Managing computational complexity using surrogate models: a critical review
In simulation-based realization of complex systems, we are forced to address the issue of computational complexity. One critical issue that must be addressed is the approximation of reality using surrogate models to replace expensive simulation models of engineering problems. In this paper, we criti...
Gespeichert in:
| Veröffentlicht in: | Research in engineering design Jg. 31; H. 3; S. 275 - 298 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Springer London
01.07.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0934-9839, 1435-6066 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In simulation-based realization of complex systems, we are forced to address the issue of computational complexity. One critical issue that must be addressed is the approximation of reality using surrogate models to replace expensive simulation models of engineering problems. In this paper, we critically review over 200 papers. We find that a framework for selecting appropriate surrogate modeling methods for a given function with specific requirements has been lacking. Having such a framework for surrogate model users, specifically practitioners in industry, is very important because there is very limited information about the performance of different models before applying them on the problem. Our contribution in this paper is to address this gap by creating practical guidance based on a trade-off among three main drivers, namely, size (how much information is necessary to compute the surrogate model), accuracy (how accurate the surrogate model must be) and computational time (how much time is required for the surrogate modeling process). Using the proposed guidance a huge amount of time is saved by avoiding time-consuming comparisons before selecting the appropriate surrogate model. To make this contribution, we review the state-of-the-art surrogate modeling literature to answer the following three questions: (1) What are the main classes of the design of experiment (DOE) methods, surrogate modeling methods and model-fitting methods based on the requirements of size, computational time, and accuracy? (2) Which surrogate modeling method is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? (3) Which DOE is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? Based on these three characteristics, we find six different qualitative categories for the surrogate models through a critical evaluation of the literature. These categories provide a framework for selecting an efficient surrogate modeling process to assist those who wish to select more appropriate surrogate modeling techniques for a given function. It is also summarized in Table
4
and Figs.
2
,
3
. MARS, response surface models, and kriging are more appropriate for large problems, acquiring less computation time and high accuracy, respectively. Also, Latin Hypercube
,
fractional factorial designs and D-Optimal designs are appropriate experimental designs. Our contribution is to propose a qualitative evaluation and a mental model which is based on quantitative results and findings of authors in the published literature. The value of such a framework is in providing practical guide for researchers and practitioners in industry to choose the most appropriate surrogate model based on incomplete information about an engineering design problem. Another contribution is to use three drivers, namely, computational time, accuracy, and problem size instead of using a single measure that authors generally use in the published literature. |
|---|---|
| AbstractList | In simulation-based realization of complex systems, we are forced to address the issue of computational complexity. One critical issue that must be addressed is the approximation of reality using surrogate models to replace expensive simulation models of engineering problems. In this paper, we critically review over 200 papers. We find that a framework for selecting appropriate surrogate modeling methods for a given function with specific requirements has been lacking. Having such a framework for surrogate model users, specifically practitioners in industry, is very important because there is very limited information about the performance of different models before applying them on the problem. Our contribution in this paper is to address this gap by creating practical guidance based on a trade-off among three main drivers, namely, size (how much information is necessary to compute the surrogate model), accuracy (how accurate the surrogate model must be) and computational time (how much time is required for the surrogate modeling process). Using the proposed guidance a huge amount of time is saved by avoiding time-consuming comparisons before selecting the appropriate surrogate model. To make this contribution, we review the state-of-the-art surrogate modeling literature to answer the following three questions: (1) What are the main classes of the design of experiment (DOE) methods, surrogate modeling methods and model-fitting methods based on the requirements of size, computational time, and accuracy? (2) Which surrogate modeling method is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? (3) Which DOE is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? Based on these three characteristics, we find six different qualitative categories for the surrogate models through a critical evaluation of the literature. These categories provide a framework for selecting an efficient surrogate modeling process to assist those who wish to select more appropriate surrogate modeling techniques for a given function. It is also summarized in Table 4 and Figs. 2, 3. MARS, response surface models, and kriging are more appropriate for large problems, acquiring less computation time and high accuracy, respectively. Also, Latin Hypercube, fractional factorial designs and D-Optimal designs are appropriate experimental designs. Our contribution is to propose a qualitative evaluation and a mental model which is based on quantitative results and findings of authors in the published literature. The value of such a framework is in providing practical guide for researchers and practitioners in industry to choose the most appropriate surrogate model based on incomplete information about an engineering design problem. Another contribution is to use three drivers, namely, computational time, accuracy, and problem size instead of using a single measure that authors generally use in the published literature. In simulation-based realization of complex systems, we are forced to address the issue of computational complexity. One critical issue that must be addressed is the approximation of reality using surrogate models to replace expensive simulation models of engineering problems. In this paper, we critically review over 200 papers. We find that a framework for selecting appropriate surrogate modeling methods for a given function with specific requirements has been lacking. Having such a framework for surrogate model users, specifically practitioners in industry, is very important because there is very limited information about the performance of different models before applying them on the problem. Our contribution in this paper is to address this gap by creating practical guidance based on a trade-off among three main drivers, namely, size (how much information is necessary to compute the surrogate model), accuracy (how accurate the surrogate model must be) and computational time (how much time is required for the surrogate modeling process). Using the proposed guidance a huge amount of time is saved by avoiding time-consuming comparisons before selecting the appropriate surrogate model. To make this contribution, we review the state-of-the-art surrogate modeling literature to answer the following three questions: (1) What are the main classes of the design of experiment (DOE) methods, surrogate modeling methods and model-fitting methods based on the requirements of size, computational time, and accuracy? (2) Which surrogate modeling method is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? (3) Which DOE is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? Based on these three characteristics, we find six different qualitative categories for the surrogate models through a critical evaluation of the literature. These categories provide a framework for selecting an efficient surrogate modeling process to assist those who wish to select more appropriate surrogate modeling techniques for a given function. It is also summarized in Table 4 and Figs. 2 , 3 . MARS, response surface models, and kriging are more appropriate for large problems, acquiring less computation time and high accuracy, respectively. Also, Latin Hypercube , fractional factorial designs and D-Optimal designs are appropriate experimental designs. Our contribution is to propose a qualitative evaluation and a mental model which is based on quantitative results and findings of authors in the published literature. The value of such a framework is in providing practical guide for researchers and practitioners in industry to choose the most appropriate surrogate model based on incomplete information about an engineering design problem. Another contribution is to use three drivers, namely, computational time, accuracy, and problem size instead of using a single measure that authors generally use in the published literature. |
| Author | Allen, Janet K. Mistree, Farrokh Alizadeh, Reza |
| Author_xml | – sequence: 1 givenname: Reza surname: Alizadeh fullname: Alizadeh, Reza organization: The Systems Realization Laboratory, Industrial and Systems Engineering, University of Oklahoma – sequence: 2 givenname: Janet K. orcidid: 0000-0003-0686-6764 surname: Allen fullname: Allen, Janet K. email: janet.allen@ou.edu organization: The Systems Realization Laboratory, Industrial and Systems Engineering, University of Oklahoma – sequence: 3 givenname: Farrokh surname: Mistree fullname: Mistree, Farrokh organization: The Systems Realization Laboratory, Aerospace and Mechanical Engineering, University of Oklahoma |
| BookMark | eNp9kE1LwzAYgINMcJv-AU8Fz9E3n228yfALFS96DlmSloyunUmr7t_brYLgYafwkudJXp4ZmjRt4xE6J3BJAPKrBEAkw0ABAzAmcX6EpoQzgSVIOUFTUIxjVTB1gmYprQBAMkGn6OnFNKYKTZXZdr3pO9OFtjH1fqr9d-i2WZ9216mPsa1M57N163ydrjOT2Ri6YAc6-s_gv07RcWnq5M9-zzl6v7t9Wzzg59f7x8XNM7YcoMPCWulkIZzzueUKyNJ54RkFyyWFkiu3FE74JaOFKo3JB165UjrgUhDFgc3RxfjuJrYfvU-dXrV9HLZOmhFBGCgq1CGKckIpVYSTgaIjZWObUvSl3sSwNnGrCehdWj2m1UNavU-r80Eq_kk2jOW6aEJ9WGWjmoZ_msrHv60OWD-YDY9U |
| CitedBy_id | crossref_primary_10_1016_j_envres_2023_117268 crossref_primary_10_1016_j_future_2021_05_019 crossref_primary_10_1016_j_ijnonlinmec_2024_104876 crossref_primary_10_3390_su13126514 crossref_primary_10_1016_j_cma_2023_116498 crossref_primary_10_1007_s00521_025_11039_2 crossref_primary_10_1016_j_pnucene_2025_105745 crossref_primary_10_3390_en16104030 crossref_primary_10_1186_s43065_025_00128_0 crossref_primary_10_1016_j_cma_2025_117911 crossref_primary_10_1109_TEVC_2024_3352450 crossref_primary_10_3389_fpace_2025_1522006 crossref_primary_10_1007_s12667_023_00647_3 crossref_primary_10_3390_app13105989 crossref_primary_10_1007_s10948_022_06479_z crossref_primary_10_1016_j_compbiomed_2024_109646 crossref_primary_10_1007_s11081_025_10001_4 crossref_primary_10_3389_fceng_2020_568196 crossref_primary_10_1016_j_eswa_2021_115491 crossref_primary_10_1016_j_istruc_2024_107246 crossref_primary_10_1016_j_jcp_2022_111454 crossref_primary_10_1063_5_0292568 crossref_primary_10_3390_en13174427 crossref_primary_10_1109_ACCESS_2023_3329836 crossref_primary_10_1016_j_jclepro_2024_143935 crossref_primary_10_1007_s10098_021_02168_y crossref_primary_10_1145_3766063 crossref_primary_10_1016_j_aei_2025_103552 crossref_primary_10_1038_s41598_023_50719_8 crossref_primary_10_1016_j_seta_2021_101453 crossref_primary_10_1007_s11831_025_10391_9 crossref_primary_10_1109_TIA_2024_3430252 crossref_primary_10_1016_j_ijfatigue_2023_107654 crossref_primary_10_3847_PSJ_ad50a7 crossref_primary_10_1088_2632_2153_ad9fce crossref_primary_10_1007_s41781_025_00130_x crossref_primary_10_1088_1361_6587_ada1f5 crossref_primary_10_3390_sym14061219 crossref_primary_10_1016_j_aei_2023_101914 crossref_primary_10_1016_j_cie_2022_108746 crossref_primary_10_1016_j_compchemeng_2025_109243 crossref_primary_10_1016_j_eswa_2021_116030 crossref_primary_10_1016_j_arcontrol_2024_100943 crossref_primary_10_1115_1_4068821 crossref_primary_10_1016_j_ymssp_2023_110796 crossref_primary_10_1002_eqe_4151 crossref_primary_10_1007_s11431_024_2764_5 crossref_primary_10_1016_j_apenergy_2023_121247 crossref_primary_10_1007_s12289_023_01803_x crossref_primary_10_1016_j_geoen_2023_211969 crossref_primary_10_1016_j_cja_2024_08_023 crossref_primary_10_1016_j_rineng_2025_106061 crossref_primary_10_1016_j_petrol_2021_109089 crossref_primary_10_1093_jcde_qwae102 crossref_primary_10_1016_j_engstruct_2024_117692 crossref_primary_10_3389_fphys_2024_1473125 crossref_primary_10_1080_15376494_2024_2404183 crossref_primary_10_1016_j_eswa_2021_114776 crossref_primary_10_1007_s10668_021_01521_x crossref_primary_10_1016_j_aei_2023_102039 crossref_primary_10_1016_j_dche_2023_100136 crossref_primary_10_1016_j_eswa_2022_116564 crossref_primary_10_1080_09544828_2023_2191242 crossref_primary_10_20965_ijat_2025_p0879 crossref_primary_10_1016_j_ymssp_2022_109656 crossref_primary_10_1016_j_ifacol_2023_10_1020 crossref_primary_10_1177_03611981241257513 crossref_primary_10_1016_j_strusafe_2025_102578 crossref_primary_10_1007_s10845_025_02603_7 crossref_primary_10_1016_j_eswa_2020_114549 crossref_primary_10_1016_j_pecs_2022_101010 crossref_primary_10_1108_EC_10_2021_0567 crossref_primary_10_1016_j_cherd_2024_09_031 crossref_primary_10_1016_j_oceaneng_2024_116862 crossref_primary_10_1016_j_cma_2025_117793 crossref_primary_10_1016_j_eswa_2022_117089 crossref_primary_10_1007_s00158_025_03976_2 crossref_primary_10_1016_j_aei_2023_102028 crossref_primary_10_1016_j_cma_2023_116061 crossref_primary_10_1371_journal_pone_0254861 crossref_primary_10_53982_ajerd_2025_0802_04_j crossref_primary_10_3390_photonics11050442 crossref_primary_10_1016_j_ifacol_2023_10_1371 crossref_primary_10_1177_09544062241304869 crossref_primary_10_3390_app15179573 crossref_primary_10_1016_j_engstruct_2024_117597 crossref_primary_10_1016_j_cie_2024_110374 crossref_primary_10_1016_j_apm_2023_07_011 crossref_primary_10_1007_s00521_022_07297_z crossref_primary_10_1016_j_rineng_2025_105712 crossref_primary_10_1016_j_eswa_2022_118288 crossref_primary_10_1007_s11831_024_10152_0 crossref_primary_10_1016_j_scs_2024_106055 crossref_primary_10_1149_1945_7111_ad4a11 crossref_primary_10_1016_j_eswa_2022_118847 crossref_primary_10_1016_j_procir_2024_10_027 crossref_primary_10_1016_j_scitotenv_2022_159544 crossref_primary_10_3390_math9192442 crossref_primary_10_1016_j_rcim_2024_102942 crossref_primary_10_1016_j_commatsci_2022_111750 crossref_primary_10_1016_j_enpol_2020_112105 crossref_primary_10_1016_j_jenvman_2025_125163 crossref_primary_10_1109_JLT_2024_3386886 crossref_primary_10_1016_j_jobe_2024_108766 crossref_primary_10_1002_advs_202403543 crossref_primary_10_1016_j_eswa_2021_114982 crossref_primary_10_1016_j_eswa_2020_114442 crossref_primary_10_1007_s00477_024_02869_y crossref_primary_10_1016_j_seps_2022_101492 crossref_primary_10_1007_s12667_022_00535_2 crossref_primary_10_1016_j_compchemeng_2024_108723 crossref_primary_10_3390_su13084197 crossref_primary_10_1016_j_cie_2024_110434 crossref_primary_10_1016_j_compstruct_2025_119355 crossref_primary_10_1007_s11538_023_01240_6 crossref_primary_10_1080_19401493_2024_2440418 crossref_primary_10_1016_j_eswa_2021_115427 crossref_primary_10_1007_s11081_022_09731_6 crossref_primary_10_1093_synbio_ysaf011 crossref_primary_10_1016_j_eswa_2022_117451 crossref_primary_10_3390_electronics14132678 crossref_primary_10_1177_13694332251346848 crossref_primary_10_1016_j_jhydrol_2025_134087 crossref_primary_10_1177_09544089221128366 crossref_primary_10_1177_09544097251378587 crossref_primary_10_1016_j_apenergy_2024_123634 crossref_primary_10_1109_TCPMT_2025_3592441 crossref_primary_10_1109_ACCESS_2024_3416811 crossref_primary_10_1515_revce_2022_0041 crossref_primary_10_1063_5_0273551 crossref_primary_10_1016_j_cad_2022_103232 crossref_primary_10_1016_j_cma_2022_115396 crossref_primary_10_1002_cav_2265 crossref_primary_10_1016_j_eswa_2020_114504 crossref_primary_10_1016_j_jmsy_2024_09_012 crossref_primary_10_1016_j_eswa_2021_115659 crossref_primary_10_1016_j_asoc_2025_113440 crossref_primary_10_1371_journal_pone_0321862 crossref_primary_10_1016_j_petrol_2021_108939 crossref_primary_10_1016_j_chip_2025_100132 crossref_primary_10_1016_j_eswa_2021_115410 crossref_primary_10_1007_s10064_025_04367_z crossref_primary_10_1007_s11804_025_00627_2 crossref_primary_10_1016_j_petrol_2022_110866 crossref_primary_10_1016_j_simpat_2023_102811 crossref_primary_10_1080_15732479_2022_2033799 crossref_primary_10_1007_s10845_022_01949_6 crossref_primary_10_1016_j_buildenv_2023_111157 crossref_primary_10_1016_j_ecolmodel_2024_110956 crossref_primary_10_1080_19942060_2024_2440075 crossref_primary_10_1177_10775463221125038 crossref_primary_10_3390_en14020468 crossref_primary_10_3390_math12030426 crossref_primary_10_1016_j_advengsoft_2024_103740 crossref_primary_10_1088_1742_6596_2658_1_012003 crossref_primary_10_1016_j_engstruct_2024_119214 crossref_primary_10_1016_j_eswa_2020_114515 crossref_primary_10_1038_s41524_021_00634_1 crossref_primary_10_1109_ACCESS_2025_3593900 crossref_primary_10_1016_j_procs_2025_03_106 crossref_primary_10_1007_s00158_023_03567_z crossref_primary_10_1016_j_eswa_2020_114512 crossref_primary_10_1016_j_eswa_2021_115403 crossref_primary_10_1016_j_aei_2020_101123 crossref_primary_10_1007_s00366_025_02123_1 crossref_primary_10_1007_s00158_025_03969_1 crossref_primary_10_1016_j_apm_2022_11_039 crossref_primary_10_1080_15502287_2021_1921883 crossref_primary_10_1016_j_aei_2025_103718 crossref_primary_10_1016_j_pnucene_2023_104594 crossref_primary_10_1080_19401493_2023_2282078 crossref_primary_10_1016_j_cad_2022_103446 crossref_primary_10_1016_j_enbenv_2023_07_002 crossref_primary_10_1016_j_eswa_2021_115519 crossref_primary_10_1016_j_energy_2025_136709 crossref_primary_10_3390_jmse12020276 crossref_primary_10_1109_TVCG_2024_3456372 crossref_primary_10_3390_math12182949 crossref_primary_10_3390_app12073420 crossref_primary_10_1007_s10489_022_04024_y crossref_primary_10_1016_j_asoc_2023_110744 crossref_primary_10_1007_s00362_022_01334_8 crossref_primary_10_3390_modelling5040106 crossref_primary_10_1016_j_rineng_2024_102483 crossref_primary_10_1007_s40033_022_00424_z crossref_primary_10_3390_ani15070970 crossref_primary_10_1007_s00500_021_06348_2 crossref_primary_10_1016_j_cad_2025_103951 crossref_primary_10_1016_j_jmapro_2025_03_112 crossref_primary_10_1016_j_eswa_2021_114934 crossref_primary_10_1016_j_eswa_2024_124229 crossref_primary_10_3390_fluids8030080 crossref_primary_10_1177_09544062241312888 crossref_primary_10_1016_j_ecoinf_2024_102698 crossref_primary_10_1177_13694332241260140 crossref_primary_10_1016_j_istruc_2023_105712 crossref_primary_10_1016_j_cofs_2024_101196 crossref_primary_10_3390_computers14070287 crossref_primary_10_1007_s00500_022_07362_8 crossref_primary_10_15406_ijh_2024_08_00390 crossref_primary_10_3390_make6020038 crossref_primary_10_3390_cli12110189 crossref_primary_10_1016_j_eswa_2022_116609 crossref_primary_10_1063_5_0290594 crossref_primary_10_1088_1361_651X_ad4b4c crossref_primary_10_1016_j_procs_2023_08_175 crossref_primary_10_3390_ma18071469 crossref_primary_10_1038_s41598_024_67142_2 crossref_primary_10_1016_j_finel_2024_104276 crossref_primary_10_1007_s00163_022_00406_y crossref_primary_10_1016_j_ces_2025_122347 crossref_primary_10_1016_j_eswa_2020_114381 crossref_primary_10_1016_j_compchemeng_2025_109178 crossref_primary_10_1080_0305215X_2023_2247369 crossref_primary_10_1016_j_neucom_2025_130521 crossref_primary_10_1016_j_compchemeng_2023_108249 crossref_primary_10_1016_j_softx_2025_102077 crossref_primary_10_1061__ASCE_CO_1943_7862_0002394 crossref_primary_10_1016_j_enbuild_2025_115441 crossref_primary_10_1016_j_apacoust_2025_110625 crossref_primary_10_3390_math10030481 crossref_primary_10_1016_j_ces_2025_122374 crossref_primary_10_3390_aerospace11100830 crossref_primary_10_3390_app14135620 crossref_primary_10_1016_j_jocs_2021_101427 crossref_primary_10_1007_s11227_025_07032_0 crossref_primary_10_1016_j_cam_2024_115794 crossref_primary_10_1108_COMPEL_11_2023_0552 crossref_primary_10_1145_3653024 crossref_primary_10_1115_1_4068456 crossref_primary_10_1016_j_apenergy_2024_123130 crossref_primary_10_1016_j_istruc_2023_104964 crossref_primary_10_1038_s44304_025_00122_2 crossref_primary_10_1080_00949655_2022_2060223 crossref_primary_10_1007_s00170_025_15032_w crossref_primary_10_1109_ACCESS_2021_3127881 crossref_primary_10_1007_s11831_021_09539_0 crossref_primary_10_1109_MCG_2025_3549665 crossref_primary_10_1108_ECAM_05_2022_0470 crossref_primary_10_1371_journal_pcbi_1009135 crossref_primary_10_3390_su16229851 crossref_primary_10_1007_s13137_023_00240_x crossref_primary_10_3390_a17010041 crossref_primary_10_1139_cgj_2022_0696 crossref_primary_10_1186_s43067_025_00238_5 crossref_primary_10_1016_j_aei_2024_102706 crossref_primary_10_3390_ma17030742 crossref_primary_10_1007_s00477_022_02288_x crossref_primary_10_1016_j_apor_2025_104514 crossref_primary_10_1016_j_envsoft_2021_105231 crossref_primary_10_1016_j_solener_2023_111811 crossref_primary_10_1007_s00466_021_01979_6 crossref_primary_10_1016_j_iswa_2021_200059 crossref_primary_10_1002_eqe_4115 crossref_primary_10_1007_s13349_025_01011_y crossref_primary_10_3390_aerospace11100839 |
| Cites_doi | 10.2118/172536-MS 10.1198/004017004000000211 10.1016/j.cageo.2016.02.022 10.1007/s00158-016-1579-y 10.1115/DETC2003/CIE-48230 10.1016/j.paerosci.2008.11.001 10.1166/asl.2018.11136 10.1080/00401706.1969.10490707 10.2514/6.2000-4801 10.1137/16M1082469 10.1080/00401706.1962.10490035 10.1080/0305215X.2014.954565 10.1080/03052150701690764 10.1023/A:1010933404324 10.1115/1.4002751 10.1023/A:1008306431147 10.2514/6.2006-7047 10.1016/j.procir.2018.03.234 10.1115/1.4001873 10.1007/s00500-003-0328-5 10.1080/0305215X.2015.1115645 10.2514/2.7431 10.1007/s00158-006-0051-9 10.1162/neco.1997.9.7.1545 10.1016/j.ejor.2016.10.031 10.2514/6.2005-333 10.1111/biom.12971 10.1080/00401706.1960.10489912 10.1007/s00158-016-1432-3 10.1109/34.857004 10.1115/DETC2009-87053 10.1007/s00158-017-1891-1 10.1115/DETC2010-28226 10.1093/biomet/asp045 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 10.1007/978-3-540-32827-8 10.1115/1.4034219 10.1007/978-1-4419-9326-7_5 10.1016/S0010-4655(98)00171-4 10.1115/1.3130791 10.2514/1.J054343 10.1080/00401706.2012.723572 10.1145/288627.288651 10.1353/book.21076 10.1115/IMECE2015-51862 10.1007/s00158-010-0554-2 10.1016/j.jspi.2008.10.023 10.1007/978-3-319-54157-0_27 10.1007/s00158-014-1096-9 10.1115/DETC2008-49961 10.1017/S089006041900026X 10.1039/B918972F 10.1016/j.techfore.2015.11.030 10.2514/6.2012-5576 10.1115/1.3184599 10.1016/j.ijforecast.2015.12.003 10.1023/A:1012771025575 10.1115/DETC2004-57722 10.1115/DETC2005-85043 10.1080/00401706.1993.10484990 10.1115/1.1897403 10.1007/s10898-012-9892-5 10.1016/j.rcim.2005.07.004 10.1016/j.eswa.2014.11.020 10.1007/978-3-319-54157-0_12 10.1080/0305215X.2015.1100470 10.1093/biomet/87.1.1 10.1109/CEC.2012.6256491 10.1016/j.neunet.2014.09.003 10.1089/ees.2018.0366 10.1007/s11831-017-9226-3 10.1115/DETC2011-47288 10.1109/34.709601 10.1145/2908812.2908952 10.1029/2005WR004640 10.1111/j.0006-341X.2001.00081.x 10.2514/1.45790 10.1080/00401706.1996.10484417 10.1016/j.geoderma.2011.03.010 10.1137/S1064827503426693 10.1115/DETC2011-47217 10.1016/j.cma.2008.11.023 10.1109/TMMS.1970.299942 10.1126/science.246.4927.221 10.1299/jamdsm.6.404 10.1080/00401706.1988.10488328 10.2514/1.J052375 10.1016/j.compstruct.2015.05.029 10.1115/1.4039450 10.1115/1.2179459 10.4324/9780203763247 10.1115/DETC97/DTM-3881 10.1115/DETC2005-85544 10.1080/07408170500232495 10.1016/j.ejor.2007.10.013 10.1109/TII.2012.2205932 10.1007/978-1-4899-4467-2 10.1198/106186008X320681 10.1115/DETC2007-35852 10.1007/s00158-018-1906-6 10.1007/s11081-008-9043-5 10.1007/BF01743349 10.1002/wics.73 10.1061/(ASCE)0733-9399(2002)128:4(380) 10.1115/DETC2010-28813 10.1007/s00158-009-0420-2 10.1016/S0951-8320(98)00008-8 10.1080/03052150008941302 10.1007/s41872-018-00072-x 10.1002/qre.1259 10.1145/1276958.1277203 10.1111/1467-9868.00294 10.1016/j.procs.2016.09.309 10.1007/s00158-004-0389-9 10.1007/s00158-017-1890-2 10.1080/00224065.1994.11979537 10.1016/S1364-8152(99)00007-9 10.4271/2015-01-1369 10.1016/S0378-3758(98)00025-1 10.1198/004017008000000262 10.1115/IMECE2011-62480 10.2514/6.2010-3089 10.1080/03052159808941369 10.1115/DETC2008-49240 10.1016/j.compstruct.2017.01.061 10.1038/ng.3703 10.1016/j.envsoft.2014.05.026 10.1115/1.4007988 10.1115/IMECE2010-38323 10.1214/aos/1013203451 10.1016/S0377-2217(96)00156-7 10.1109/CEC.2016.7744340 10.1115/DETC2015-47850 10.1198/tas.2005.s249 10.1007/s00366-006-0051-9 10.1115/FEDSM2006-98368 10.1002/wics.27 10.2514/1.J050327 10.1016/S0169-7161(03)22009-5 10.1115/1.4033918 10.1214/aos/1032181157 10.1504/IJCAET.2017.080769 10.1007/978-3-319-15934-8_1 10.1115/DETC2014-35037 10.2514/2.2435 10.1214/aoms/1177707047 10.1007/s10462-017-9601-3 10.1115/IMECE2010-37459 10.2514/6.1997-1331 10.1007/s00158-001-0160-4 10.1016/j.jhydrol.2019.03.020 10.1023/A:1008391403193 10.1007/BF01531079 10.1115/DETC2006-99637 10.2514/1.40291 10.2514/6.2010-3090 10.1115/1.4034035 10.1080/03052150601077260 10.1287/ijoc.1060.0182 10.1007/BF01197554 10.1287/opre.28.5.1251 10.1002/qre.1591 10.2514/1.J052930 10.1115/DETC2015-46476 10.1007/s00158-013-0956-z 10.1016/j.renene.2014.09.001 10.1080/0305215X.2012.709509 10.1016/j.ress.2005.11.031 10.1080/00401706.1988.10488327 10.1023/A:1011255519438 10.1016/j.jcp.2006.01.037 10.2514/6.1998-4755 10.1007/PL00007198 10.1115/IMECE2011-62450 10.1115/1.4039128 10.1007/s00158-006-0025-y 10.1115/DETC2011-47483 10.1023/A:1016012404105 10.2514/6.2008-5802 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Springer-Verlag London Ltd., part of Springer Nature 2020. Copyright Springer Nature B.V. Jul 2020 |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. – notice: Copyright Springer Nature B.V. Jul 2020 |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s00163-020-00336-7 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database Engineering Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1435-6066 |
| EndPage | 298 |
| ExternalDocumentID | 10_1007_s00163_020_00336_7 |
| GrantInformation_xml | – fundername: University of Oklahoma grantid: 122-794800 – fundername: The University of Oklahoma grantid: 122-763300 – fundername: Tata Consultancy Services grantid: 105-373200 funderid: http://dx.doi.org/10.13039/100012913 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 28- 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR ZY4 _50 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c400t-5cc6d685dde7c4901bde5e320c4620f49db5d5eb3289faa75cc9df6d046519403 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 301 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524364800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0934-9839 |
| IngestDate | Wed Nov 05 08:38:54 EST 2025 Tue Nov 04 23:14:41 EST 2025 Sat Nov 29 03:38:56 EST 2025 Tue Nov 18 20:52:10 EST 2025 Fri Feb 21 02:35:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Design Response surface Surrogate model Meta model Model selection Computational complexity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-5cc6d685dde7c4901bde5e320c4620f49db5d5eb3289faa75cc9df6d046519403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0686-6764 |
| PQID | 2412229141 |
| PQPubID | 2043740 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_3151309259 proquest_journals_2412229141 crossref_primary_10_1007_s00163_020_00336_7 crossref_citationtrail_10_1007_s00163_020_00336_7 springer_journals_10_1007_s00163_020_00336_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: New York |
| PublicationTitle | Research in engineering design |
| PublicationTitleAbbrev | Res Eng Design |
| PublicationYear | 2020 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | L Laurent (336_CR130) 2017; 26 JH Panchal (336_CR157) 2008; 40 B Cheng (336_CR48) 1994; 9 E Acar (336_CR1) 2015; 42 J Friedman (336_CR72) 2001 S Shan (336_CR179) 2010; 41 TG Trucano (336_CR203) 2006; 91 M Messer (336_CR149) 2010; 132 D Bettebghor (336_CR24) 2011; 43 NR Draper (336_CR64) 1988; 30 N-K Nguyen (336_CR154) 1996; 38 IM Sobol (336_CR189) 1993; 1 PZ Qian (336_CR167) 2009; 19 Y Jin (336_CR110) 2005; 9 CD Lin (336_CR137) 2015; 31 336_CR162 JW Bandler (336_CR16) 2001; 2 S Dey (336_CR62) 2017; 171 CJ Turner (336_CR213) 2007; 39 Z Hou (336_CR104) 2019 MC Kennedy (336_CR119) 2001; 63 R Alizadeh (336_CR6) 2016; 104 Y Audoux (336_CR12) 2018; 70 D Gorissen (336_CR83) 2010; 11 C Hong (336_CR103) 2019; 75 M Ratto (336_CR169) 2012 TW Simpson (336_CR186) 2004; 27 336_CR175 336_CR174 H-M Gutmann (336_CR90) 2001; 19 J Xu (336_CR238) 2001; 57 EM Kleinberg (336_CR126) 2000; 22 336_CR176 GE Box (336_CR34) 1987 P Jaeckel (336_CR107) 1999; 2 BD Ripley (336_CR172) 2007 JM Lucas (336_CR139) 1994; 26 R Alizadeh (336_CR7) 2016; 2 SE Gano (336_CR73) 2006; 32 PC Hansen (336_CR95) 2012 K Lewis (336_CR132) 1998; 31 K Shankar Bhattacharjee (336_CR180) 2016; 138 B Peherstorfer (336_CR159) 2018; 60 A Khuri (336_CR120) 1988; 30 JC Steuben (336_CR192) 2014 336_CR184 336_CR183 A Gustafsson (336_CR89) 2013 336_CR187 S Kim (336_CR123) 2016; 32 D Gorissen (336_CR82) 2009; 10 Z Zhu (336_CR247) 2016; 10 DR Jones (336_CR113) 2001; 21 336_CR27 336_CR26 A Dey (336_CR61) 1985 M Babaei (336_CR13) 2016; 91 A Habib (336_CR91) 2017; 50 TW Simpson (336_CR185) 2001; 17 AS Hedayat (336_CR98) 2012 WJ Bandler (336_CR17) 2008; 9 FA Viana (336_CR228) 2013; 56 336_CR20 HR Maier (336_CR145) 2000; 15 336_CR193 336_CR195 336_CR194 DC Montgomery (336_CR151) 2017 336_CR197 336_CR19 X Song (336_CR190) 2018; 140 CJ Turner (336_CR215) 2007; 23 DYY Sim (336_CR182) 2018; 24 336_CR11 A Geist (336_CR76) 2000 MJ Karson (336_CR115) 1969; 11 Z Qian (336_CR164) 2006; 128 J Fang (336_CR69) 2017; 55 J Sobieszczanski-Sobieski (336_CR188) 1997; 14 E Kleinberg (336_CR124) 1990; 1 HR Madala (336_CR144) 1994 336_CR10 MH Karwan (336_CR116) 1980; 28 G De'ath (336_CR54) 2007; 88 SR Gunn (336_CR85) 1998; 14 PZ Qian (336_CR166) 2009; 37 C Liang (336_CR134) 2016; 54 IH Witten (336_CR234) 2016 R Balling (336_CR15) 1997; 35 336_CR49 D Higdon (336_CR100) 2004; 26 J Schmidhuber (336_CR177) 2015; 61 CJ Turner (336_CR204) 2005 KP Burnham (336_CR39) 2003 JD Deaton (336_CR55) 2014; 49 RS Michalski (336_CR150) 1983 RG Ghanem (336_CR77) 2006; 217 RT Haftka (336_CR92) 2016; 54 DK Lin (336_CR136) 1993; 35 JH Friedman (336_CR71) 2001; 29 P Luo (336_CR140) 2019; 29 P Ye (336_CR242) 2018; 58 A Grama (336_CR84) 2013 PZ Qian (336_CR163) 2009; 96 G Seni (336_CR178) 2010; 2 B Lemercier (336_CR131) 2012; 171 J Chen (336_CR45) 1998; 72 FKH Phoa (336_CR160) 2009; 139 TK Ho (336_CR102) 1998; 20 RG Easterling (336_CR67) 2002 P Mugunthan (336_CR152) 2006; 42 SAI Bellary (336_CR22) 2017; 9 336_CR66 T Yang (336_CR241) 2006; 22 V Vinzi (336_CR231) 2010 A Cutler (336_CR53) 2012 H Deng (336_CR60) 2012; 28 KS Bhattacharjee (336_CR28) 2017 PZG Qian (336_CR165) 2008; 50 S Geisser (336_CR75) 1993 Y Xiong (336_CR236) 2009; 198 JR Carbonell (336_CR41) 1970; 11 336_CR56 H Rabitz (336_CR168) 1989; 246 336_CR57 KS Bhattacharjee (336_CR29) 2018; 140 MC Kennedy (336_CR118) 2000; 87 E Kleinberg (336_CR125) 1996; 24 H Cho (336_CR50) 2014; 50 H Yin (336_CR243) 2018; 58 R Shi (336_CR181) 2016; 48 336_CR201 336_CR205 JP Kleijnen (336_CR245) 2009; 192 336_CR207 M Al-Juboori (336_CR5) 2019; 8 P Güntert (336_CR88) 1998; 12 336_CR206 RF Gunst (336_CR87) 2009; 1 B Glaz (336_CR79) 2009; 47 336_CR208 GEP Box (336_CR32) 1960; 2 H Deng (336_CR59) 2012; 6 336_CR80 DR Jones (336_CR114) 1998; 13 V Picheny (336_CR161) 2010; 132 JC Helton (336_CR99) 1999; 117 Z Jiang (336_CR109) 2016; 138 JC Steuben (336_CR199) 2013; 45 336_CR210 336_CR212 VC Chen (336_CR47) 2006; 38 336_CR211 H Wang (336_CR233) 2016; 48 336_CR214 336_CR216 JL Beck (336_CR21) 2002; 128 336_CR78 336_CR218 336_CR217 S Xiong (336_CR237) 2013; 55 JC Steuben (336_CR202) 2019; 25 PN Koch (336_CR127) 1999; 36 CS Reese (336_CR170) 2004; 46 JC Steuben (336_CR196) 2012; 12 E Corchado (336_CR52) 2007 J Steuben (336_CR200) 2015; 132 J-FM Barthelemy (336_CR18) 1993; 5 L Breiman (336_CR36) 2001; 45 Y Amit (336_CR9) 1997; 9 336_CR221 R Badhurshah (336_CR14) 2015; 74 HB Demuth (336_CR58) 2014 Z Lv (336_CR141) 2019; 52 336_CR220 HVB Kathleen (336_CR117) 1962; 4 336_CR223 336_CR101 336_CR222 336_CR225 336_CR224 336_CR226 R Alizadeh (336_CR8) 2019; 33 S Varadarajan (336_CR219) 2000; 32 R Jin (336_CR112) 2001; 23 GE Box (336_CR35) 1978 RM Paiva (336_CR156) 2010; 48 MR Kianifar (336_CR122) 2019; 61 ML Stein (336_CR191) 2012 336_CR230 AIJ Forrester (336_CR70) 2009; 45 J IT (336_CR106) 2002 336_CR111 A MacCalman (336_CR142) 2016; 95 Z Xing (336_CR235) 2019; 572 Y Chauvin (336_CR44) 2013 KA Jagadeesh (336_CR108) 2016; 48 336_CR239 RF Gunst (336_CR86) 1996 C Wang (336_CR232) 2014; 60 CJ Turner (336_CR209) 2009; 9 X He (336_CR97) 2013; 41 336_CR93 336_CR96 336_CR2 336_CR3 336_CR4 FAC Viana (336_CR227) 2010; 48 RH Myers (336_CR153) 2016 N Bliznyuk (336_CR30) 2008; 17 DS Broomhead (336_CR38) 1988; 2 C-W Hsu (336_CR105) 2003 RG Regis (336_CR171) 2007; 19 AB Owen (336_CR155) 1992; 2 JH Panchal (336_CR158) 2009; 9 J Han (336_CR94) 2011 AI Khuri (336_CR121) 2010; 2 GE Box (336_CR33) 1961; 3 A Chaudhuri (336_CR42) 2014; 52 C Krauss (336_CR128) 2017; 259 J Sacks (336_CR173) 1989; 4 J Zhao (336_CR246) 2012; 8 T Goel (336_CR81) 2007; 33 336_CR133 RO Duda (336_CR65) 2012 336_CR135 JC Steuben (336_CR198) 2015; 47 D La Fuente (336_CR129) 2016 FAC Viana (336_CR229) 2014; 52 336_CR138 VC Chen (336_CR46) 2003; 22 CP Dobler (336_CR63) 2005; 59 MD McKay (336_CR148) 1979; 21 RG Brereton (336_CR37) 2010; 135 F Campolongo (336_CR40) 1999; 64 SAI Bellary (336_CR23) 2016; 10 B Bettonvil (336_CR25) 1997; 96 GEP Box (336_CR31) 1957; 28 SM Clarke (336_CR51) 2004; 127 K Ezhilsabareesh (336_CR68) 2018; 12 336_CR143 336_CR147 H Gao (336_CR74) 2018; 58 |
| References_xml | – ident: 336_CR3 doi: 10.2118/172536-MS – volume: 46 start-page: 153 issue: 2 year: 2004 ident: 336_CR170 publication-title: Technometrics doi: 10.1198/004017004000000211 – volume: 91 start-page: 19 year: 2016 ident: 336_CR13 publication-title: Comput Geosci doi: 10.1016/j.cageo.2016.02.022 – volume: 55 start-page: 1091 issue: 3 year: 2017 ident: 336_CR69 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-016-1579-y – volume-title: Principal component analysis year: 2002 ident: 336_CR106 – volume-title: Inductive learning algorithms for complex systems modeling year: 1994 ident: 336_CR144 – ident: 336_CR210 doi: 10.1115/DETC2003/CIE-48230 – volume: 45 start-page: 50 issue: 1 year: 2009 ident: 336_CR70 publication-title: Prog Aerosp Sci doi: 10.1016/j.paerosci.2008.11.001 – volume-title: Introduction to parallel computing year: 2013 ident: 336_CR84 – volume: 24 start-page: 1680 issue: 3 year: 2018 ident: 336_CR182 publication-title: Adv Sci Lett doi: 10.1166/asl.2018.11136 – volume: 11 start-page: 461 issue: 3 year: 1969 ident: 336_CR115 publication-title: Technometrics doi: 10.1080/00401706.1969.10490707 – ident: 336_CR111 doi: 10.2514/6.2000-4801 – volume: 60 start-page: 550 issue: 3 year: 2018 ident: 336_CR159 publication-title: Siam Rev doi: 10.1137/16M1082469 – volume: 11 start-page: 2051 year: 2010 ident: 336_CR83 publication-title: J Mach Learn Res – volume: 4 start-page: 489 issue: 4 year: 1962 ident: 336_CR117 publication-title: Technometrics doi: 10.1080/00401706.1962.10490035 – volume-title: Statistical foundations for the validation of computer models. Presented at computer model verification and validation in the 21st century workshop year: 2002 ident: 336_CR67 – volume: 47 start-page: 1157 issue: 9 year: 2015 ident: 336_CR198 publication-title: Eng Optim doi: 10.1080/0305215X.2014.954565 – volume: 40 start-page: 223 issue: 3 year: 2008 ident: 336_CR157 publication-title: Eng Optim doi: 10.1080/03052150701690764 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 336_CR36 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 132 start-page: 121008 issue: 12 year: 2010 ident: 336_CR149 publication-title: J Mech Des doi: 10.1115/1.4002751 – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 336_CR114 publication-title: J Global Optim doi: 10.1023/A:1008306431147 – ident: 336_CR80 doi: 10.2514/6.2006-7047 – volume: 29 start-page: 1343 issue: 3 year: 2019 ident: 336_CR140 publication-title: Stat Sinica – volume-title: Conjoint measurement: methods and applications year: 2013 ident: 336_CR89 – volume: 70 start-page: 463 year: 2018 ident: 336_CR12 publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.03.234 – volume: 132 start-page: 071008 issue: 7 year: 2010 ident: 336_CR161 publication-title: J Mech Des doi: 10.1115/1.4001873 – volume: 9 start-page: 3 issue: 1 year: 2005 ident: 336_CR110 publication-title: Soft Comput doi: 10.1007/s00500-003-0328-5 – volume: 48 start-page: 1432 issue: 8 year: 2016 ident: 336_CR233 publication-title: Eng Optim doi: 10.1080/0305215X.2015.1115645 – volume: 2 start-page: 321 year: 1988 ident: 336_CR38 publication-title: J Complex Syst – volume: 35 start-page: 178 issue: 1 year: 1997 ident: 336_CR15 publication-title: AIAA J doi: 10.2514/2.7431 – volume: 33 start-page: 199 issue: 3 year: 2007 ident: 336_CR81 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-006-0051-9 – volume: 9 start-page: 1545 issue: 7 year: 1997 ident: 336_CR9 publication-title: Neural Comput doi: 10.1162/neco.1997.9.7.1545 – volume: 259 start-page: 689 issue: 2 year: 2017 ident: 336_CR128 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2016.10.031 – ident: 336_CR143 doi: 10.2514/6.2005-333 – volume: 75 start-page: 78 issue: 1 year: 2019 ident: 336_CR103 publication-title: Biometrics doi: 10.1111/biom.12971 – volume: 2 start-page: 455 issue: 4 year: 1960 ident: 336_CR32 publication-title: Technometrics doi: 10.1080/00401706.1960.10489912 – volume: 54 start-page: 3 issue: 1 year: 2016 ident: 336_CR92 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-016-1432-3 – volume: 22 start-page: 473 issue: 5 year: 2000 ident: 336_CR126 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.857004 – volume: 19 start-page: 287 issue: 1 year: 2009 ident: 336_CR167 publication-title: Stat Sinica – volume: 10 start-page: 2039 year: 2009 ident: 336_CR82 publication-title: J Mach Learn Res – ident: 336_CR224 doi: 10.1115/DETC2009-87053 – volume: 58 start-page: 245 issue: 1 year: 2018 ident: 336_CR243 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-017-1891-1 – volume-title: Response surface methodology: process and product optimization using designed experiments year: 2016 ident: 336_CR153 – ident: 336_CR193 doi: 10.1115/DETC2010-28226 – volume: 96 start-page: 957 issue: 4 year: 2009 ident: 336_CR163 publication-title: Biometrika doi: 10.1093/biomet/asp045 – volume: 88 start-page: 243 issue: 1 year: 2007 ident: 336_CR54 publication-title: Ecology doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 – volume: 2 start-page: 1 issue: 1 year: 2010 ident: 336_CR178 publication-title: Synth Lect Data Min Knowl Discov – volume-title: Handbook of partial least squares year: 2010 ident: 336_CR231 doi: 10.1007/978-3-540-32827-8 – volume: 10 start-page: 10.1115/1.40342 issue: 1115/1 year: 2016 ident: 336_CR247 publication-title: J Mech Des. doi doi: 10.1115/1.4034219 – start-page: 157 volume-title: Random forests. Ensemble machine learning year: 2012 ident: 336_CR53 doi: 10.1007/978-1-4419-9326-7_5 – volume: 117 start-page: 156 issue: 1 year: 1999 ident: 336_CR99 publication-title: Comput Phys Commun doi: 10.1016/S0010-4655(98)00171-4 – volume: 9 start-page: 021005 issue: 2 year: 2009 ident: 336_CR158 publication-title: J Comput Inf Sci Eng doi: 10.1115/1.3130791 – volume: 54 start-page: 1209 issue: 2 year: 2016 ident: 336_CR134 publication-title: AIAA J doi: 10.2514/1.J054343 – volume: 55 start-page: 37 issue: 1 year: 2013 ident: 336_CR237 publication-title: Technometrics doi: 10.1080/00401706.2012.723572 – ident: 336_CR66 doi: 10.1145/288627.288651 – volume-title: Least squares data fitting with applications year: 2012 ident: 336_CR95 doi: 10.1353/book.21076 – ident: 336_CR221 – ident: 336_CR10 doi: 10.1115/IMECE2015-51862 – volume: 43 start-page: 243 issue: 2 year: 2011 ident: 336_CR24 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-010-0554-2 – volume-title: The elements of statistical learning year: 2001 ident: 336_CR72 – volume: 139 start-page: 2362 issue: 7 year: 2009 ident: 336_CR160 publication-title: J Stat Plan Inference doi: 10.1016/j.jspi.2008.10.023 – volume-title: Pattern classification year: 2012 ident: 336_CR65 – ident: 336_CR133 doi: 10.1007/978-3-319-54157-0_27 – volume: 50 start-page: 717 issue: 5 year: 2014 ident: 336_CR50 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-014-1096-9 – ident: 336_CR4 doi: 10.1115/DETC2008-49961 – volume: 33 start-page: 484 issue: 4 year: 2019 ident: 336_CR8 publication-title: Artif Intell Eng Des Anal Manuf doi: 10.1017/S089006041900026X – volume: 135 start-page: 230 issue: 2 year: 2010 ident: 336_CR37 publication-title: Analyst doi: 10.1039/B918972F – volume: 104 start-page: 162 year: 2016 ident: 336_CR6 publication-title: Technol Forecast Soc Chang doi: 10.1016/j.techfore.2015.11.030 – ident: 336_CR20 doi: 10.2514/6.2012-5576 – volume: 9 start-page: 031002 issue: 3 year: 2009 ident: 336_CR209 publication-title: J Comput Inf Sci Eng doi: 10.1115/1.3184599 – volume: 3 start-page: 311 issue: 3 year: 1961 ident: 336_CR33 publication-title: Technometrics – volume: 32 start-page: 669 issue: 3 year: 2016 ident: 336_CR123 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2015.12.003 – volume-title: PVM–parallel virtual machine : a users' guide and tutorial for networked parallel computing year: 2000 ident: 336_CR76 – volume: 21 start-page: 345 issue: 4 year: 2001 ident: 336_CR113 publication-title: J Global Optim doi: 10.1023/A:1012771025575 – start-page: 83 volume-title: A theory and methodology of inductive learning. Mach Learn year: 1983 ident: 336_CR150 – ident: 336_CR216 – ident: 336_CR239 – ident: 336_CR211 doi: 10.1115/DETC2004-57722 – ident: 336_CR174 – ident: 336_CR208 doi: 10.1115/DETC2005-85043 – volume: 35 start-page: 28 issue: 1 year: 1993 ident: 336_CR136 publication-title: Technometrics doi: 10.1080/00401706.1993.10484990 – volume: 127 start-page: 1077 issue: 6 year: 2004 ident: 336_CR51 publication-title: J Mech Des doi: 10.1115/1.1897403 – volume: 4 start-page: 409 issue: 4 year: 1989 ident: 336_CR173 publication-title: Stat Sci – volume-title: Massively parallel engineering simulations on graphics processors: parallelization, synchronization, and approximation year: 2014 ident: 336_CR192 – volume: 56 start-page: 669 issue: 2 year: 2013 ident: 336_CR228 publication-title: J Global Optim doi: 10.1007/s10898-012-9892-5 – volume: 22 start-page: 322 issue: 4 year: 2006 ident: 336_CR241 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2005.07.004 – volume: 42 start-page: 2703 issue: 5 year: 2015 ident: 336_CR1 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.11.020 – ident: 336_CR57 doi: 10.1007/978-3-319-54157-0_12 – volume: 48 start-page: 1202 issue: 7 year: 2016 ident: 336_CR181 publication-title: Eng Optim doi: 10.1080/0305215X.2015.1100470 – volume: 87 start-page: 1 issue: 1 year: 2000 ident: 336_CR118 publication-title: Biometrika doi: 10.1093/biomet/87.1.1 – volume: 21 start-page: 239 issue: 2 year: 1979 ident: 336_CR148 publication-title: Technometrics – ident: 336_CR11 doi: 10.1109/CEC.2012.6256491 – volume: 61 start-page: 85 year: 2015 ident: 336_CR177 publication-title: Neural Netw doi: 10.1016/j.neunet.2014.09.003 – year: 2019 ident: 336_CR104 publication-title: Environ Eng Sci doi: 10.1089/ees.2018.0366 – volume: 26 start-page: 61 year: 2017 ident: 336_CR130 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-017-9226-3 – ident: 336_CR162 doi: 10.1115/DETC2011-47288 – volume-title: Orthogonal fractional factorial designs year: 1985 ident: 336_CR61 – volume: 20 start-page: 832 issue: 8 year: 1998 ident: 336_CR102 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.709601 – ident: 336_CR56 doi: 10.1145/2908812.2908952 – volume: 42 start-page: 1 issue: 10 year: 2006 ident: 336_CR152 publication-title: Water Resour Res doi: 10.1029/2005WR004640 – volume: 57 start-page: 81 issue: 1 year: 2001 ident: 336_CR238 publication-title: Biometrics doi: 10.1111/j.0006-341X.2001.00081.x – volume-title: Emulation techniques for the reduction and sensitivity analysis of complex environmental models year: 2012 ident: 336_CR169 – volume: 48 start-page: 995 issue: 5 year: 2010 ident: 336_CR156 publication-title: AIAA J doi: 10.2514/1.45790 – volume: 38 start-page: 69 issue: 1 year: 1996 ident: 336_CR154 publication-title: Technometrics doi: 10.1080/00401706.1996.10484417 – volume: 171 start-page: 75 year: 2012 ident: 336_CR131 publication-title: Geoderma doi: 10.1016/j.geoderma.2011.03.010 – volume: 9 start-page: 2 issue: 1 year: 1994 ident: 336_CR48 publication-title: Stat Sci – volume: 26 start-page: 448 issue: 2 year: 2004 ident: 336_CR100 publication-title: SIAM J Sci Comput doi: 10.1137/S1064827503426693 – ident: 336_CR194 doi: 10.1115/DETC2011-47217 – volume: 198 start-page: 1327 issue: 15 year: 2009 ident: 336_CR236 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2008.11.023 – volume-title: Interpolation of spatial data: some theory for kriging year: 2012 ident: 336_CR191 – ident: 336_CR101 – volume: 11 start-page: 190 issue: 4 year: 1970 ident: 336_CR41 publication-title: IEEE Trans Man-Mach Syst doi: 10.1109/TMMS.1970.299942 – volume: 246 start-page: 221 issue: 4927 year: 1989 ident: 336_CR168 publication-title: Science doi: 10.1126/science.246.4927.221 – volume: 6 start-page: 404 issue: 4 year: 2012 ident: 336_CR59 publication-title: J Adv Mech Des Syst Manuf doi: 10.1299/jamdsm.6.404 – volume-title: Response surface methodology: process and product optimization using designed experiments year: 1996 ident: 336_CR86 – volume-title: Statistics for experimenters year: 1978 ident: 336_CR35 – volume: 30 start-page: 105 issue: 1 year: 1988 ident: 336_CR64 publication-title: Technometrics doi: 10.1080/00401706.1988.10488328 – volume-title: Design and analysis of experiments year: 2017 ident: 336_CR151 – volume: 52 start-page: 670 issue: 4 year: 2014 ident: 336_CR229 publication-title: AIAA J doi: 10.2514/1.J052375 – volume: 132 start-page: 694 year: 2015 ident: 336_CR200 publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.05.029 – volume: 140 start-page: 051403 issue: 5 year: 2018 ident: 336_CR29 publication-title: J Mech Des doi: 10.1115/1.4039450 – volume: 128 start-page: 668 issue: 4 year: 2006 ident: 336_CR164 publication-title: J Mech Des doi: 10.1115/1.2179459 – volume-title: Backpropagation: theory, architectures, and applications year: 2013 ident: 336_CR44 doi: 10.4324/9780203763247 – ident: 336_CR183 doi: 10.1115/DETC97/DTM-3881 – ident: 336_CR207 doi: 10.1115/DETC2005-85544 – volume: 38 start-page: 273 issue: 4 year: 2006 ident: 336_CR47 publication-title: IIE Trans doi: 10.1080/07408170500232495 – volume: 192 start-page: 707 issue: 3 year: 2009 ident: 336_CR245 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2007.10.013 – volume: 8 start-page: 953 issue: 4 year: 2012 ident: 336_CR246 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2012.2205932 – volume-title: Predictive inference year: 1993 ident: 336_CR75 doi: 10.1007/978-1-4899-4467-2 – volume-title: HyPerModels: hyperdimensional performance models for engineering design year: 2005 ident: 336_CR204 – volume: 17 start-page: 270 issue: 2 year: 2008 ident: 336_CR30 publication-title: J Comput Graphical Stat doi: 10.1198/106186008X320681 – ident: 336_CR214 doi: 10.1115/DETC2007-35852 – volume: 58 start-page: 537 issue: 2 year: 2018 ident: 336_CR242 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-018-1906-6 – volume: 9 start-page: 307 year: 2008 ident: 336_CR17 publication-title: Optim Eng doi: 10.1007/s11081-008-9043-5 – volume: 5 start-page: 129 issue: 3 year: 1993 ident: 336_CR18 publication-title: Struct Optim doi: 10.1007/BF01743349 – volume: 2 start-page: 128 issue: 2 year: 2010 ident: 336_CR121 publication-title: Wiley Interdiscip Rev doi: 10.1002/wics.73 – volume-title: Model selection and multimodel inference: a practical information-theoretic approach year: 2003 ident: 336_CR39 – volume: 128 start-page: 380 issue: 4 year: 2002 ident: 336_CR21 publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(2002)128:4(380) – volume: 2 start-page: 7 issue: 2 year: 2016 ident: 336_CR7 publication-title: J Energy Plan Policy Res – ident: 336_CR226 doi: 10.1115/DETC2010-28813 – volume-title: A practical guide to support vector classification year: 2003 ident: 336_CR105 – volume: 41 start-page: 219 issue: 2 year: 2010 ident: 336_CR179 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-009-0420-2 – volume: 64 start-page: 1 issue: 1 year: 1999 ident: 336_CR40 publication-title: Reliab Eng Syst Saf doi: 10.1016/S0951-8320(98)00008-8 – volume: 32 start-page: 309 issue: 3 year: 2000 ident: 336_CR219 publication-title: Eng Optim doi: 10.1080/03052150008941302 – volume: 8 start-page: 65 issue: 1 year: 2019 ident: 336_CR5 publication-title: Life Cycl Reliab Saf Eng doi: 10.1007/s41872-018-00072-x – volume-title: Innovations in hybrid intelligent systems (Advances in Soft Computing) year: 2007 ident: 336_CR52 – volume: 10 start-page: 171 issue: 1 year: 2016 ident: 336_CR23 publication-title: Eng Appl Comput Fluid Mech – volume: 28 start-page: 455 issue: 4 year: 2012 ident: 336_CR60 publication-title: Qual Reliab Eng Int doi: 10.1002/qre.1259 – volume-title: Simulation metamodeling with gaussian process: a numerical study year: 2016 ident: 336_CR129 – volume: 50 start-page: 1 year: 2017 ident: 336_CR91 publication-title: Eng Optim – start-page: 135 volume-title: Multi-objective optimization using an evolutionary algorithm embedded with multiple spatially distributed surrogates. MULTI-OBJECTIVE OPTIMIZATION: techniques and application in chemical engineering year: 2017 ident: 336_CR28 – ident: 336_CR96 – ident: 336_CR135 doi: 10.1145/1276958.1277203 – volume: 63 start-page: 425 issue: 3 year: 2001 ident: 336_CR119 publication-title: J R Stat Soc Ser B (Statistical Methodology) doi: 10.1111/1467-9868.00294 – volume: 95 start-page: 436 year: 2016 ident: 336_CR142 publication-title: Proced Comput Sci doi: 10.1016/j.procs.2016.09.309 – volume: 27 start-page: 302 issue: 5 year: 2004 ident: 336_CR186 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-004-0389-9 – volume: 58 start-page: 215 year: 2018 ident: 336_CR74 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-017-1890-2 – ident: 336_CR223 – ident: 336_CR49 – volume: 26 start-page: 248 issue: 4 year: 1994 ident: 336_CR139 publication-title: J Qual Technol doi: 10.1080/00224065.1994.11979537 – volume: 15 start-page: 101 issue: 1 year: 2000 ident: 336_CR145 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(99)00007-9 – ident: 336_CR138 doi: 10.4271/2015-01-1369 – volume: 72 start-page: 99 issue: 1–2 year: 1998 ident: 336_CR45 publication-title: J Statis Plan Inference doi: 10.1016/S0378-3758(98)00025-1 – volume: 50 start-page: 383 issue: 3 year: 2008 ident: 336_CR165 publication-title: Technometrics doi: 10.1198/004017008000000262 – ident: 336_CR147 doi: 10.1115/IMECE2011-62480 – ident: 336_CR26 doi: 10.2514/6.2010-3089 – volume: 31 start-page: 161 issue: 2 year: 1998 ident: 336_CR132 publication-title: Eng Optim doi: 10.1080/03052159808941369 – ident: 336_CR230 – ident: 336_CR222 doi: 10.1115/DETC2008-49240 – volume: 171 start-page: 227 year: 2017 ident: 336_CR62 publication-title: Compos Struct doi: 10.1016/j.compstruct.2017.01.061 – volume: 2 start-page: 439 issue: 2 year: 1992 ident: 336_CR155 publication-title: Stat Sinica – volume: 48 start-page: 1581 issue: 12 year: 2016 ident: 336_CR108 publication-title: Nat Genet doi: 10.1038/ng.3703 – volume: 60 start-page: 167 year: 2014 ident: 336_CR232 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2014.05.026 – volume: 12 start-page: 041010 issue: 4 year: 2012 ident: 336_CR196 publication-title: J Comput Inf Sci Eng doi: 10.1115/1.4007988 – ident: 336_CR205 doi: 10.1115/IMECE2010-38323 – ident: 336_CR218 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 336_CR71 publication-title: Ann Stat doi: 10.1214/aos/1013203451 – volume: 96 start-page: 180 issue: 1 year: 1997 ident: 336_CR25 publication-title: Eur J Oper Res doi: 10.1016/S0377-2217(96)00156-7 – volume: 12 start-page: 1 issue: 1 year: 2018 ident: 336_CR68 publication-title: Eng Appl Comput Fluid Mech – volume: 37 start-page: 3616 issue: 6A year: 2009 ident: 336_CR166 publication-title: Ann Stat – ident: 336_CR27 doi: 10.1109/CEC.2016.7744340 – ident: 336_CR2 doi: 10.1115/DETC2015-47850 – volume: 59 start-page: 278 issue: 3 year: 2005 ident: 336_CR63 publication-title: Am Stat doi: 10.1198/tas.2005.s249 – volume: 23 start-page: 155 issue: 3 year: 2007 ident: 336_CR215 publication-title: Eng Comput doi: 10.1007/s00366-006-0051-9 – volume-title: Data Mining: Practical machine learning tools and techniques year: 2016 ident: 336_CR234 – ident: 336_CR175 doi: 10.1115/FEDSM2006-98368 – volume: 1 start-page: 234 issue: 2 year: 2009 ident: 336_CR87 publication-title: Wiley Interdiscip Rev doi: 10.1002/wics.27 – ident: 336_CR19 – ident: 336_CR78 – volume: 48 start-page: 2286 issue: 10 year: 2010 ident: 336_CR227 publication-title: AIAA J doi: 10.2514/1.J050327 – volume: 22 start-page: 231 year: 2003 ident: 336_CR46 publication-title: Handb Stat doi: 10.1016/S0169-7161(03)22009-5 – volume: 138 start-page: 081403 issue: 8 year: 2016 ident: 336_CR109 publication-title: J Mech Des doi: 10.1115/1.4033918 – volume-title: Orthogonal arrays: theory and applications year: 2012 ident: 336_CR98 – volume: 24 start-page: 2319 issue: 6 year: 1996 ident: 336_CR125 publication-title: Ann Stat doi: 10.1214/aos/1032181157 – volume-title: Neural network design year: 2014 ident: 336_CR58 – volume: 61 start-page: 1 year: 2019 ident: 336_CR122 publication-title: Struct Multidiscip Optim – volume: 9 start-page: 62 issue: 1 year: 2017 ident: 336_CR22 publication-title: Int J Comput Aided Eng Technol doi: 10.1504/IJCAET.2017.080769 – ident: 336_CR217 doi: 10.1007/978-3-319-15934-8_1 – ident: 336_CR197 doi: 10.1115/DETC2014-35037 – volume: 36 start-page: 275 issue: 1 year: 1999 ident: 336_CR127 publication-title: J Aircr doi: 10.2514/2.2435 – volume: 28 start-page: 195 issue: 1 year: 1957 ident: 336_CR31 publication-title: Ann Math Stat doi: 10.1214/aoms/1177707047 – volume: 52 start-page: 2169 year: 2019 ident: 336_CR141 publication-title: Artif Intell Rev doi: 10.1007/s10462-017-9601-3 – ident: 336_CR93 doi: 10.1115/IMECE2010-37459 – volume: 25 start-page: 437 year: 2019 ident: 336_CR202 publication-title: Addit Manuf – ident: 336_CR220 doi: 10.2514/6.1997-1331 – volume: 23 start-page: 1 issue: 1 year: 2001 ident: 336_CR112 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-001-0160-4 – volume: 572 start-page: 501 year: 2019 ident: 336_CR235 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.03.020 – volume: 14 start-page: 85 year: 1998 ident: 336_CR85 publication-title: ISIS Tech Rep – volume: 12 start-page: 543 issue: 4 year: 1998 ident: 336_CR88 publication-title: J Biomol NMR doi: 10.1023/A:1008391403193 – volume-title: Empirical model-building and response surfaces year: 1987 ident: 336_CR34 – volume: 1 start-page: 207 issue: 1 year: 1990 ident: 336_CR124 publication-title: Ann Math Artif Intell doi: 10.1007/BF01531079 – ident: 336_CR212 doi: 10.1115/DETC2006-99637 – volume-title: Data mining: concepts and techniques year: 2011 ident: 336_CR94 – volume: 1 start-page: 407 issue: 4 year: 1993 ident: 336_CR189 publication-title: Math Model Comput Exp – volume: 47 start-page: 271 issue: 1 year: 2009 ident: 336_CR79 publication-title: AIAA J doi: 10.2514/1.40291 – ident: 336_CR225 doi: 10.2514/6.2010-3090 – volume: 138 start-page: 091401 issue: 9 year: 2016 ident: 336_CR180 publication-title: J Mech Des doi: 10.1115/1.4034035 – volume: 39 start-page: 245 issue: 3 year: 2007 ident: 336_CR213 publication-title: Eng Optim doi: 10.1080/03052150601077260 – volume: 19 start-page: 497 issue: 4 year: 2007 ident: 336_CR171 publication-title: INFORMS J Comput doi: 10.1287/ijoc.1060.0182 – volume: 14 start-page: 1 issue: 1 year: 1997 ident: 336_CR188 publication-title: Struct Optim doi: 10.1007/BF01197554 – volume: 28 start-page: 1251 issue: 5 year: 1980 ident: 336_CR116 publication-title: Operations Res doi: 10.1287/opre.28.5.1251 – volume: 31 start-page: 155 issue: 2 year: 2015 ident: 336_CR137 publication-title: Qual Reliab Eng Int doi: 10.1002/qre.1591 – volume: 41 start-page: 342 issue: 1 year: 2013 ident: 336_CR97 publication-title: Ann Statist – volume: 52 start-page: 1573 issue: 7 year: 2014 ident: 336_CR42 publication-title: AIAA J doi: 10.2514/1.J052930 – ident: 336_CR176 – ident: 336_CR201 doi: 10.1115/DETC2015-46476 – volume: 49 start-page: 1 issue: 1 year: 2014 ident: 336_CR55 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-013-0956-z – volume: 74 start-page: 749 year: 2015 ident: 336_CR14 publication-title: Renew Energy doi: 10.1016/j.renene.2014.09.001 – volume: 45 start-page: 767 issue: 7 year: 2013 ident: 336_CR199 publication-title: Eng Optim doi: 10.1080/0305215X.2012.709509 – volume: 91 start-page: 1331 issue: 10 year: 2006 ident: 336_CR203 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2005.11.031 – volume: 30 start-page: 95 issue: 1 year: 1988 ident: 336_CR120 publication-title: Technometrics doi: 10.1080/00401706.1988.10488327 – volume: 19 start-page: 201 issue: 3 year: 2001 ident: 336_CR90 publication-title: J Global Optim doi: 10.1023/A:1011255519438 – volume: 217 start-page: 63 issue: 1 year: 2006 ident: 336_CR77 publication-title: J Comput Phys doi: 10.1016/j.jcp.2006.01.037 – volume: 2 start-page: 17 issue: 2 year: 1999 ident: 336_CR107 publication-title: J Risk – ident: 336_CR184 doi: 10.2514/6.1998-4755 – volume: 17 start-page: 129 issue: 2 year: 2001 ident: 336_CR185 publication-title: Eng Comput doi: 10.1007/PL00007198 – ident: 336_CR195 doi: 10.1115/IMECE2011-62450 – volume: 140 start-page: 041402 issue: 4 year: 2018 ident: 336_CR190 publication-title: J Mech Des doi: 10.1115/1.4039128 – volume: 32 start-page: 287 issue: 4 year: 2006 ident: 336_CR73 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-006-0025-y – ident: 336_CR206 doi: 10.1115/DETC2011-47483 – volume: 2 start-page: 367 issue: 4 year: 2001 ident: 336_CR16 publication-title: Optim Eng doi: 10.1023/A:1016012404105 – volume-title: Pattern recognition and neural networks year: 2007 ident: 336_CR172 – ident: 336_CR187 doi: 10.2514/6.2008-5802 |
| SSID | ssj0006352 |
| Score | 2.6480238 |
| Snippet | In simulation-based realization of complex systems, we are forced to address the issue of computational complexity. One critical issue that must be addressed... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 275 |
| SubjectTerms | Accuracy CAE) and Design Complex systems Complexity Computational efficiency Computer simulation Computer-Aided Engineering (CAD Computing time Design engineering Design of experiments Engineering Engineering Design Hypercubes Model accuracy Original Paper Qualitative analysis Response surface methodology Simulation models State-of-the-art reviews Time measurement |
| SummonAdditionalLinks | – databaseName: Springer Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-LqKjl400LbNE3jTUQRlEV8sbfSTVIRZFfaruC_d5KmXZVV0GNp-mCSeWUy3wdwiAkOJlzKbC8NEy8y6K1JwHMv45oLkYU8q0Fcr3m_nwwG4sY1hZXNafemJGktddvsZqITU3M0ndCUxh6fhwV0d4lRx9u7x9b-ogu1tQNBI0-g_3etMrPf8dUdTWPMb2VR620uVv_3n2uw4qJLclovh3WY06MNWP6EObgJVw0zEZGW0MFtBtorA45ZvRNzFv6JlJOiGJtNNmLZcsoTkhHpiBFI3fGyBQ8X5_dnl55jVPAk6mrlMSljFScMbRqXEYYCQ6WZpqEvozj080ioIVMM82tMw_Is4zheqDxWvmFMF5FPt6EzGo_0DpAk5zixLKCxZqj3Ei0D077kBkFeZVJ2IWgEm0oHN25YL17SFijZCipFQaVWUCnvwlH7zGsNtvHr6F4zX6lTvDLFgMQwlAdRMPM2xQCH-gJzvi4cN9M3vf3zx3b_NnwPlkK7Asy53h50qmKi92FRvlXPZXFg1-sHa8zhpQ priority: 102 providerName: Springer Nature |
| Title | Managing computational complexity using surrogate models: a critical review |
| URI | https://link.springer.com/article/10.1007/s00163-020-00336-7 https://www.proquest.com/docview/2412229141 https://www.proquest.com/docview/3151309259 |
| Volume | 31 |
| WOSCitedRecordID | wos000524364800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1435-6066 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0006352 issn: 0934-9839 databaseCode: M7S dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1435-6066 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0006352 issn: 0934-9839 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1435-6066 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006352 issn: 0934-9839 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH32K1lj1402Dem_UiKi2CUkqr0ltIdxMRpK1NK_jvndlsWhX14iUQsmFDZnd2nt8HcIwODjpcisJLg8jyCb01cnhmJTzlQiQuTwoQ1zvebkf9vuiYgFtuyipLnagVtRpJipGf4UlD1NOO71yMXy1ijaLsqqHQWIYqIZX5FaheNdud7lwX43Gq8wjC8y2BtoBpm9HNc2TtUA6TOqs9L7T416NpYW9-S5Hqk6e18d9v3oR1Y3Oyy2KRbMFSOtyGtU9IhDtwW_IVMalpHkyIUN8RZOb0nVGF_BPLZ5PJiEJvTHPo5OcsYdLQJbCiD2YXHlrN--sby_AsWBJ38NQKpAxVGAWo6bj00UAYqDRIPdeWfujamS_UIFABet3onGVJwnG8UFmobOJRF77t7UFlOBqm-8CijKO4A8cL0wC1gUR9EaS25IQrrxIpa-CUvziWBoScuDBe4jl8shZLjGKJtVhiXoOT-TvjAoLjz9H1Uhax2Y55vBDEj489NHs8W6AnWIPTUtiLx79PdvD3ZIew6ur1RdW9dahMJ7P0CFbk2_Q5nzTMWm1QuWkPr93e4wfCSO8K |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB58gXrwLdbnHvSkwbw3K4iIWpTWIqjQW0x3NyJIq01V_FP-Rmc2Saui3jx4DJtkSfbbee3MfACb6OCgw6UovNSKLJ-6t0YOT62Eay5E4vIkb-Ja541G1GyKiyF4K2thKK2ylIlGUKuOpBj5Lmoaop52fOfg4dEi1ig6XS0pNHJY1PTrC7ps2f7ZMa7vlutWT66OTq2CVcCSiNeeFUgZqjAKcF9z6aM6bCkdaM-1pR-6duoL1QpUgD4muiJpknC8X6g0VDaxhgvf9vC9wzDqk_Q3qYKXfcmPytucWgjPtwRaHkWRjinVI9uKTkypjtvzQot_VoQD6_bLgazRc9Xp__aHZmCqsKjZYb4FZmFIt-dg8kOfxXmolWxMTBoSiyIAaq6oIWjvlVH-_y3LnrrdDgUWmWEIyvZYwmRBBsHyKp8FuP6Tr1mEkXanrZeARSlHMAeOF-oAZZ1EaRhoW3Lqmq8SKSvglEsay6LFOjF93Mf95tAGBjHCIDYwiHkFtvvPPOQNRn69e7Vc-7gQNlk8WPhvhz006jxboJ9bgZ0SXIPhnydb_n2yDRg_vTqvx_WzRm0FJlyDbcpjXoWRXvdJr8GYfO7dZd11s0sY3Pw16N4B7tNJeA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah5802LbtE3jm6hD2RgDL-ytdEkrgnSj7QT_vSfpZVOmID6WphdOkpPv5OR8H8ApBjgYcEm1vTT0DUext_oWi42QRYzz0GZhQeLaZb2ePxjw_kwVvz7tXqUki5oGxdKU5BdjGV_UhW8Kqaj8o6qKptQz2CIsOUo0SMXrD8-1L8blVOcROHUMjligLJuZ_46vS9MUb35LkeqVp73x_3_ehPUSdZKrYphswUKUbMPaDBfhDnQqxSIitNBDuUmorxRpZv5B1Bn5F5JN0nSkNt-IVtHJLklIRCmYQIpKmF14at8-Xt8ZpdKCIXAO54YrhCc930Vfx4SDEGEoIzeitikczzZjh8uhK12MuzE8i8OQYXsuY0-aSkmdOybdg0YySqJ9IH7MsMNdi3qRi_5AoMdwI1MwxSwvQyGaYFVGDkRJQ67UMN6CmkBZGypAQwXaUAFrwln9zLgg4fi1davqu6CckFmAQEUpl1uONfc2ReBDTY6xYBPOq66c3v75Ywd_a34CK_2bdtC973UOYdXWg0Ed_W1BI08n0REsi_f8NUuP9TD-BBrX7W0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Managing+computational+complexity+using+surrogate+models%3A+a+critical+review&rft.jtitle=Research+in+engineering+design&rft.au=Alizadeh+Reza&rft.au=Allen%2C+Janet+K&rft.au=Mistree+Farrokh&rft.date=2020-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0934-9839&rft.eissn=1435-6066&rft.volume=31&rft.issue=3&rft.spage=275&rft.epage=298&rft_id=info:doi/10.1007%2Fs00163-020-00336-7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0934-9839&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0934-9839&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0934-9839&client=summon |