Managing computational complexity using surrogate models: a critical review

In simulation-based realization of complex systems, we are forced to address the issue of computational complexity. One critical issue that must be addressed is the approximation of reality using surrogate models to replace expensive simulation models of engineering problems. In this paper, we criti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in engineering design Jg. 31; H. 3; S. 275 - 298
Hauptverfasser: Alizadeh, Reza, Allen, Janet K., Mistree, Farrokh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.07.2020
Springer Nature B.V
Schlagworte:
ISSN:0934-9839, 1435-6066
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In simulation-based realization of complex systems, we are forced to address the issue of computational complexity. One critical issue that must be addressed is the approximation of reality using surrogate models to replace expensive simulation models of engineering problems. In this paper, we critically review over 200 papers. We find that a framework for selecting appropriate surrogate modeling methods for a given function with specific requirements has been lacking. Having such a framework for surrogate model users, specifically practitioners in industry, is very important because there is very limited information about the performance of different models before applying them on the problem. Our contribution in this paper is to address this gap by creating practical guidance based on a trade-off among three main drivers, namely, size (how much information is necessary to compute the surrogate model), accuracy (how accurate the surrogate model must be) and computational time (how much time is required for the surrogate modeling process). Using the proposed guidance a huge amount of time is saved by avoiding time-consuming comparisons before selecting the appropriate surrogate model. To make this contribution, we review the state-of-the-art surrogate modeling literature to answer the following three questions: (1) What are the main classes of the design of experiment (DOE) methods, surrogate modeling methods and model-fitting methods based on the requirements of size, computational time, and accuracy? (2) Which surrogate modeling method is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? (3) Which DOE is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? Based on these three characteristics, we find six different qualitative categories for the surrogate models through a critical evaluation of the literature. These categories provide a framework for selecting an efficient surrogate modeling process to assist those who wish to select more appropriate surrogate modeling techniques for a given function. It is also summarized in Table 4 and Figs.  2 , 3 . MARS, response surface models, and kriging are more appropriate for large problems, acquiring less computation time and high accuracy, respectively. Also, Latin Hypercube , fractional factorial designs and D-Optimal designs are appropriate experimental designs. Our contribution is to propose a qualitative evaluation and a mental model which is based on quantitative results and findings of authors in the published literature. The value of such a framework is in providing practical guide for researchers and practitioners in industry to choose the most appropriate surrogate model based on incomplete information about an engineering design problem. Another contribution is to use three drivers, namely, computational time, accuracy, and problem size instead of using a single measure that authors generally use in the published literature.
AbstractList In simulation-based realization of complex systems, we are forced to address the issue of computational complexity. One critical issue that must be addressed is the approximation of reality using surrogate models to replace expensive simulation models of engineering problems. In this paper, we critically review over 200 papers. We find that a framework for selecting appropriate surrogate modeling methods for a given function with specific requirements has been lacking. Having such a framework for surrogate model users, specifically practitioners in industry, is very important because there is very limited information about the performance of different models before applying them on the problem. Our contribution in this paper is to address this gap by creating practical guidance based on a trade-off among three main drivers, namely, size (how much information is necessary to compute the surrogate model), accuracy (how accurate the surrogate model must be) and computational time (how much time is required for the surrogate modeling process). Using the proposed guidance a huge amount of time is saved by avoiding time-consuming comparisons before selecting the appropriate surrogate model. To make this contribution, we review the state-of-the-art surrogate modeling literature to answer the following three questions: (1) What are the main classes of the design of experiment (DOE) methods, surrogate modeling methods and model-fitting methods based on the requirements of size, computational time, and accuracy? (2) Which surrogate modeling method is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? (3) Which DOE is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? Based on these three characteristics, we find six different qualitative categories for the surrogate models through a critical evaluation of the literature. These categories provide a framework for selecting an efficient surrogate modeling process to assist those who wish to select more appropriate surrogate modeling techniques for a given function. It is also summarized in Table 4 and Figs. 2, 3. MARS, response surface models, and kriging are more appropriate for large problems, acquiring less computation time and high accuracy, respectively. Also, Latin Hypercube, fractional factorial designs and D-Optimal designs are appropriate experimental designs. Our contribution is to propose a qualitative evaluation and a mental model which is based on quantitative results and findings of authors in the published literature. The value of such a framework is in providing practical guide for researchers and practitioners in industry to choose the most appropriate surrogate model based on incomplete information about an engineering design problem. Another contribution is to use three drivers, namely, computational time, accuracy, and problem size instead of using a single measure that authors generally use in the published literature.
In simulation-based realization of complex systems, we are forced to address the issue of computational complexity. One critical issue that must be addressed is the approximation of reality using surrogate models to replace expensive simulation models of engineering problems. In this paper, we critically review over 200 papers. We find that a framework for selecting appropriate surrogate modeling methods for a given function with specific requirements has been lacking. Having such a framework for surrogate model users, specifically practitioners in industry, is very important because there is very limited information about the performance of different models before applying them on the problem. Our contribution in this paper is to address this gap by creating practical guidance based on a trade-off among three main drivers, namely, size (how much information is necessary to compute the surrogate model), accuracy (how accurate the surrogate model must be) and computational time (how much time is required for the surrogate modeling process). Using the proposed guidance a huge amount of time is saved by avoiding time-consuming comparisons before selecting the appropriate surrogate model. To make this contribution, we review the state-of-the-art surrogate modeling literature to answer the following three questions: (1) What are the main classes of the design of experiment (DOE) methods, surrogate modeling methods and model-fitting methods based on the requirements of size, computational time, and accuracy? (2) Which surrogate modeling method is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? (3) Which DOE is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? Based on these three characteristics, we find six different qualitative categories for the surrogate models through a critical evaluation of the literature. These categories provide a framework for selecting an efficient surrogate modeling process to assist those who wish to select more appropriate surrogate modeling techniques for a given function. It is also summarized in Table 4 and Figs.  2 , 3 . MARS, response surface models, and kriging are more appropriate for large problems, acquiring less computation time and high accuracy, respectively. Also, Latin Hypercube , fractional factorial designs and D-Optimal designs are appropriate experimental designs. Our contribution is to propose a qualitative evaluation and a mental model which is based on quantitative results and findings of authors in the published literature. The value of such a framework is in providing practical guide for researchers and practitioners in industry to choose the most appropriate surrogate model based on incomplete information about an engineering design problem. Another contribution is to use three drivers, namely, computational time, accuracy, and problem size instead of using a single measure that authors generally use in the published literature.
Author Allen, Janet K.
Mistree, Farrokh
Alizadeh, Reza
Author_xml – sequence: 1
  givenname: Reza
  surname: Alizadeh
  fullname: Alizadeh, Reza
  organization: The Systems Realization Laboratory, Industrial and Systems Engineering, University of Oklahoma
– sequence: 2
  givenname: Janet K.
  orcidid: 0000-0003-0686-6764
  surname: Allen
  fullname: Allen, Janet K.
  email: janet.allen@ou.edu
  organization: The Systems Realization Laboratory, Industrial and Systems Engineering, University of Oklahoma
– sequence: 3
  givenname: Farrokh
  surname: Mistree
  fullname: Mistree, Farrokh
  organization: The Systems Realization Laboratory, Aerospace and Mechanical Engineering, University of Oklahoma
BookMark eNp9kE1LwzAYgINMcJv-AU8Fz9E3n228yfALFS96DlmSloyunUmr7t_brYLgYafwkudJXp4ZmjRt4xE6J3BJAPKrBEAkw0ABAzAmcX6EpoQzgSVIOUFTUIxjVTB1gmYprQBAMkGn6OnFNKYKTZXZdr3pO9OFtjH1fqr9d-i2WZ9216mPsa1M57N163ydrjOT2Ri6YAc6-s_gv07RcWnq5M9-zzl6v7t9Wzzg59f7x8XNM7YcoMPCWulkIZzzueUKyNJ54RkFyyWFkiu3FE74JaOFKo3JB165UjrgUhDFgc3RxfjuJrYfvU-dXrV9HLZOmhFBGCgq1CGKckIpVYSTgaIjZWObUvSl3sSwNnGrCehdWj2m1UNavU-r80Eq_kk2jOW6aEJ9WGWjmoZ_msrHv60OWD-YDY9U
CitedBy_id crossref_primary_10_1016_j_envres_2023_117268
crossref_primary_10_1016_j_future_2021_05_019
crossref_primary_10_1016_j_ijnonlinmec_2024_104876
crossref_primary_10_3390_su13126514
crossref_primary_10_1016_j_cma_2023_116498
crossref_primary_10_1007_s00521_025_11039_2
crossref_primary_10_1016_j_pnucene_2025_105745
crossref_primary_10_3390_en16104030
crossref_primary_10_1186_s43065_025_00128_0
crossref_primary_10_1016_j_cma_2025_117911
crossref_primary_10_1109_TEVC_2024_3352450
crossref_primary_10_3389_fpace_2025_1522006
crossref_primary_10_1007_s12667_023_00647_3
crossref_primary_10_3390_app13105989
crossref_primary_10_1007_s10948_022_06479_z
crossref_primary_10_1016_j_compbiomed_2024_109646
crossref_primary_10_1007_s11081_025_10001_4
crossref_primary_10_3389_fceng_2020_568196
crossref_primary_10_1016_j_eswa_2021_115491
crossref_primary_10_1016_j_istruc_2024_107246
crossref_primary_10_1016_j_jcp_2022_111454
crossref_primary_10_1063_5_0292568
crossref_primary_10_3390_en13174427
crossref_primary_10_1109_ACCESS_2023_3329836
crossref_primary_10_1016_j_jclepro_2024_143935
crossref_primary_10_1007_s10098_021_02168_y
crossref_primary_10_1145_3766063
crossref_primary_10_1016_j_aei_2025_103552
crossref_primary_10_1038_s41598_023_50719_8
crossref_primary_10_1016_j_seta_2021_101453
crossref_primary_10_1007_s11831_025_10391_9
crossref_primary_10_1109_TIA_2024_3430252
crossref_primary_10_1016_j_ijfatigue_2023_107654
crossref_primary_10_3847_PSJ_ad50a7
crossref_primary_10_1088_2632_2153_ad9fce
crossref_primary_10_1007_s41781_025_00130_x
crossref_primary_10_1088_1361_6587_ada1f5
crossref_primary_10_3390_sym14061219
crossref_primary_10_1016_j_aei_2023_101914
crossref_primary_10_1016_j_cie_2022_108746
crossref_primary_10_1016_j_compchemeng_2025_109243
crossref_primary_10_1016_j_eswa_2021_116030
crossref_primary_10_1016_j_arcontrol_2024_100943
crossref_primary_10_1115_1_4068821
crossref_primary_10_1016_j_ymssp_2023_110796
crossref_primary_10_1002_eqe_4151
crossref_primary_10_1007_s11431_024_2764_5
crossref_primary_10_1016_j_apenergy_2023_121247
crossref_primary_10_1007_s12289_023_01803_x
crossref_primary_10_1016_j_geoen_2023_211969
crossref_primary_10_1016_j_cja_2024_08_023
crossref_primary_10_1016_j_rineng_2025_106061
crossref_primary_10_1016_j_petrol_2021_109089
crossref_primary_10_1093_jcde_qwae102
crossref_primary_10_1016_j_engstruct_2024_117692
crossref_primary_10_3389_fphys_2024_1473125
crossref_primary_10_1080_15376494_2024_2404183
crossref_primary_10_1016_j_eswa_2021_114776
crossref_primary_10_1007_s10668_021_01521_x
crossref_primary_10_1016_j_aei_2023_102039
crossref_primary_10_1016_j_dche_2023_100136
crossref_primary_10_1016_j_eswa_2022_116564
crossref_primary_10_1080_09544828_2023_2191242
crossref_primary_10_20965_ijat_2025_p0879
crossref_primary_10_1016_j_ymssp_2022_109656
crossref_primary_10_1016_j_ifacol_2023_10_1020
crossref_primary_10_1177_03611981241257513
crossref_primary_10_1016_j_strusafe_2025_102578
crossref_primary_10_1007_s10845_025_02603_7
crossref_primary_10_1016_j_eswa_2020_114549
crossref_primary_10_1016_j_pecs_2022_101010
crossref_primary_10_1108_EC_10_2021_0567
crossref_primary_10_1016_j_cherd_2024_09_031
crossref_primary_10_1016_j_oceaneng_2024_116862
crossref_primary_10_1016_j_cma_2025_117793
crossref_primary_10_1016_j_eswa_2022_117089
crossref_primary_10_1007_s00158_025_03976_2
crossref_primary_10_1016_j_aei_2023_102028
crossref_primary_10_1016_j_cma_2023_116061
crossref_primary_10_1371_journal_pone_0254861
crossref_primary_10_53982_ajerd_2025_0802_04_j
crossref_primary_10_3390_photonics11050442
crossref_primary_10_1016_j_ifacol_2023_10_1371
crossref_primary_10_1177_09544062241304869
crossref_primary_10_3390_app15179573
crossref_primary_10_1016_j_engstruct_2024_117597
crossref_primary_10_1016_j_cie_2024_110374
crossref_primary_10_1016_j_apm_2023_07_011
crossref_primary_10_1007_s00521_022_07297_z
crossref_primary_10_1016_j_rineng_2025_105712
crossref_primary_10_1016_j_eswa_2022_118288
crossref_primary_10_1007_s11831_024_10152_0
crossref_primary_10_1016_j_scs_2024_106055
crossref_primary_10_1149_1945_7111_ad4a11
crossref_primary_10_1016_j_eswa_2022_118847
crossref_primary_10_1016_j_procir_2024_10_027
crossref_primary_10_1016_j_scitotenv_2022_159544
crossref_primary_10_3390_math9192442
crossref_primary_10_1016_j_rcim_2024_102942
crossref_primary_10_1016_j_commatsci_2022_111750
crossref_primary_10_1016_j_enpol_2020_112105
crossref_primary_10_1016_j_jenvman_2025_125163
crossref_primary_10_1109_JLT_2024_3386886
crossref_primary_10_1016_j_jobe_2024_108766
crossref_primary_10_1002_advs_202403543
crossref_primary_10_1016_j_eswa_2021_114982
crossref_primary_10_1016_j_eswa_2020_114442
crossref_primary_10_1007_s00477_024_02869_y
crossref_primary_10_1016_j_seps_2022_101492
crossref_primary_10_1007_s12667_022_00535_2
crossref_primary_10_1016_j_compchemeng_2024_108723
crossref_primary_10_3390_su13084197
crossref_primary_10_1016_j_cie_2024_110434
crossref_primary_10_1016_j_compstruct_2025_119355
crossref_primary_10_1007_s11538_023_01240_6
crossref_primary_10_1080_19401493_2024_2440418
crossref_primary_10_1016_j_eswa_2021_115427
crossref_primary_10_1007_s11081_022_09731_6
crossref_primary_10_1093_synbio_ysaf011
crossref_primary_10_1016_j_eswa_2022_117451
crossref_primary_10_3390_electronics14132678
crossref_primary_10_1177_13694332251346848
crossref_primary_10_1016_j_jhydrol_2025_134087
crossref_primary_10_1177_09544089221128366
crossref_primary_10_1177_09544097251378587
crossref_primary_10_1016_j_apenergy_2024_123634
crossref_primary_10_1109_TCPMT_2025_3592441
crossref_primary_10_1109_ACCESS_2024_3416811
crossref_primary_10_1515_revce_2022_0041
crossref_primary_10_1063_5_0273551
crossref_primary_10_1016_j_cad_2022_103232
crossref_primary_10_1016_j_cma_2022_115396
crossref_primary_10_1002_cav_2265
crossref_primary_10_1016_j_eswa_2020_114504
crossref_primary_10_1016_j_jmsy_2024_09_012
crossref_primary_10_1016_j_eswa_2021_115659
crossref_primary_10_1016_j_asoc_2025_113440
crossref_primary_10_1371_journal_pone_0321862
crossref_primary_10_1016_j_petrol_2021_108939
crossref_primary_10_1016_j_chip_2025_100132
crossref_primary_10_1016_j_eswa_2021_115410
crossref_primary_10_1007_s10064_025_04367_z
crossref_primary_10_1007_s11804_025_00627_2
crossref_primary_10_1016_j_petrol_2022_110866
crossref_primary_10_1016_j_simpat_2023_102811
crossref_primary_10_1080_15732479_2022_2033799
crossref_primary_10_1007_s10845_022_01949_6
crossref_primary_10_1016_j_buildenv_2023_111157
crossref_primary_10_1016_j_ecolmodel_2024_110956
crossref_primary_10_1080_19942060_2024_2440075
crossref_primary_10_1177_10775463221125038
crossref_primary_10_3390_en14020468
crossref_primary_10_3390_math12030426
crossref_primary_10_1016_j_advengsoft_2024_103740
crossref_primary_10_1088_1742_6596_2658_1_012003
crossref_primary_10_1016_j_engstruct_2024_119214
crossref_primary_10_1016_j_eswa_2020_114515
crossref_primary_10_1038_s41524_021_00634_1
crossref_primary_10_1109_ACCESS_2025_3593900
crossref_primary_10_1016_j_procs_2025_03_106
crossref_primary_10_1007_s00158_023_03567_z
crossref_primary_10_1016_j_eswa_2020_114512
crossref_primary_10_1016_j_eswa_2021_115403
crossref_primary_10_1016_j_aei_2020_101123
crossref_primary_10_1007_s00366_025_02123_1
crossref_primary_10_1007_s00158_025_03969_1
crossref_primary_10_1016_j_apm_2022_11_039
crossref_primary_10_1080_15502287_2021_1921883
crossref_primary_10_1016_j_aei_2025_103718
crossref_primary_10_1016_j_pnucene_2023_104594
crossref_primary_10_1080_19401493_2023_2282078
crossref_primary_10_1016_j_cad_2022_103446
crossref_primary_10_1016_j_enbenv_2023_07_002
crossref_primary_10_1016_j_eswa_2021_115519
crossref_primary_10_1016_j_energy_2025_136709
crossref_primary_10_3390_jmse12020276
crossref_primary_10_1109_TVCG_2024_3456372
crossref_primary_10_3390_math12182949
crossref_primary_10_3390_app12073420
crossref_primary_10_1007_s10489_022_04024_y
crossref_primary_10_1016_j_asoc_2023_110744
crossref_primary_10_1007_s00362_022_01334_8
crossref_primary_10_3390_modelling5040106
crossref_primary_10_1016_j_rineng_2024_102483
crossref_primary_10_1007_s40033_022_00424_z
crossref_primary_10_3390_ani15070970
crossref_primary_10_1007_s00500_021_06348_2
crossref_primary_10_1016_j_cad_2025_103951
crossref_primary_10_1016_j_jmapro_2025_03_112
crossref_primary_10_1016_j_eswa_2021_114934
crossref_primary_10_1016_j_eswa_2024_124229
crossref_primary_10_3390_fluids8030080
crossref_primary_10_1177_09544062241312888
crossref_primary_10_1016_j_ecoinf_2024_102698
crossref_primary_10_1177_13694332241260140
crossref_primary_10_1016_j_istruc_2023_105712
crossref_primary_10_1016_j_cofs_2024_101196
crossref_primary_10_3390_computers14070287
crossref_primary_10_1007_s00500_022_07362_8
crossref_primary_10_15406_ijh_2024_08_00390
crossref_primary_10_3390_make6020038
crossref_primary_10_3390_cli12110189
crossref_primary_10_1016_j_eswa_2022_116609
crossref_primary_10_1063_5_0290594
crossref_primary_10_1088_1361_651X_ad4b4c
crossref_primary_10_1016_j_procs_2023_08_175
crossref_primary_10_3390_ma18071469
crossref_primary_10_1038_s41598_024_67142_2
crossref_primary_10_1016_j_finel_2024_104276
crossref_primary_10_1007_s00163_022_00406_y
crossref_primary_10_1016_j_ces_2025_122347
crossref_primary_10_1016_j_eswa_2020_114381
crossref_primary_10_1016_j_compchemeng_2025_109178
crossref_primary_10_1080_0305215X_2023_2247369
crossref_primary_10_1016_j_neucom_2025_130521
crossref_primary_10_1016_j_compchemeng_2023_108249
crossref_primary_10_1016_j_softx_2025_102077
crossref_primary_10_1061__ASCE_CO_1943_7862_0002394
crossref_primary_10_1016_j_enbuild_2025_115441
crossref_primary_10_1016_j_apacoust_2025_110625
crossref_primary_10_3390_math10030481
crossref_primary_10_1016_j_ces_2025_122374
crossref_primary_10_3390_aerospace11100830
crossref_primary_10_3390_app14135620
crossref_primary_10_1016_j_jocs_2021_101427
crossref_primary_10_1007_s11227_025_07032_0
crossref_primary_10_1016_j_cam_2024_115794
crossref_primary_10_1108_COMPEL_11_2023_0552
crossref_primary_10_1145_3653024
crossref_primary_10_1115_1_4068456
crossref_primary_10_1016_j_apenergy_2024_123130
crossref_primary_10_1016_j_istruc_2023_104964
crossref_primary_10_1038_s44304_025_00122_2
crossref_primary_10_1080_00949655_2022_2060223
crossref_primary_10_1007_s00170_025_15032_w
crossref_primary_10_1109_ACCESS_2021_3127881
crossref_primary_10_1007_s11831_021_09539_0
crossref_primary_10_1109_MCG_2025_3549665
crossref_primary_10_1108_ECAM_05_2022_0470
crossref_primary_10_1371_journal_pcbi_1009135
crossref_primary_10_3390_su16229851
crossref_primary_10_1007_s13137_023_00240_x
crossref_primary_10_3390_a17010041
crossref_primary_10_1139_cgj_2022_0696
crossref_primary_10_1186_s43067_025_00238_5
crossref_primary_10_1016_j_aei_2024_102706
crossref_primary_10_3390_ma17030742
crossref_primary_10_1007_s00477_022_02288_x
crossref_primary_10_1016_j_apor_2025_104514
crossref_primary_10_1016_j_envsoft_2021_105231
crossref_primary_10_1016_j_solener_2023_111811
crossref_primary_10_1007_s00466_021_01979_6
crossref_primary_10_1016_j_iswa_2021_200059
crossref_primary_10_1002_eqe_4115
crossref_primary_10_1007_s13349_025_01011_y
crossref_primary_10_3390_aerospace11100839
Cites_doi 10.2118/172536-MS
10.1198/004017004000000211
10.1016/j.cageo.2016.02.022
10.1007/s00158-016-1579-y
10.1115/DETC2003/CIE-48230
10.1016/j.paerosci.2008.11.001
10.1166/asl.2018.11136
10.1080/00401706.1969.10490707
10.2514/6.2000-4801
10.1137/16M1082469
10.1080/00401706.1962.10490035
10.1080/0305215X.2014.954565
10.1080/03052150701690764
10.1023/A:1010933404324
10.1115/1.4002751
10.1023/A:1008306431147
10.2514/6.2006-7047
10.1016/j.procir.2018.03.234
10.1115/1.4001873
10.1007/s00500-003-0328-5
10.1080/0305215X.2015.1115645
10.2514/2.7431
10.1007/s00158-006-0051-9
10.1162/neco.1997.9.7.1545
10.1016/j.ejor.2016.10.031
10.2514/6.2005-333
10.1111/biom.12971
10.1080/00401706.1960.10489912
10.1007/s00158-016-1432-3
10.1109/34.857004
10.1115/DETC2009-87053
10.1007/s00158-017-1891-1
10.1115/DETC2010-28226
10.1093/biomet/asp045
10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
10.1007/978-3-540-32827-8
10.1115/1.4034219
10.1007/978-1-4419-9326-7_5
10.1016/S0010-4655(98)00171-4
10.1115/1.3130791
10.2514/1.J054343
10.1080/00401706.2012.723572
10.1145/288627.288651
10.1353/book.21076
10.1115/IMECE2015-51862
10.1007/s00158-010-0554-2
10.1016/j.jspi.2008.10.023
10.1007/978-3-319-54157-0_27
10.1007/s00158-014-1096-9
10.1115/DETC2008-49961
10.1017/S089006041900026X
10.1039/B918972F
10.1016/j.techfore.2015.11.030
10.2514/6.2012-5576
10.1115/1.3184599
10.1016/j.ijforecast.2015.12.003
10.1023/A:1012771025575
10.1115/DETC2004-57722
10.1115/DETC2005-85043
10.1080/00401706.1993.10484990
10.1115/1.1897403
10.1007/s10898-012-9892-5
10.1016/j.rcim.2005.07.004
10.1016/j.eswa.2014.11.020
10.1007/978-3-319-54157-0_12
10.1080/0305215X.2015.1100470
10.1093/biomet/87.1.1
10.1109/CEC.2012.6256491
10.1016/j.neunet.2014.09.003
10.1089/ees.2018.0366
10.1007/s11831-017-9226-3
10.1115/DETC2011-47288
10.1109/34.709601
10.1145/2908812.2908952
10.1029/2005WR004640
10.1111/j.0006-341X.2001.00081.x
10.2514/1.45790
10.1080/00401706.1996.10484417
10.1016/j.geoderma.2011.03.010
10.1137/S1064827503426693
10.1115/DETC2011-47217
10.1016/j.cma.2008.11.023
10.1109/TMMS.1970.299942
10.1126/science.246.4927.221
10.1299/jamdsm.6.404
10.1080/00401706.1988.10488328
10.2514/1.J052375
10.1016/j.compstruct.2015.05.029
10.1115/1.4039450
10.1115/1.2179459
10.4324/9780203763247
10.1115/DETC97/DTM-3881
10.1115/DETC2005-85544
10.1080/07408170500232495
10.1016/j.ejor.2007.10.013
10.1109/TII.2012.2205932
10.1007/978-1-4899-4467-2
10.1198/106186008X320681
10.1115/DETC2007-35852
10.1007/s00158-018-1906-6
10.1007/s11081-008-9043-5
10.1007/BF01743349
10.1002/wics.73
10.1061/(ASCE)0733-9399(2002)128:4(380)
10.1115/DETC2010-28813
10.1007/s00158-009-0420-2
10.1016/S0951-8320(98)00008-8
10.1080/03052150008941302
10.1007/s41872-018-00072-x
10.1002/qre.1259
10.1145/1276958.1277203
10.1111/1467-9868.00294
10.1016/j.procs.2016.09.309
10.1007/s00158-004-0389-9
10.1007/s00158-017-1890-2
10.1080/00224065.1994.11979537
10.1016/S1364-8152(99)00007-9
10.4271/2015-01-1369
10.1016/S0378-3758(98)00025-1
10.1198/004017008000000262
10.1115/IMECE2011-62480
10.2514/6.2010-3089
10.1080/03052159808941369
10.1115/DETC2008-49240
10.1016/j.compstruct.2017.01.061
10.1038/ng.3703
10.1016/j.envsoft.2014.05.026
10.1115/1.4007988
10.1115/IMECE2010-38323
10.1214/aos/1013203451
10.1016/S0377-2217(96)00156-7
10.1109/CEC.2016.7744340
10.1115/DETC2015-47850
10.1198/tas.2005.s249
10.1007/s00366-006-0051-9
10.1115/FEDSM2006-98368
10.1002/wics.27
10.2514/1.J050327
10.1016/S0169-7161(03)22009-5
10.1115/1.4033918
10.1214/aos/1032181157
10.1504/IJCAET.2017.080769
10.1007/978-3-319-15934-8_1
10.1115/DETC2014-35037
10.2514/2.2435
10.1214/aoms/1177707047
10.1007/s10462-017-9601-3
10.1115/IMECE2010-37459
10.2514/6.1997-1331
10.1007/s00158-001-0160-4
10.1016/j.jhydrol.2019.03.020
10.1023/A:1008391403193
10.1007/BF01531079
10.1115/DETC2006-99637
10.2514/1.40291
10.2514/6.2010-3090
10.1115/1.4034035
10.1080/03052150601077260
10.1287/ijoc.1060.0182
10.1007/BF01197554
10.1287/opre.28.5.1251
10.1002/qre.1591
10.2514/1.J052930
10.1115/DETC2015-46476
10.1007/s00158-013-0956-z
10.1016/j.renene.2014.09.001
10.1080/0305215X.2012.709509
10.1016/j.ress.2005.11.031
10.1080/00401706.1988.10488327
10.1023/A:1011255519438
10.1016/j.jcp.2006.01.037
10.2514/6.1998-4755
10.1007/PL00007198
10.1115/IMECE2011-62450
10.1115/1.4039128
10.1007/s00158-006-0025-y
10.1115/DETC2011-47483
10.1023/A:1016012404105
10.2514/6.2008-5802
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright Springer Nature B.V. Jul 2020
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
– notice: Copyright Springer Nature B.V. Jul 2020
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s00163-020-00336-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database
Engineering Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1435-6066
EndPage 298
ExternalDocumentID 10_1007_s00163_020_00336_7
GrantInformation_xml – fundername: University of Oklahoma
  grantid: 122-794800
– fundername: The University of Oklahoma
  grantid: 122-763300
– fundername: Tata Consultancy Services
  grantid: 105-373200
  funderid: http://dx.doi.org/10.13039/100012913
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
28-
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
ZY4
_50
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c400t-5cc6d685dde7c4901bde5e320c4620f49db5d5eb3289faa75cc9df6d046519403
IEDL.DBID BENPR
ISICitedReferencesCount 301
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524364800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0934-9839
IngestDate Wed Nov 05 08:38:54 EST 2025
Tue Nov 04 23:14:41 EST 2025
Sat Nov 29 03:38:56 EST 2025
Tue Nov 18 20:52:10 EST 2025
Fri Feb 21 02:35:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Design
Response surface
Surrogate model
Meta model
Model selection
Computational complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-5cc6d685dde7c4901bde5e320c4620f49db5d5eb3289faa75cc9df6d046519403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0686-6764
PQID 2412229141
PQPubID 2043740
PageCount 24
ParticipantIDs proquest_journals_3151309259
proquest_journals_2412229141
crossref_primary_10_1007_s00163_020_00336_7
crossref_citationtrail_10_1007_s00163_020_00336_7
springer_journals_10_1007_s00163_020_00336_7
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: New York
PublicationTitle Research in engineering design
PublicationTitleAbbrev Res Eng Design
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References L Laurent (336_CR130) 2017; 26
JH Panchal (336_CR157) 2008; 40
B Cheng (336_CR48) 1994; 9
E Acar (336_CR1) 2015; 42
J Friedman (336_CR72) 2001
S Shan (336_CR179) 2010; 41
TG Trucano (336_CR203) 2006; 91
M Messer (336_CR149) 2010; 132
D Bettebghor (336_CR24) 2011; 43
NR Draper (336_CR64) 1988; 30
N-K Nguyen (336_CR154) 1996; 38
IM Sobol (336_CR189) 1993; 1
PZ Qian (336_CR167) 2009; 19
Y Jin (336_CR110) 2005; 9
CD Lin (336_CR137) 2015; 31
336_CR162
JW Bandler (336_CR16) 2001; 2
S Dey (336_CR62) 2017; 171
CJ Turner (336_CR213) 2007; 39
Z Hou (336_CR104) 2019
MC Kennedy (336_CR119) 2001; 63
R Alizadeh (336_CR6) 2016; 104
Y Audoux (336_CR12) 2018; 70
D Gorissen (336_CR83) 2010; 11
C Hong (336_CR103) 2019; 75
M Ratto (336_CR169) 2012
TW Simpson (336_CR186) 2004; 27
336_CR175
336_CR174
H-M Gutmann (336_CR90) 2001; 19
J Xu (336_CR238) 2001; 57
EM Kleinberg (336_CR126) 2000; 22
336_CR176
GE Box (336_CR34) 1987
P Jaeckel (336_CR107) 1999; 2
BD Ripley (336_CR172) 2007
JM Lucas (336_CR139) 1994; 26
R Alizadeh (336_CR7) 2016; 2
SE Gano (336_CR73) 2006; 32
PC Hansen (336_CR95) 2012
K Lewis (336_CR132) 1998; 31
K Shankar Bhattacharjee (336_CR180) 2016; 138
B Peherstorfer (336_CR159) 2018; 60
A Khuri (336_CR120) 1988; 30
JC Steuben (336_CR192) 2014
336_CR184
336_CR183
A Gustafsson (336_CR89) 2013
336_CR187
S Kim (336_CR123) 2016; 32
D Gorissen (336_CR82) 2009; 10
Z Zhu (336_CR247) 2016; 10
DR Jones (336_CR113) 2001; 21
336_CR27
336_CR26
A Dey (336_CR61) 1985
M Babaei (336_CR13) 2016; 91
A Habib (336_CR91) 2017; 50
TW Simpson (336_CR185) 2001; 17
AS Hedayat (336_CR98) 2012
WJ Bandler (336_CR17) 2008; 9
FA Viana (336_CR228) 2013; 56
336_CR20
HR Maier (336_CR145) 2000; 15
336_CR193
336_CR195
336_CR194
DC Montgomery (336_CR151) 2017
336_CR197
336_CR19
X Song (336_CR190) 2018; 140
CJ Turner (336_CR215) 2007; 23
DYY Sim (336_CR182) 2018; 24
336_CR11
A Geist (336_CR76) 2000
MJ Karson (336_CR115) 1969; 11
Z Qian (336_CR164) 2006; 128
J Fang (336_CR69) 2017; 55
J Sobieszczanski-Sobieski (336_CR188) 1997; 14
E Kleinberg (336_CR124) 1990; 1
HR Madala (336_CR144) 1994
336_CR10
MH Karwan (336_CR116) 1980; 28
G De'ath (336_CR54) 2007; 88
SR Gunn (336_CR85) 1998; 14
PZ Qian (336_CR166) 2009; 37
C Liang (336_CR134) 2016; 54
IH Witten (336_CR234) 2016
R Balling (336_CR15) 1997; 35
336_CR49
D Higdon (336_CR100) 2004; 26
J Schmidhuber (336_CR177) 2015; 61
CJ Turner (336_CR204) 2005
KP Burnham (336_CR39) 2003
JD Deaton (336_CR55) 2014; 49
RS Michalski (336_CR150) 1983
RG Ghanem (336_CR77) 2006; 217
RT Haftka (336_CR92) 2016; 54
DK Lin (336_CR136) 1993; 35
JH Friedman (336_CR71) 2001; 29
P Luo (336_CR140) 2019; 29
P Ye (336_CR242) 2018; 58
A Grama (336_CR84) 2013
PZ Qian (336_CR163) 2009; 96
G Seni (336_CR178) 2010; 2
B Lemercier (336_CR131) 2012; 171
J Chen (336_CR45) 1998; 72
FKH Phoa (336_CR160) 2009; 139
TK Ho (336_CR102) 1998; 20
RG Easterling (336_CR67) 2002
P Mugunthan (336_CR152) 2006; 42
SAI Bellary (336_CR22) 2017; 9
336_CR66
T Yang (336_CR241) 2006; 22
V Vinzi (336_CR231) 2010
A Cutler (336_CR53) 2012
H Deng (336_CR60) 2012; 28
KS Bhattacharjee (336_CR28) 2017
PZG Qian (336_CR165) 2008; 50
S Geisser (336_CR75) 1993
Y Xiong (336_CR236) 2009; 198
JR Carbonell (336_CR41) 1970; 11
336_CR56
H Rabitz (336_CR168) 1989; 246
336_CR57
KS Bhattacharjee (336_CR29) 2018; 140
MC Kennedy (336_CR118) 2000; 87
E Kleinberg (336_CR125) 1996; 24
H Cho (336_CR50) 2014; 50
H Yin (336_CR243) 2018; 58
R Shi (336_CR181) 2016; 48
336_CR201
336_CR205
JP Kleijnen (336_CR245) 2009; 192
336_CR207
M Al-Juboori (336_CR5) 2019; 8
P Güntert (336_CR88) 1998; 12
336_CR206
RF Gunst (336_CR87) 2009; 1
B Glaz (336_CR79) 2009; 47
336_CR208
GEP Box (336_CR32) 1960; 2
H Deng (336_CR59) 2012; 6
336_CR80
DR Jones (336_CR114) 1998; 13
V Picheny (336_CR161) 2010; 132
JC Helton (336_CR99) 1999; 117
Z Jiang (336_CR109) 2016; 138
JC Steuben (336_CR199) 2013; 45
336_CR210
336_CR212
VC Chen (336_CR47) 2006; 38
336_CR211
H Wang (336_CR233) 2016; 48
336_CR214
336_CR216
JL Beck (336_CR21) 2002; 128
336_CR78
336_CR218
336_CR217
S Xiong (336_CR237) 2013; 55
JC Steuben (336_CR202) 2019; 25
PN Koch (336_CR127) 1999; 36
CS Reese (336_CR170) 2004; 46
JC Steuben (336_CR196) 2012; 12
E Corchado (336_CR52) 2007
J Steuben (336_CR200) 2015; 132
J-FM Barthelemy (336_CR18) 1993; 5
L Breiman (336_CR36) 2001; 45
Y Amit (336_CR9) 1997; 9
336_CR221
R Badhurshah (336_CR14) 2015; 74
HB Demuth (336_CR58) 2014
Z Lv (336_CR141) 2019; 52
336_CR220
HVB Kathleen (336_CR117) 1962; 4
336_CR223
336_CR101
336_CR222
336_CR225
336_CR224
336_CR226
R Alizadeh (336_CR8) 2019; 33
S Varadarajan (336_CR219) 2000; 32
R Jin (336_CR112) 2001; 23
GE Box (336_CR35) 1978
RM Paiva (336_CR156) 2010; 48
MR Kianifar (336_CR122) 2019; 61
ML Stein (336_CR191) 2012
336_CR230
AIJ Forrester (336_CR70) 2009; 45
J IT (336_CR106) 2002
336_CR111
A MacCalman (336_CR142) 2016; 95
Z Xing (336_CR235) 2019; 572
Y Chauvin (336_CR44) 2013
KA Jagadeesh (336_CR108) 2016; 48
336_CR239
RF Gunst (336_CR86) 1996
C Wang (336_CR232) 2014; 60
CJ Turner (336_CR209) 2009; 9
X He (336_CR97) 2013; 41
336_CR93
336_CR96
336_CR2
336_CR3
336_CR4
FAC Viana (336_CR227) 2010; 48
RH Myers (336_CR153) 2016
N Bliznyuk (336_CR30) 2008; 17
DS Broomhead (336_CR38) 1988; 2
C-W Hsu (336_CR105) 2003
RG Regis (336_CR171) 2007; 19
AB Owen (336_CR155) 1992; 2
JH Panchal (336_CR158) 2009; 9
J Han (336_CR94) 2011
AI Khuri (336_CR121) 2010; 2
GE Box (336_CR33) 1961; 3
A Chaudhuri (336_CR42) 2014; 52
C Krauss (336_CR128) 2017; 259
J Sacks (336_CR173) 1989; 4
J Zhao (336_CR246) 2012; 8
T Goel (336_CR81) 2007; 33
336_CR133
RO Duda (336_CR65) 2012
336_CR135
JC Steuben (336_CR198) 2015; 47
D La Fuente (336_CR129) 2016
FAC Viana (336_CR229) 2014; 52
336_CR138
VC Chen (336_CR46) 2003; 22
CP Dobler (336_CR63) 2005; 59
MD McKay (336_CR148) 1979; 21
RG Brereton (336_CR37) 2010; 135
F Campolongo (336_CR40) 1999; 64
SAI Bellary (336_CR23) 2016; 10
B Bettonvil (336_CR25) 1997; 96
GEP Box (336_CR31) 1957; 28
SM Clarke (336_CR51) 2004; 127
K Ezhilsabareesh (336_CR68) 2018; 12
336_CR143
336_CR147
H Gao (336_CR74) 2018; 58
References_xml – ident: 336_CR3
  doi: 10.2118/172536-MS
– volume: 46
  start-page: 153
  issue: 2
  year: 2004
  ident: 336_CR170
  publication-title: Technometrics
  doi: 10.1198/004017004000000211
– volume: 91
  start-page: 19
  year: 2016
  ident: 336_CR13
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2016.02.022
– volume: 55
  start-page: 1091
  issue: 3
  year: 2017
  ident: 336_CR69
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1579-y
– volume-title: Principal component analysis
  year: 2002
  ident: 336_CR106
– volume-title: Inductive learning algorithms for complex systems modeling
  year: 1994
  ident: 336_CR144
– ident: 336_CR210
  doi: 10.1115/DETC2003/CIE-48230
– volume: 45
  start-page: 50
  issue: 1
  year: 2009
  ident: 336_CR70
  publication-title: Prog Aerosp Sci
  doi: 10.1016/j.paerosci.2008.11.001
– volume-title: Introduction to parallel computing
  year: 2013
  ident: 336_CR84
– volume: 24
  start-page: 1680
  issue: 3
  year: 2018
  ident: 336_CR182
  publication-title: Adv Sci Lett
  doi: 10.1166/asl.2018.11136
– volume: 11
  start-page: 461
  issue: 3
  year: 1969
  ident: 336_CR115
  publication-title: Technometrics
  doi: 10.1080/00401706.1969.10490707
– ident: 336_CR111
  doi: 10.2514/6.2000-4801
– volume: 60
  start-page: 550
  issue: 3
  year: 2018
  ident: 336_CR159
  publication-title: Siam Rev
  doi: 10.1137/16M1082469
– volume: 11
  start-page: 2051
  year: 2010
  ident: 336_CR83
  publication-title: J Mach Learn Res
– volume: 4
  start-page: 489
  issue: 4
  year: 1962
  ident: 336_CR117
  publication-title: Technometrics
  doi: 10.1080/00401706.1962.10490035
– volume-title: Statistical foundations for the validation of computer models. Presented at computer model verification and validation in the 21st century workshop
  year: 2002
  ident: 336_CR67
– volume: 47
  start-page: 1157
  issue: 9
  year: 2015
  ident: 336_CR198
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2014.954565
– volume: 40
  start-page: 223
  issue: 3
  year: 2008
  ident: 336_CR157
  publication-title: Eng Optim
  doi: 10.1080/03052150701690764
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 336_CR36
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 132
  start-page: 121008
  issue: 12
  year: 2010
  ident: 336_CR149
  publication-title: J Mech Des
  doi: 10.1115/1.4002751
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 336_CR114
  publication-title: J Global Optim
  doi: 10.1023/A:1008306431147
– ident: 336_CR80
  doi: 10.2514/6.2006-7047
– volume: 29
  start-page: 1343
  issue: 3
  year: 2019
  ident: 336_CR140
  publication-title: Stat Sinica
– volume-title: Conjoint measurement: methods and applications
  year: 2013
  ident: 336_CR89
– volume: 70
  start-page: 463
  year: 2018
  ident: 336_CR12
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.03.234
– volume: 132
  start-page: 071008
  issue: 7
  year: 2010
  ident: 336_CR161
  publication-title: J Mech Des
  doi: 10.1115/1.4001873
– volume: 9
  start-page: 3
  issue: 1
  year: 2005
  ident: 336_CR110
  publication-title: Soft Comput
  doi: 10.1007/s00500-003-0328-5
– volume: 48
  start-page: 1432
  issue: 8
  year: 2016
  ident: 336_CR233
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2015.1115645
– volume: 2
  start-page: 321
  year: 1988
  ident: 336_CR38
  publication-title: J Complex Syst
– volume: 35
  start-page: 178
  issue: 1
  year: 1997
  ident: 336_CR15
  publication-title: AIAA J
  doi: 10.2514/2.7431
– volume: 33
  start-page: 199
  issue: 3
  year: 2007
  ident: 336_CR81
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-006-0051-9
– volume: 9
  start-page: 1545
  issue: 7
  year: 1997
  ident: 336_CR9
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.7.1545
– volume: 259
  start-page: 689
  issue: 2
  year: 2017
  ident: 336_CR128
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2016.10.031
– ident: 336_CR143
  doi: 10.2514/6.2005-333
– volume: 75
  start-page: 78
  issue: 1
  year: 2019
  ident: 336_CR103
  publication-title: Biometrics
  doi: 10.1111/biom.12971
– volume: 2
  start-page: 455
  issue: 4
  year: 1960
  ident: 336_CR32
  publication-title: Technometrics
  doi: 10.1080/00401706.1960.10489912
– volume: 54
  start-page: 3
  issue: 1
  year: 2016
  ident: 336_CR92
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1432-3
– volume: 22
  start-page: 473
  issue: 5
  year: 2000
  ident: 336_CR126
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.857004
– volume: 19
  start-page: 287
  issue: 1
  year: 2009
  ident: 336_CR167
  publication-title: Stat Sinica
– volume: 10
  start-page: 2039
  year: 2009
  ident: 336_CR82
  publication-title: J Mach Learn Res
– ident: 336_CR224
  doi: 10.1115/DETC2009-87053
– volume: 58
  start-page: 245
  issue: 1
  year: 2018
  ident: 336_CR243
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-017-1891-1
– volume-title: Response surface methodology: process and product optimization using designed experiments
  year: 2016
  ident: 336_CR153
– ident: 336_CR193
  doi: 10.1115/DETC2010-28226
– volume: 96
  start-page: 957
  issue: 4
  year: 2009
  ident: 336_CR163
  publication-title: Biometrika
  doi: 10.1093/biomet/asp045
– volume: 88
  start-page: 243
  issue: 1
  year: 2007
  ident: 336_CR54
  publication-title: Ecology
  doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
– volume: 2
  start-page: 1
  issue: 1
  year: 2010
  ident: 336_CR178
  publication-title: Synth Lect Data Min Knowl Discov
– volume-title: Handbook of partial least squares
  year: 2010
  ident: 336_CR231
  doi: 10.1007/978-3-540-32827-8
– volume: 10
  start-page: 10.1115/1.40342
  issue: 1115/1
  year: 2016
  ident: 336_CR247
  publication-title: J Mech Des. doi
  doi: 10.1115/1.4034219
– start-page: 157
  volume-title: Random forests. Ensemble machine learning
  year: 2012
  ident: 336_CR53
  doi: 10.1007/978-1-4419-9326-7_5
– volume: 117
  start-page: 156
  issue: 1
  year: 1999
  ident: 336_CR99
  publication-title: Comput Phys Commun
  doi: 10.1016/S0010-4655(98)00171-4
– volume: 9
  start-page: 021005
  issue: 2
  year: 2009
  ident: 336_CR158
  publication-title: J Comput Inf Sci Eng
  doi: 10.1115/1.3130791
– volume: 54
  start-page: 1209
  issue: 2
  year: 2016
  ident: 336_CR134
  publication-title: AIAA J
  doi: 10.2514/1.J054343
– volume: 55
  start-page: 37
  issue: 1
  year: 2013
  ident: 336_CR237
  publication-title: Technometrics
  doi: 10.1080/00401706.2012.723572
– ident: 336_CR66
  doi: 10.1145/288627.288651
– volume-title: Least squares data fitting with applications
  year: 2012
  ident: 336_CR95
  doi: 10.1353/book.21076
– ident: 336_CR221
– ident: 336_CR10
  doi: 10.1115/IMECE2015-51862
– volume: 43
  start-page: 243
  issue: 2
  year: 2011
  ident: 336_CR24
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-010-0554-2
– volume-title: The elements of statistical learning
  year: 2001
  ident: 336_CR72
– volume: 139
  start-page: 2362
  issue: 7
  year: 2009
  ident: 336_CR160
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2008.10.023
– volume-title: Pattern classification
  year: 2012
  ident: 336_CR65
– ident: 336_CR133
  doi: 10.1007/978-3-319-54157-0_27
– volume: 50
  start-page: 717
  issue: 5
  year: 2014
  ident: 336_CR50
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-014-1096-9
– ident: 336_CR4
  doi: 10.1115/DETC2008-49961
– volume: 33
  start-page: 484
  issue: 4
  year: 2019
  ident: 336_CR8
  publication-title: Artif Intell Eng Des Anal Manuf
  doi: 10.1017/S089006041900026X
– volume: 135
  start-page: 230
  issue: 2
  year: 2010
  ident: 336_CR37
  publication-title: Analyst
  doi: 10.1039/B918972F
– volume: 104
  start-page: 162
  year: 2016
  ident: 336_CR6
  publication-title: Technol Forecast Soc Chang
  doi: 10.1016/j.techfore.2015.11.030
– ident: 336_CR20
  doi: 10.2514/6.2012-5576
– volume: 9
  start-page: 031002
  issue: 3
  year: 2009
  ident: 336_CR209
  publication-title: J Comput Inf Sci Eng
  doi: 10.1115/1.3184599
– volume: 3
  start-page: 311
  issue: 3
  year: 1961
  ident: 336_CR33
  publication-title: Technometrics
– volume: 32
  start-page: 669
  issue: 3
  year: 2016
  ident: 336_CR123
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2015.12.003
– volume-title: PVM–parallel virtual machine : a users' guide and tutorial for networked parallel computing
  year: 2000
  ident: 336_CR76
– volume: 21
  start-page: 345
  issue: 4
  year: 2001
  ident: 336_CR113
  publication-title: J Global Optim
  doi: 10.1023/A:1012771025575
– start-page: 83
  volume-title: A theory and methodology of inductive learning. Mach Learn
  year: 1983
  ident: 336_CR150
– ident: 336_CR216
– ident: 336_CR239
– ident: 336_CR211
  doi: 10.1115/DETC2004-57722
– ident: 336_CR174
– ident: 336_CR208
  doi: 10.1115/DETC2005-85043
– volume: 35
  start-page: 28
  issue: 1
  year: 1993
  ident: 336_CR136
  publication-title: Technometrics
  doi: 10.1080/00401706.1993.10484990
– volume: 127
  start-page: 1077
  issue: 6
  year: 2004
  ident: 336_CR51
  publication-title: J Mech Des
  doi: 10.1115/1.1897403
– volume: 4
  start-page: 409
  issue: 4
  year: 1989
  ident: 336_CR173
  publication-title: Stat Sci
– volume-title: Massively parallel engineering simulations on graphics processors: parallelization, synchronization, and approximation
  year: 2014
  ident: 336_CR192
– volume: 56
  start-page: 669
  issue: 2
  year: 2013
  ident: 336_CR228
  publication-title: J Global Optim
  doi: 10.1007/s10898-012-9892-5
– volume: 22
  start-page: 322
  issue: 4
  year: 2006
  ident: 336_CR241
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2005.07.004
– volume: 42
  start-page: 2703
  issue: 5
  year: 2015
  ident: 336_CR1
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.11.020
– ident: 336_CR57
  doi: 10.1007/978-3-319-54157-0_12
– volume: 48
  start-page: 1202
  issue: 7
  year: 2016
  ident: 336_CR181
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2015.1100470
– volume: 87
  start-page: 1
  issue: 1
  year: 2000
  ident: 336_CR118
  publication-title: Biometrika
  doi: 10.1093/biomet/87.1.1
– volume: 21
  start-page: 239
  issue: 2
  year: 1979
  ident: 336_CR148
  publication-title: Technometrics
– ident: 336_CR11
  doi: 10.1109/CEC.2012.6256491
– volume: 61
  start-page: 85
  year: 2015
  ident: 336_CR177
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
– year: 2019
  ident: 336_CR104
  publication-title: Environ Eng Sci
  doi: 10.1089/ees.2018.0366
– volume: 26
  start-page: 61
  year: 2017
  ident: 336_CR130
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-017-9226-3
– ident: 336_CR162
  doi: 10.1115/DETC2011-47288
– volume-title: Orthogonal fractional factorial designs
  year: 1985
  ident: 336_CR61
– volume: 20
  start-page: 832
  issue: 8
  year: 1998
  ident: 336_CR102
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.709601
– ident: 336_CR56
  doi: 10.1145/2908812.2908952
– volume: 42
  start-page: 1
  issue: 10
  year: 2006
  ident: 336_CR152
  publication-title: Water Resour Res
  doi: 10.1029/2005WR004640
– volume: 57
  start-page: 81
  issue: 1
  year: 2001
  ident: 336_CR238
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.00081.x
– volume-title: Emulation techniques for the reduction and sensitivity analysis of complex environmental models
  year: 2012
  ident: 336_CR169
– volume: 48
  start-page: 995
  issue: 5
  year: 2010
  ident: 336_CR156
  publication-title: AIAA J
  doi: 10.2514/1.45790
– volume: 38
  start-page: 69
  issue: 1
  year: 1996
  ident: 336_CR154
  publication-title: Technometrics
  doi: 10.1080/00401706.1996.10484417
– volume: 171
  start-page: 75
  year: 2012
  ident: 336_CR131
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.03.010
– volume: 9
  start-page: 2
  issue: 1
  year: 1994
  ident: 336_CR48
  publication-title: Stat Sci
– volume: 26
  start-page: 448
  issue: 2
  year: 2004
  ident: 336_CR100
  publication-title: SIAM J Sci Comput
  doi: 10.1137/S1064827503426693
– ident: 336_CR194
  doi: 10.1115/DETC2011-47217
– volume: 198
  start-page: 1327
  issue: 15
  year: 2009
  ident: 336_CR236
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.11.023
– volume-title: Interpolation of spatial data: some theory for kriging
  year: 2012
  ident: 336_CR191
– ident: 336_CR101
– volume: 11
  start-page: 190
  issue: 4
  year: 1970
  ident: 336_CR41
  publication-title: IEEE Trans Man-Mach Syst
  doi: 10.1109/TMMS.1970.299942
– volume: 246
  start-page: 221
  issue: 4927
  year: 1989
  ident: 336_CR168
  publication-title: Science
  doi: 10.1126/science.246.4927.221
– volume: 6
  start-page: 404
  issue: 4
  year: 2012
  ident: 336_CR59
  publication-title: J Adv Mech Des Syst Manuf
  doi: 10.1299/jamdsm.6.404
– volume-title: Response surface methodology: process and product optimization using designed experiments
  year: 1996
  ident: 336_CR86
– volume-title: Statistics for experimenters
  year: 1978
  ident: 336_CR35
– volume: 30
  start-page: 105
  issue: 1
  year: 1988
  ident: 336_CR64
  publication-title: Technometrics
  doi: 10.1080/00401706.1988.10488328
– volume-title: Design and analysis of experiments
  year: 2017
  ident: 336_CR151
– volume: 52
  start-page: 670
  issue: 4
  year: 2014
  ident: 336_CR229
  publication-title: AIAA J
  doi: 10.2514/1.J052375
– volume: 132
  start-page: 694
  year: 2015
  ident: 336_CR200
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.05.029
– volume: 140
  start-page: 051403
  issue: 5
  year: 2018
  ident: 336_CR29
  publication-title: J Mech Des
  doi: 10.1115/1.4039450
– volume: 128
  start-page: 668
  issue: 4
  year: 2006
  ident: 336_CR164
  publication-title: J Mech Des
  doi: 10.1115/1.2179459
– volume-title: Backpropagation: theory, architectures, and applications
  year: 2013
  ident: 336_CR44
  doi: 10.4324/9780203763247
– ident: 336_CR183
  doi: 10.1115/DETC97/DTM-3881
– ident: 336_CR207
  doi: 10.1115/DETC2005-85544
– volume: 38
  start-page: 273
  issue: 4
  year: 2006
  ident: 336_CR47
  publication-title: IIE Trans
  doi: 10.1080/07408170500232495
– volume: 192
  start-page: 707
  issue: 3
  year: 2009
  ident: 336_CR245
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2007.10.013
– volume: 8
  start-page: 953
  issue: 4
  year: 2012
  ident: 336_CR246
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2012.2205932
– volume-title: Predictive inference
  year: 1993
  ident: 336_CR75
  doi: 10.1007/978-1-4899-4467-2
– volume-title: HyPerModels: hyperdimensional performance models for engineering design
  year: 2005
  ident: 336_CR204
– volume: 17
  start-page: 270
  issue: 2
  year: 2008
  ident: 336_CR30
  publication-title: J Comput Graphical Stat
  doi: 10.1198/106186008X320681
– ident: 336_CR214
  doi: 10.1115/DETC2007-35852
– volume: 58
  start-page: 537
  issue: 2
  year: 2018
  ident: 336_CR242
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-018-1906-6
– volume: 9
  start-page: 307
  year: 2008
  ident: 336_CR17
  publication-title: Optim Eng
  doi: 10.1007/s11081-008-9043-5
– volume: 5
  start-page: 129
  issue: 3
  year: 1993
  ident: 336_CR18
  publication-title: Struct Optim
  doi: 10.1007/BF01743349
– volume: 2
  start-page: 128
  issue: 2
  year: 2010
  ident: 336_CR121
  publication-title: Wiley Interdiscip Rev
  doi: 10.1002/wics.73
– volume-title: Model selection and multimodel inference: a practical information-theoretic approach
  year: 2003
  ident: 336_CR39
– volume: 128
  start-page: 380
  issue: 4
  year: 2002
  ident: 336_CR21
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(2002)128:4(380)
– volume: 2
  start-page: 7
  issue: 2
  year: 2016
  ident: 336_CR7
  publication-title: J Energy Plan Policy Res
– ident: 336_CR226
  doi: 10.1115/DETC2010-28813
– volume-title: A practical guide to support vector classification
  year: 2003
  ident: 336_CR105
– volume: 41
  start-page: 219
  issue: 2
  year: 2010
  ident: 336_CR179
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-009-0420-2
– volume: 64
  start-page: 1
  issue: 1
  year: 1999
  ident: 336_CR40
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/S0951-8320(98)00008-8
– volume: 32
  start-page: 309
  issue: 3
  year: 2000
  ident: 336_CR219
  publication-title: Eng Optim
  doi: 10.1080/03052150008941302
– volume: 8
  start-page: 65
  issue: 1
  year: 2019
  ident: 336_CR5
  publication-title: Life Cycl Reliab Saf Eng
  doi: 10.1007/s41872-018-00072-x
– volume-title: Innovations in hybrid intelligent systems (Advances in Soft Computing)
  year: 2007
  ident: 336_CR52
– volume: 10
  start-page: 171
  issue: 1
  year: 2016
  ident: 336_CR23
  publication-title: Eng Appl Comput Fluid Mech
– volume: 28
  start-page: 455
  issue: 4
  year: 2012
  ident: 336_CR60
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.1259
– volume-title: Simulation metamodeling with gaussian process: a numerical study
  year: 2016
  ident: 336_CR129
– volume: 50
  start-page: 1
  year: 2017
  ident: 336_CR91
  publication-title: Eng Optim
– start-page: 135
  volume-title: Multi-objective optimization using an evolutionary algorithm embedded with multiple spatially distributed surrogates. MULTI-OBJECTIVE OPTIMIZATION: techniques and application in chemical engineering
  year: 2017
  ident: 336_CR28
– ident: 336_CR96
– ident: 336_CR135
  doi: 10.1145/1276958.1277203
– volume: 63
  start-page: 425
  issue: 3
  year: 2001
  ident: 336_CR119
  publication-title: J R Stat Soc Ser B (Statistical Methodology)
  doi: 10.1111/1467-9868.00294
– volume: 95
  start-page: 436
  year: 2016
  ident: 336_CR142
  publication-title: Proced Comput Sci
  doi: 10.1016/j.procs.2016.09.309
– volume: 27
  start-page: 302
  issue: 5
  year: 2004
  ident: 336_CR186
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-004-0389-9
– volume: 58
  start-page: 215
  year: 2018
  ident: 336_CR74
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-017-1890-2
– ident: 336_CR223
– ident: 336_CR49
– volume: 26
  start-page: 248
  issue: 4
  year: 1994
  ident: 336_CR139
  publication-title: J Qual Technol
  doi: 10.1080/00224065.1994.11979537
– volume: 15
  start-page: 101
  issue: 1
  year: 2000
  ident: 336_CR145
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(99)00007-9
– ident: 336_CR138
  doi: 10.4271/2015-01-1369
– volume: 72
  start-page: 99
  issue: 1–2
  year: 1998
  ident: 336_CR45
  publication-title: J Statis Plan Inference
  doi: 10.1016/S0378-3758(98)00025-1
– volume: 50
  start-page: 383
  issue: 3
  year: 2008
  ident: 336_CR165
  publication-title: Technometrics
  doi: 10.1198/004017008000000262
– ident: 336_CR147
  doi: 10.1115/IMECE2011-62480
– ident: 336_CR26
  doi: 10.2514/6.2010-3089
– volume: 31
  start-page: 161
  issue: 2
  year: 1998
  ident: 336_CR132
  publication-title: Eng Optim
  doi: 10.1080/03052159808941369
– ident: 336_CR230
– ident: 336_CR222
  doi: 10.1115/DETC2008-49240
– volume: 171
  start-page: 227
  year: 2017
  ident: 336_CR62
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2017.01.061
– volume: 2
  start-page: 439
  issue: 2
  year: 1992
  ident: 336_CR155
  publication-title: Stat Sinica
– volume: 48
  start-page: 1581
  issue: 12
  year: 2016
  ident: 336_CR108
  publication-title: Nat Genet
  doi: 10.1038/ng.3703
– volume: 60
  start-page: 167
  year: 2014
  ident: 336_CR232
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2014.05.026
– volume: 12
  start-page: 041010
  issue: 4
  year: 2012
  ident: 336_CR196
  publication-title: J Comput Inf Sci Eng
  doi: 10.1115/1.4007988
– ident: 336_CR205
  doi: 10.1115/IMECE2010-38323
– ident: 336_CR218
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 336_CR71
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
– volume: 96
  start-page: 180
  issue: 1
  year: 1997
  ident: 336_CR25
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(96)00156-7
– volume: 12
  start-page: 1
  issue: 1
  year: 2018
  ident: 336_CR68
  publication-title: Eng Appl Comput Fluid Mech
– volume: 37
  start-page: 3616
  issue: 6A
  year: 2009
  ident: 336_CR166
  publication-title: Ann Stat
– ident: 336_CR27
  doi: 10.1109/CEC.2016.7744340
– ident: 336_CR2
  doi: 10.1115/DETC2015-47850
– volume: 59
  start-page: 278
  issue: 3
  year: 2005
  ident: 336_CR63
  publication-title: Am Stat
  doi: 10.1198/tas.2005.s249
– volume: 23
  start-page: 155
  issue: 3
  year: 2007
  ident: 336_CR215
  publication-title: Eng Comput
  doi: 10.1007/s00366-006-0051-9
– volume-title: Data Mining: Practical machine learning tools and techniques
  year: 2016
  ident: 336_CR234
– ident: 336_CR175
  doi: 10.1115/FEDSM2006-98368
– volume: 1
  start-page: 234
  issue: 2
  year: 2009
  ident: 336_CR87
  publication-title: Wiley Interdiscip Rev
  doi: 10.1002/wics.27
– ident: 336_CR19
– ident: 336_CR78
– volume: 48
  start-page: 2286
  issue: 10
  year: 2010
  ident: 336_CR227
  publication-title: AIAA J
  doi: 10.2514/1.J050327
– volume: 22
  start-page: 231
  year: 2003
  ident: 336_CR46
  publication-title: Handb Stat
  doi: 10.1016/S0169-7161(03)22009-5
– volume: 138
  start-page: 081403
  issue: 8
  year: 2016
  ident: 336_CR109
  publication-title: J Mech Des
  doi: 10.1115/1.4033918
– volume-title: Orthogonal arrays: theory and applications
  year: 2012
  ident: 336_CR98
– volume: 24
  start-page: 2319
  issue: 6
  year: 1996
  ident: 336_CR125
  publication-title: Ann Stat
  doi: 10.1214/aos/1032181157
– volume-title: Neural network design
  year: 2014
  ident: 336_CR58
– volume: 61
  start-page: 1
  year: 2019
  ident: 336_CR122
  publication-title: Struct Multidiscip Optim
– volume: 9
  start-page: 62
  issue: 1
  year: 2017
  ident: 336_CR22
  publication-title: Int J Comput Aided Eng Technol
  doi: 10.1504/IJCAET.2017.080769
– ident: 336_CR217
  doi: 10.1007/978-3-319-15934-8_1
– ident: 336_CR197
  doi: 10.1115/DETC2014-35037
– volume: 36
  start-page: 275
  issue: 1
  year: 1999
  ident: 336_CR127
  publication-title: J Aircr
  doi: 10.2514/2.2435
– volume: 28
  start-page: 195
  issue: 1
  year: 1957
  ident: 336_CR31
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177707047
– volume: 52
  start-page: 2169
  year: 2019
  ident: 336_CR141
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-017-9601-3
– ident: 336_CR93
  doi: 10.1115/IMECE2010-37459
– volume: 25
  start-page: 437
  year: 2019
  ident: 336_CR202
  publication-title: Addit Manuf
– ident: 336_CR220
  doi: 10.2514/6.1997-1331
– volume: 23
  start-page: 1
  issue: 1
  year: 2001
  ident: 336_CR112
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-001-0160-4
– volume: 572
  start-page: 501
  year: 2019
  ident: 336_CR235
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.03.020
– volume: 14
  start-page: 85
  year: 1998
  ident: 336_CR85
  publication-title: ISIS Tech Rep
– volume: 12
  start-page: 543
  issue: 4
  year: 1998
  ident: 336_CR88
  publication-title: J Biomol NMR
  doi: 10.1023/A:1008391403193
– volume-title: Empirical model-building and response surfaces
  year: 1987
  ident: 336_CR34
– volume: 1
  start-page: 207
  issue: 1
  year: 1990
  ident: 336_CR124
  publication-title: Ann Math Artif Intell
  doi: 10.1007/BF01531079
– ident: 336_CR212
  doi: 10.1115/DETC2006-99637
– volume-title: Data mining: concepts and techniques
  year: 2011
  ident: 336_CR94
– volume: 1
  start-page: 407
  issue: 4
  year: 1993
  ident: 336_CR189
  publication-title: Math Model Comput Exp
– volume: 47
  start-page: 271
  issue: 1
  year: 2009
  ident: 336_CR79
  publication-title: AIAA J
  doi: 10.2514/1.40291
– ident: 336_CR225
  doi: 10.2514/6.2010-3090
– volume: 138
  start-page: 091401
  issue: 9
  year: 2016
  ident: 336_CR180
  publication-title: J Mech Des
  doi: 10.1115/1.4034035
– volume: 39
  start-page: 245
  issue: 3
  year: 2007
  ident: 336_CR213
  publication-title: Eng Optim
  doi: 10.1080/03052150601077260
– volume: 19
  start-page: 497
  issue: 4
  year: 2007
  ident: 336_CR171
  publication-title: INFORMS J Comput
  doi: 10.1287/ijoc.1060.0182
– volume: 14
  start-page: 1
  issue: 1
  year: 1997
  ident: 336_CR188
  publication-title: Struct Optim
  doi: 10.1007/BF01197554
– volume: 28
  start-page: 1251
  issue: 5
  year: 1980
  ident: 336_CR116
  publication-title: Operations Res
  doi: 10.1287/opre.28.5.1251
– volume: 31
  start-page: 155
  issue: 2
  year: 2015
  ident: 336_CR137
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.1591
– volume: 41
  start-page: 342
  issue: 1
  year: 2013
  ident: 336_CR97
  publication-title: Ann Statist
– volume: 52
  start-page: 1573
  issue: 7
  year: 2014
  ident: 336_CR42
  publication-title: AIAA J
  doi: 10.2514/1.J052930
– ident: 336_CR176
– ident: 336_CR201
  doi: 10.1115/DETC2015-46476
– volume: 49
  start-page: 1
  issue: 1
  year: 2014
  ident: 336_CR55
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-0956-z
– volume: 74
  start-page: 749
  year: 2015
  ident: 336_CR14
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.09.001
– volume: 45
  start-page: 767
  issue: 7
  year: 2013
  ident: 336_CR199
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2012.709509
– volume: 91
  start-page: 1331
  issue: 10
  year: 2006
  ident: 336_CR203
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2005.11.031
– volume: 30
  start-page: 95
  issue: 1
  year: 1988
  ident: 336_CR120
  publication-title: Technometrics
  doi: 10.1080/00401706.1988.10488327
– volume: 19
  start-page: 201
  issue: 3
  year: 2001
  ident: 336_CR90
  publication-title: J Global Optim
  doi: 10.1023/A:1011255519438
– volume: 217
  start-page: 63
  issue: 1
  year: 2006
  ident: 336_CR77
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2006.01.037
– volume: 2
  start-page: 17
  issue: 2
  year: 1999
  ident: 336_CR107
  publication-title: J Risk
– ident: 336_CR184
  doi: 10.2514/6.1998-4755
– volume: 17
  start-page: 129
  issue: 2
  year: 2001
  ident: 336_CR185
  publication-title: Eng Comput
  doi: 10.1007/PL00007198
– ident: 336_CR195
  doi: 10.1115/IMECE2011-62450
– volume: 140
  start-page: 041402
  issue: 4
  year: 2018
  ident: 336_CR190
  publication-title: J Mech Des
  doi: 10.1115/1.4039128
– volume: 32
  start-page: 287
  issue: 4
  year: 2006
  ident: 336_CR73
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-006-0025-y
– ident: 336_CR206
  doi: 10.1115/DETC2011-47483
– volume: 2
  start-page: 367
  issue: 4
  year: 2001
  ident: 336_CR16
  publication-title: Optim Eng
  doi: 10.1023/A:1016012404105
– volume-title: Pattern recognition and neural networks
  year: 2007
  ident: 336_CR172
– ident: 336_CR187
  doi: 10.2514/6.2008-5802
SSID ssj0006352
Score 2.6480238
Snippet In simulation-based realization of complex systems, we are forced to address the issue of computational complexity. One critical issue that must be addressed...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 275
SubjectTerms Accuracy
CAE) and Design
Complex systems
Complexity
Computational efficiency
Computer simulation
Computer-Aided Engineering (CAD
Computing time
Design engineering
Design of experiments
Engineering
Engineering Design
Hypercubes
Model accuracy
Original Paper
Qualitative analysis
Response surface methodology
Simulation models
State-of-the-art reviews
Time measurement
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-LqKjl400LbNE3jTUQRlEV8sbfSTVIRZFfaruC_d5KmXZVV0GNp-mCSeWUy3wdwiAkOJlzKbC8NEy8y6K1JwHMv45oLkYU8q0Fcr3m_nwwG4sY1hZXNafemJGktddvsZqITU3M0ndCUxh6fhwV0d4lRx9u7x9b-ogu1tQNBI0-g_3etMrPf8dUdTWPMb2VR620uVv_3n2uw4qJLclovh3WY06MNWP6EObgJVw0zEZGW0MFtBtorA45ZvRNzFv6JlJOiGJtNNmLZcsoTkhHpiBFI3fGyBQ8X5_dnl55jVPAk6mrlMSljFScMbRqXEYYCQ6WZpqEvozj080ioIVMM82tMw_Is4zheqDxWvmFMF5FPt6EzGo_0DpAk5zixLKCxZqj3Ei0D077kBkFeZVJ2IWgEm0oHN25YL17SFijZCipFQaVWUCnvwlH7zGsNtvHr6F4zX6lTvDLFgMQwlAdRMPM2xQCH-gJzvi4cN9M3vf3zx3b_NnwPlkK7Asy53h50qmKi92FRvlXPZXFg1-sHa8zhpQ
  priority: 102
  providerName: Springer Nature
Title Managing computational complexity using surrogate models: a critical review
URI https://link.springer.com/article/10.1007/s00163-020-00336-7
https://www.proquest.com/docview/2412229141
https://www.proquest.com/docview/3151309259
Volume 31
WOSCitedRecordID wos000524364800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1435-6066
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0006352
  issn: 0934-9839
  databaseCode: M7S
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1435-6066
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0006352
  issn: 0934-9839
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1435-6066
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006352
  issn: 0934-9839
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH32K1lj1402Dem_UiKi2CUkqr0ltIdxMRpK1NK_jvndlsWhX14iUQsmFDZnd2nt8HcIwODjpcisJLg8jyCb01cnhmJTzlQiQuTwoQ1zvebkf9vuiYgFtuyipLnagVtRpJipGf4UlD1NOO71yMXy1ijaLsqqHQWIYqIZX5FaheNdud7lwX43Gq8wjC8y2BtoBpm9HNc2TtUA6TOqs9L7T416NpYW9-S5Hqk6e18d9v3oR1Y3Oyy2KRbMFSOtyGtU9IhDtwW_IVMalpHkyIUN8RZOb0nVGF_BPLZ5PJiEJvTHPo5OcsYdLQJbCiD2YXHlrN--sby_AsWBJ38NQKpAxVGAWo6bj00UAYqDRIPdeWfujamS_UIFABet3onGVJwnG8UFmobOJRF77t7UFlOBqm-8CijKO4A8cL0wC1gUR9EaS25IQrrxIpa-CUvziWBoScuDBe4jl8shZLjGKJtVhiXoOT-TvjAoLjz9H1Uhax2Y55vBDEj489NHs8W6AnWIPTUtiLx79PdvD3ZIew6ur1RdW9dahMJ7P0CFbk2_Q5nzTMWm1QuWkPr93e4wfCSO8K
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB58gXrwLdbnHvSkwbw3K4iIWpTWIqjQW0x3NyJIq01V_FP-Rmc2Saui3jx4DJtkSfbbee3MfACb6OCgw6UovNSKLJ-6t0YOT62Eay5E4vIkb-Ja541G1GyKiyF4K2thKK2ylIlGUKuOpBj5Lmoaop52fOfg4dEi1ig6XS0pNHJY1PTrC7ps2f7ZMa7vlutWT66OTq2CVcCSiNeeFUgZqjAKcF9z6aM6bCkdaM-1pR-6duoL1QpUgD4muiJpknC8X6g0VDaxhgvf9vC9wzDqk_Q3qYKXfcmPytucWgjPtwRaHkWRjinVI9uKTkypjtvzQot_VoQD6_bLgazRc9Xp__aHZmCqsKjZYb4FZmFIt-dg8kOfxXmolWxMTBoSiyIAaq6oIWjvlVH-_y3LnrrdDgUWmWEIyvZYwmRBBsHyKp8FuP6Tr1mEkXanrZeARSlHMAeOF-oAZZ1EaRhoW3Lqmq8SKSvglEsay6LFOjF93Mf95tAGBjHCIDYwiHkFtvvPPOQNRn69e7Vc-7gQNlk8WPhvhz006jxboJ9bgZ0SXIPhnydb_n2yDRg_vTqvx_WzRm0FJlyDbcpjXoWRXvdJr8GYfO7dZd11s0sY3Pw16N4B7tNJeA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah5802LbtE3jm6hD2RgDL-ytdEkrgnSj7QT_vSfpZVOmID6WphdOkpPv5OR8H8ApBjgYcEm1vTT0DUext_oWi42QRYzz0GZhQeLaZb2ePxjw_kwVvz7tXqUki5oGxdKU5BdjGV_UhW8Kqaj8o6qKptQz2CIsOUo0SMXrD8-1L8blVOcROHUMjligLJuZ_46vS9MUb35LkeqVp73x_3_ehPUSdZKrYphswUKUbMPaDBfhDnQqxSIitNBDuUmorxRpZv5B1Bn5F5JN0nSkNt-IVtHJLklIRCmYQIpKmF14at8-Xt8ZpdKCIXAO54YrhCc930Vfx4SDEGEoIzeitikczzZjh8uhK12MuzE8i8OQYXsuY0-aSkmdOybdg0YySqJ9IH7MsMNdi3qRi_5AoMdwI1MwxSwvQyGaYFVGDkRJQ67UMN6CmkBZGypAQwXaUAFrwln9zLgg4fi1davqu6CckFmAQEUpl1uONfc2ReBDTY6xYBPOq66c3v75Ywd_a34CK_2bdtC973UOYdXWg0Ed_W1BI08n0REsi_f8NUuP9TD-BBrX7W0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Managing+computational+complexity+using+surrogate+models%3A+a+critical+review&rft.jtitle=Research+in+engineering+design&rft.au=Alizadeh+Reza&rft.au=Allen%2C+Janet+K&rft.au=Mistree+Farrokh&rft.date=2020-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0934-9839&rft.eissn=1435-6066&rft.volume=31&rft.issue=3&rft.spage=275&rft.epage=298&rft_id=info:doi/10.1007%2Fs00163-020-00336-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0934-9839&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0934-9839&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0934-9839&client=summon