 start-page: 6730 year: 2018 ident: ref_45 article-title: Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2787586 – volume: 292 start-page: 116897 year: 2021 ident: ref_52 article-title: A machine-learning prediction method of lithium-ion battery life based on charge process for different applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116897 – volume: 36 start-page: 3531 year: 2011 ident: ref_13 article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles publication-title: Energy doi: 10.1016/j.energy.2011.03.059 – volume: 63 start-page: 2645 year: 2016 ident: ref_17 article-title: Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian Predictive Modeling publication-title: IEEE Trans. Ind. Electron. – volume: 65 start-page: 1282 year: 2016 ident: ref_14 article-title: Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Spherical Cubature Particle Filter publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2016.2534258 |
| SSID | ssj0000331333 |
| Score | 2.6512237 |
| SecondaryResourceType | review_article |
| Snippet | As an important energy storage device, lithium-ion batteries (LIBs) have been widely used in various fields due to their remarkable advantages. The high level... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3167 |
| SubjectTerms | Accuracy Aging Algorithms Analysis Batteries Data processing data-driven algorithms Datasets Decomposition Electrodes Electrolytes Energy industry Graphite Information management LIB Lithium Machine learning Methods Neural networks Power SOH |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSxwxFA4iPdhDabWla60MtFB6CObHzCQ5bqtiQVahLXgL-dku6K7Mjv79fW8y6hYqXnoZwiOHzPfy8uabJN8j5KNjjdA8tzSZ2tNaCk4dz5KapsmZB-5l8fSpms30xYU5Xyv1hWfCijxwAe5A15EbFSJzztTaeJ94EEboJmnI9HFQAmXKrJGpYQ2WEsiXLHqkEnj9QVqglBre-_4rAw1C_Y8tx0OOOX5JXowfh9W0DOoV2UiLbfJ8TTJwh8ymVfmdXy1z9f3spDrvcKsF4UXL6Zx-g1ZRzQQSDK1VihWYDl3v6GGHi1s1vfy17Ob976vVa_Lz-OjH1xM61kSgAaKtp60wPCsRkzNYd8j7liXHWgger5hrhddKA84p1lp4DpCF2GjntQ5cMTyI9oZsLpaL9JZU2UeRcx2FZ_B0tRFCpcYxnSSPPMgJ-XyHkw2jYDjWrbi0QBwQU_uA6YR8uO97XWQy_tnrC8J93wOlrQcDONyODrdPOXxCPqGzLAYgDCe48R4BvBRKWdmpAsaP2-liQvbu_GnHyFxZoVCPBm_S7_6P0bwjW1iAvpzl2SObfXeT3pNn4bafr7r9YVL-AX2j43E priority: 102 providerName: Directory of Open Access Journals |
| Title | A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms |
| URI | https://www.proquest.com/docview/2799600480 https://doaj.org/article/84d197cd0aa9489bbe1c29285e8435d4 |
| Volume | 16 |
| WOSCitedRecordID | wos000969458400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3oiFUkUCCXGwGjsP2ye0pVu1UrtEPKRysvwsldrdNgkc-e3MJN4tSMCFi2U5luLk84w9M_Y3hLwyecUlizUNqrS0LDijhsWCqqqKkTlmixHpIzGfy5MT1SSHW5eOVa504qCo_dKhj3yHC-QRwRvQby-vKGaNwuhqSqFxk2wiUxnM883d2bz5sPay5EUBRlgx8pIWYN_vhAVSquH9799WooGw_29qeVhr9u_97yjvk7tpl5lNx2nxgNwIi4fkzi_cg4_IfJqNcYFsGbOP7w-ypsWYDeKELUdn9BBqI_0mWNNQ64LPoGnP9Ibutagls-n5Kby9_3rRPSaf92ef3h3QlFyBOhDbntZcsSi4D0ZhAiNr6zyYvAYptCI3NbdSSAAs-FJyy4wqna-ksVI6JnI80faEbCyWi_CUZNF6HmPpuc2hNKXiXITK5DIUzDNXTMib1Y_WLjGPYwKMcw0WCIKir0GZkJfrvpcj38Yfe-0iXuseyJE9NCzbU51ETsvSMyWczw2MXiprA3NccVkFCXtEX07Ia0RboyTDcJxJFxLgo5ATS09FWSuMy_MJ2VqhrZOId_oa6mf_fvyc3MYc9eNxny2y0bffwgtyy33vz7p2O83Y7cEZAOXxjxm0NYfHzZeflHD23Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I26UCASIMTBauw4iX1AaGGpdtXtshJFak_Gr7Qrld2SBBB_it-IZ5NsQQJuPXCJLMeKPPaXGT9mvgF4quOUCVpkxEtuCE8YJZoWCZFpWhTUUpM0Mz3Jp1NxeChnG_Cji4VBt8pOJ64UtVtaPCPfYTnyiGAE9KuzzwSzRuHtapdCo4HFnv_-LWzZqpfjYZjfZ4ztvj14MyJtVgFiA15rkjFJi5w5ryVm7jEmi72OswA_k8c6Y0bkIvTUOy6YoVpy61KhjRCW5jG6coXvXoJNjmDvweZsvD87Wp_qxEkSNn1Jw4OaJDLe8QukcMN4898s3ypBwN_MwMq27d7430blJlxvV9HRoIH9Ldjwi9tw7RduxTswHUTNvUe0LKL370bRrMQ7KcQh1kzmZBxKDb3o3FehVHkXhaqhrjUZlmgFosHpcZC2PvlU3YUPFyLQPegtlgu_BVFhHCsK7piJw1NzyVjuUx0Ln1BHbdKHF93EKtsyq2OCj1MVdlgIAnUOgj48Wbc9a_hE_tjqNeJj3QI5wFcVy_JYtSpFCe6ozK2Ldei9kMZ4aplkIvUirIEd78NzRJdCTRW6Y3UbcBGEQs4vNch5JtHvgPVhu0OXalVYpc6hdf_frx_DldHB_kRNxtO9B3CVhVVg49q0Db26_OIfwmX7tZ5X5aP2b4ng40VD8Sfgrk-n |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYTgwBttYYFIgBAHq7Gdh31AqFCqrbaUSoC0ezJ-ZbfS0i5JAPHX-HV4mqQLEnDbA5fIcqzIjj_PjO2ZbwAe6zhlghYZ8TIxJOGMEk0LTmSaFgW11PBmpqf5bCYODuR8C350sTDoVtnJxLWgdiuLZ-QDliOPCEZAD4rWLWI-Gr84_UwwgxTetHbpNBqI7Pvv38L2rXo-GYW5fsLY-PX7V3ukzTBAbMBuTTImaZEz57XELD7GZLHXcRagaPJYZ8yIXIRee5cIZqiWiXWp0EYIS_MY3brCdy_AdjDJE9aD7fnkzfxwc8ITcx42gLzhROVcxgO_RDo3jD3_TQuukwX8TSWs9dz42v_8h67D1da6jobNcrgBW355E678wrl4C2bDqLkPiVZF9O7tXjQv8a4K8Yk10wWZhFJDO7rwVShV3kWhaqRrTUYlaodoeHIURlsff6puw4dzGdAd6C1XS78DUWEcK4rEMROHp04kY7lPdSw8p45a3odn3SQr2zKuY-KPExV2XggIdQaIPjzatD1teEb-2OolYmXTArnB1xWr8ki1okaJxFGZWxfr0HshjfHUMslE6kWwjV3Sh6eINIUSLHTH6jYQIwwKucDUME8yif4IrA-7HdJUK9oqdQazu_9-_RAuBfyp6WS2fw8us2AcNh5Pu9Cryy_-Ply0X-tFVT5oF04EH88biT8B189YZw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+SOH+Prediction+of+Li-Ion+Batteries+Based+on+Data-Driven+Algorithms&rft.jtitle=Energies+%28Basel%29&rft.au=Zhang%2C+Ming&rft.au=Yang%2C+Dongfang&rft.au=Du%2C+Jiaxuan&rft.au=Sun%2C+Hanlei&rft.date=2023-04-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=7&rft.spage=3167&rft_id=info:doi/10.3390%2Fen16073167&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en16073167 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |