A parallel square-root algorithm for modified extended Kalman filter

A parallel square-root algorithm and its systolic array implementation are proposed for performing modified extended Kalman filtering (MEKF). The proposed parallel square-root algorithm is designed based on the singular value decomposition (SVD) and the Faddeev algorithm, and a very large scale inte...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on aerospace and electronic systems Ročník 28; číslo 1; s. 153 - 163
Hlavní autoři: Lu, M., Qiao, X., Chen, G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.01.1992
Institute of Electrical and Electronics Engineers
Témata:
ISSN:0018-9251, 1557-9603
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A parallel square-root algorithm and its systolic array implementation are proposed for performing modified extended Kalman filtering (MEKF). The proposed parallel square-root algorithm is designed based on the singular value decomposition (SVD) and the Faddeev algorithm, and a very large scale integration (VLSI) systolic array architecture is developed for its implementation. Compared to other square root Kalman filtering algorithms, the proposed method is more numerically stable. The VLSI architecture described has good parallel and pipelining characteristics in applying to the MEKF and achieves higher efficiency. For n-dimensional state vector estimations, the proposed architecture consists of O(2n/sup 2/) processing elements and uses O((s+17)n) time-steps for a complete iteration at each instant, in contrast to the complexity of O((s+6)n/sup 3/) time-steps for a sequential implementation, where s approximately=log n.< >
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9251
1557-9603
DOI:10.1109/7.135441