Application of domain-adaptive convolutional variational autoencoder for stress-state prediction

Applying data-driven methods such as deep learning in material mechanics is challenging because producing a sufficiently large, labeled dataset is costly resource-wise. This paper outlines a new approach to overcoming this difficulty by transferring knowledge from a source domain of finite-element-a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems Jg. 248; S. 108827
Hauptverfasser: Lee, Sang Min, Park, Sang-Youn, Choi, Byoung-Ho
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 19.07.2022
Elsevier Science Ltd
Schlagworte:
ISSN:0950-7051, 1872-7409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Applying data-driven methods such as deep learning in material mechanics is challenging because producing a sufficiently large, labeled dataset is costly resource-wise. This paper outlines a new approach to overcoming this difficulty by transferring knowledge from a source domain of finite-element-analysis data to a target domain of real-world test-specimen images so that a model capable of accurate and robust predictions in both domains may be constructed. To achieve this transfer of knowledge, discrepancy-based unsupervised domain adaptation is adopted into a convolutional variational autoencoder structure. To evaluate the proposed approach, a four-point bending experiment was conducted on 6061 aluminum alloy and 316 stainless steel to produce 550 unlabeled target-domain data images. The same bending situation was analyzed using the finite-element method implemented in the commercial software package ABAQUS to produce 6000 labeled, source-domain data images. The proposed domain-adaptive convolutional variational autoencoder was trained using the maximum mean discrepancy method on the target- and the source-domain data. The predictions using the domain-adapted convolutional variational autoencoder were relatively more accurate than those using the model trained only on the source domain. It is expected that the proposed approach can address the scarcity of labeled data in various applications of material mechanics and provide a base technology for the development of various data-driven approaches.
AbstractList Applying data-driven methods such as deep learning in material mechanics is challenging because producing a sufficiently large, labeled dataset is costly resource-wise. This paper outlines a new approach to overcoming this difficulty by transferring knowledge from a source domain of finite-element-analysis data to a target domain of real-world test-specimen images so that a model capable of accurate and robust predictions in both domains may be constructed. To achieve this transfer of knowledge, discrepancy-based unsupervised domain adaptation is adopted into a convolutional variational autoencoder structure. To evaluate the proposed approach, a four-point bending experiment was conducted on 6061 aluminum alloy and 316 stainless steel to produce 550 unlabeled target-domain data images. The same bending situation was analyzed using the finite-element method implemented in the commercial software package ABAQUS to produce 6000 labeled, source-domain data images. The proposed domain-adaptive convolutional variational autoencoder was trained using the maximum mean discrepancy method on the target- and the source-domain data. The predictions using the domain-adapted convolutional variational autoencoder were relatively more accurate than those using the model trained only on the source domain. It is expected that the proposed approach can address the scarcity of labeled data in various applications of material mechanics and provide a base technology for the development of various data-driven approaches.
ArticleNumber 108827
Author Park, Sang-Youn
Choi, Byoung-Ho
Lee, Sang Min
Author_xml – sequence: 1
  givenname: Sang Min
  surname: Lee
  fullname: Lee, Sang Min
– sequence: 2
  givenname: Sang-Youn
  orcidid: 0000-0002-2948-6636
  surname: Park
  fullname: Park, Sang-Youn
– sequence: 3
  givenname: Byoung-Ho
  orcidid: 0000-0001-8299-0957
  surname: Choi
  fullname: Choi, Byoung-Ho
  email: bhchoi@korea.ac.kr
BookMark eNqFkE1PwyAYx4mZidv0G3ho4rkTaAfFg8my-JYs8aJnZLwk1K5UoE327aV2Jw96AfLw_z15nt8CzFrXagCuEVwhiMhtvfpsXTiGFYYYp1JVYXoG5qiiOKclZDMwh2wNcwrX6AIsQqghTElUzcHHpusaK0W0rs2cyZQ7CNvmQoku2kFn0rWDa_rxWzTZILwVp7foo9OtdEr7zDifheh1CHmIIuqs81pZOSYvwbkRTdBXp3sJ3h8f3rbP-e716WW72eWyhDDmhULGyErspSFMV8wYXTANSVlgtF8bkk5IZKkqQhAWpSGQKkYxwUwqYhgtluBm6tt599XrEHntep8GDRyTKvGIMpZS5ZSS3oXgteGdtwfhjxxBPrrkNZ9c8tEln1wm7O4XJm38ERG9sM1_8P0E67T-YLXnQdpkLhnyWkaunP27wTcTQJb6
CitedBy_id crossref_primary_10_1080_17499518_2024_2395554
crossref_primary_10_1016_j_matdes_2022_111236
crossref_primary_10_1016_j_measurement_2024_114123
crossref_primary_10_1016_j_mtcomm_2024_111278
crossref_primary_10_1109_JSEN_2025_3550399
crossref_primary_10_1016_j_mtcomm_2022_104900
crossref_primary_10_1109_ACCESS_2025_3550097
crossref_primary_10_1007_s00521_023_08949_4
crossref_primary_10_1016_j_engappai_2022_105737
crossref_primary_10_1016_j_iintel_2025_100138
crossref_primary_10_3390_info14100571
crossref_primary_10_3390_jcs7090364
crossref_primary_10_1016_j_eswa_2022_119479
crossref_primary_10_1016_j_matdes_2023_112470
crossref_primary_10_1002_adma_202503140
crossref_primary_10_1088_1361_6501_acf8e6
crossref_primary_10_3389_fninf_2024_1392661
Cites_doi 10.1016/j.asoc.2020.106959
10.1214/aoms/1177729694
10.1109/TPAMI.2018.2889774
10.1016/j.matcom.2020.04.031
10.1016/j.eswa.2021.116269
10.1038/nature14539
10.1016/j.ultras.2021.106610
10.1016/j.actbio.2017.09.025
10.1007/978-3-319-58347-1_10
10.1145/3336191.3371831
10.1109/ICCV.2011.6126474
10.1098/rsta.2015.0202
10.1145/3422622
10.1109/ACCESS.2020.2987324
10.1007/s10994-009-5152-4
10.1145/2835776.2835837
10.1016/j.knosys.2018.12.019
10.1109/LSP.2020.2965328
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier Science Ltd. Jul 19, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jul 19, 2022
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2022.108827
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2022_108827
S0950705122003938
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c400t-3d1ffc8abcf69e89ffe39e064321b5f621b06c4d86612a4f607d972629cd6f973
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799850400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:43:22 EST 2025
Sat Nov 29 07:08:30 EST 2025
Tue Nov 18 22:33:39 EST 2025
Fri Feb 23 02:40:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Unsupervised domain adaptation
Variational autoencoder
Stress analysis
Convolutional neural network
Four-point bending
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-3d1ffc8abcf69e89ffe39e064321b5f621b06c4d86612a4f607d972629cd6f973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2948-6636
0000-0001-8299-0957
PQID 2686211799
PQPubID 2035257
ParticipantIDs proquest_journals_2686211799
crossref_primary_10_1016_j_knosys_2022_108827
crossref_citationtrail_10_1016_j_knosys_2022_108827
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_108827
PublicationCentury 2000
PublicationDate 2022-07-19
PublicationDateYYYYMMDD 2022-07-19
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-19
  day: 19
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Chollet (b45) 2017
Rai, Sahu (b4) 2020; 8
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b16) 2020; 63
M. Long, Y. Cao, J. Wang, M.I. Jordan, Learning transferable features with deep adaptation networks, in: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, vol. 1, 2015, pp. 97–105.
Steinwart (b42) 2002; 2
Panigrahi, Nanda, Swarnkar (b33) 2021; 194
M.D. Zeiler, G.W. Taylor, R. Fergus, R, Adaptive deconvolutional networks for mid and high level feature learning, in: Proceedings of 2011 International Conference on Computer Vision, 2011, pp. 2018–2025.
Shui, Chen, Wen, Zhou, Gagné, Wang (b37) 2020
Kingma, Welling (b38) 2013
Zhang, Butepage, Kjellstrom, Mandt (b39) 2019; 41
Lim, Jiang, Yi (b25) 2020; 27
Noh, Hong, Han (b32) 2015
Gong, Shi, Sha, Grauman (b15) 2012
Lecun, Bengio, Hinton (b28) 2015; 521
Sun, Saenko (b6) 2016; 9915
An, Cho (b24) 2015
Pan, Chen, Zhang, Liu, He, Lv (b19) 2021
.
Long, Zhu, Wang, Jordan (b3) 2017
Ben-David, Blitzer, Crammer, Kulesza, Pereira, Vaughan (b5) 2010; 79
Dai, Fidler, Urtasun, Lin (b23) 2017
Gopalan, Li, Chellappa (b14) 2011
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b10) 2016; 17
A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, in: Proceedings of the 4th International Conference on Learning Representations, 2016, pp. 1–16.
Valueva, Nagornov, Lyakhov, Valuev, Chervyakov (b27) 2020; 177
Han, Liu, Yang, Jiang (b11) 2019; 165
Y. Wu, C. DuBois, A.X. Zheng, M. Ester, Collaborative denoising auto-encoders for top-N recommender systems, in: WSDM 2016 - Proceedings of the 9th ACM International Conference on Web Search and Data Mining, Feb., 2016, pp. 153–162
Ganin (b35) 2017; 17
Odena (b21) 2016
Zhao, Adeli, Honnorat, Leng, Pohl (b26) 2019; 11765
Long, Zhu, Wang, Jordan (b34) 2016
Mai Ngoc, Hwang (b48) 2020
A. Odena, C. Olah, J. Shlens, Conditional image synthesis with auxiliary classifier gans, in: Proceedings of the 34th International Conference on Machine Learning, vol. 6, 2017, pp. 4043–4055.
Venkatesan, Li (b29) 2005
Zeiler, Fergus (b30) 2014; 8689
Gretton, Borgwardt, Rasch, Schölkopf, Smola (b41) 2012; 13
Luo, Pi, Pan, Xie, Yu, Liu (b17) 2022; 191
Kullback, Leibler (b40) 1951; 22
Jolliffe, Cadima (b49) 2016; 374
Posilović, Medak, Subašić, Budimir, Lončarić (b18) 2022; 119
Huang, Smola, Gretton, Borgwardt, Schölkopf (b13) 2007
Motiian, Piccirilli, Adjeroh, Doretto (b36) 2017
Liang, Liu, Sun (b1) 2017; 63
Jiang, Kim, Asnani, Kannan, Oh, Viswanath (b46) 2019
J. Jiang, C.X. Zhai, Instance weighting for domain adaptation in NLP, in: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, June, 2007, pp. 264–271.
I. Shenbin, A. Alekseev, E. Tutubalina, V. Malykh, S.I. Nikolenko, RecVAE: A new variational autoencoder for top-n recommendations with implicit feedback, in: WSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining, Jan., 2020, pp. 528–536
Zhang, Shen, Zhou, Jin (b2) 2021; 100
Tzeng, Hoffman, Zhang, Saenko, Darrell (b7) 2014
Zhu, Thung, Adeli, Zhang, Shen (b47) 2017; 10435
Y. Ganin, V. Lempitsky, Unsupervised domain adaptation by backpropagation, in: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, vol. 2, 2015, pp. 1180–1189.
Long (10.1016/j.knosys.2022.108827_b3) 2017
Liang (10.1016/j.knosys.2022.108827_b1) 2017; 63
Gretton (10.1016/j.knosys.2022.108827_b41) 2012; 13
Luo (10.1016/j.knosys.2022.108827_b17) 2022; 191
Chollet (10.1016/j.knosys.2022.108827_b45) 2017
Zeiler (10.1016/j.knosys.2022.108827_b30) 2014; 8689
Motiian (10.1016/j.knosys.2022.108827_b36) 2017
Jolliffe (10.1016/j.knosys.2022.108827_b49) 2016; 374
Kullback (10.1016/j.knosys.2022.108827_b40) 1951; 22
Ben-David (10.1016/j.knosys.2022.108827_b5) 2010; 79
Noh (10.1016/j.knosys.2022.108827_b32) 2015
Rai (10.1016/j.knosys.2022.108827_b4) 2020; 8
Posilović (10.1016/j.knosys.2022.108827_b18) 2022; 119
10.1016/j.knosys.2022.108827_b20
10.1016/j.knosys.2022.108827_b22
Huang (10.1016/j.knosys.2022.108827_b13) 2007
Zhang (10.1016/j.knosys.2022.108827_b39) 2019; 41
10.1016/j.knosys.2022.108827_b9
Ganin (10.1016/j.knosys.2022.108827_b10) 2016; 17
10.1016/j.knosys.2022.108827_b8
Jiang (10.1016/j.knosys.2022.108827_b46) 2019
Dai (10.1016/j.knosys.2022.108827_b23) 2017
Steinwart (10.1016/j.knosys.2022.108827_b42) 2002; 2
Mai Ngoc (10.1016/j.knosys.2022.108827_b48) 2020
Han (10.1016/j.knosys.2022.108827_b11) 2019; 165
Zhao (10.1016/j.knosys.2022.108827_b26) 2019; 11765
Gopalan (10.1016/j.knosys.2022.108827_b14) 2011
10.1016/j.knosys.2022.108827_b31
Odena (10.1016/j.knosys.2022.108827_b21) 2016
Zhu (10.1016/j.knosys.2022.108827_b47) 2017; 10435
Pan (10.1016/j.knosys.2022.108827_b19) 2021
Shui (10.1016/j.knosys.2022.108827_b37) 2020
Ganin (10.1016/j.knosys.2022.108827_b35) 2017; 17
An (10.1016/j.knosys.2022.108827_b24) 2015
Kingma (10.1016/j.knosys.2022.108827_b38) 2013
Lecun (10.1016/j.knosys.2022.108827_b28) 2015; 521
Tzeng (10.1016/j.knosys.2022.108827_b7) 2014
Valueva (10.1016/j.knosys.2022.108827_b27) 2020; 177
Gong (10.1016/j.knosys.2022.108827_b15) 2012
Goodfellow (10.1016/j.knosys.2022.108827_b16) 2020; 63
10.1016/j.knosys.2022.108827_b43
Zhang (10.1016/j.knosys.2022.108827_b2) 2021; 100
10.1016/j.knosys.2022.108827_b44
Venkatesan (10.1016/j.knosys.2022.108827_b29) 2005
Long (10.1016/j.knosys.2022.108827_b34) 2016
Lim (10.1016/j.knosys.2022.108827_b25) 2020; 27
Panigrahi (10.1016/j.knosys.2022.108827_b33) 2021; 194
Sun (10.1016/j.knosys.2022.108827_b6) 2016; 9915
10.1016/j.knosys.2022.108827_b12
References_xml – volume: 10435
  start-page: 72
  year: 2017
  end-page: 80
  ident: b47
  article-title: Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data
  publication-title: LNCS
– reference: M. Long, Y. Cao, J. Wang, M.I. Jordan, Learning transferable features with deep adaptation networks, in: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, vol. 1, 2015, pp. 97–105.
– start-page: 999
  year: 2011
  end-page: 1006
  ident: b14
  article-title: Domain adaptation for object recognition: An unsupervised approach
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 5716
  year: 2017
  end-page: 5726
  ident: b36
  article-title: Unified deep supervised domain adaptation and generalization
  publication-title: Proceedings of the IEEE International Conference on Computer Vision, vol. 2017
– volume: 27
  start-page: 231
  year: 2020
  end-page: 235
  ident: b25
  article-title: Deep clustering with variational autoencoder
  publication-title: IEEE Signal Process. Lett.
– start-page: 1520
  year: 2015
  end-page: 1528
  ident: b32
  article-title: Learning deconvolution network for semantic segmentation
  publication-title: Proceedings of the IEEE International Conference on Computer Vision, vol. 2015
– year: 2017
  ident: b3
  article-title: Unsupervised domain adaptation with residual transfer networks
– volume: 79
  start-page: 151
  year: 2010
  end-page: 175
  ident: b5
  article-title: A theory of learning from different domains
  publication-title: Mach. Learn.
– volume: 2
  start-page: 67
  year: 2002
  end-page: 93
  ident: b42
  article-title: On the influence of the kernel on the consistency of support vector machines
  publication-title: J. Mach. Learn. Res.
– volume: 41
  start-page: 2008
  year: 2019
  end-page: 2026
  ident: b39
  article-title: Advances in variational inference
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 11765
  start-page: 823
  year: 2019
  end-page: 831
  ident: b26
  article-title: Variational AutoEncoder for regression: Application to brain aging analysis
  publication-title: LNCS
– reference: J. Jiang, C.X. Zhai, Instance weighting for domain adaptation in NLP, in: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, June, 2007, pp. 264–271.
– year: 2021
  ident: b19
  article-title: Generative adversarial network in mechanical fault diagnosis under small sample: A systematic review on applications and future perspectives
  publication-title: ISA Trans.
– volume: 374
  year: 2016
  ident: b49
  article-title: Principal component analysis: A review and recent developments
  publication-title: Philos. Trans. R. Soc. A
– volume: 9915
  start-page: 443
  year: 2016
  end-page: 450
  ident: b6
  article-title: Deep CORAL: Correlation alignment for deep domain adaptation
  publication-title: LNCS
– year: 2020
  ident: b37
  article-title: Beyond H-divergence: Domain adaptation theory with Jensen-Shannon divergence
– volume: 119
  year: 2022
  ident: b18
  article-title: Generating ultrasonic images indistinguishable from real images using generative adversarial networks
  publication-title: Ultrasonics
– reference: A. Odena, C. Olah, J. Shlens, Conditional image synthesis with auxiliary classifier gans, in: Proceedings of the 34th International Conference on Machine Learning, vol. 6, 2017, pp. 4043–4055.
– year: 2016
  ident: b21
  article-title: Semi-supervised learning with generative adversarial networks
– year: 2019
  ident: b46
  article-title: Turbo autoencoder: Deep learning based channel codes for point-to-point communication channels
– reference: I. Shenbin, A. Alekseev, E. Tutubalina, V. Malykh, S.I. Nikolenko, RecVAE: A new variational autoencoder for top-n recommendations with implicit feedback, in: WSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining, Jan., 2020, pp. 528–536,
– volume: 63
  start-page: 139
  year: 2020
  end-page: 144
  ident: b16
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
– year: 2015
  ident: b24
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: 2015-2 Special Lecture on IE
– volume: 8
  start-page: 71050
  year: 2020
  end-page: 71073
  ident: b4
  article-title: Driven by data or derived through Physics? A review of hybrid physics guided machine learning techniques with cyber-physical system (CPS) focus
  publication-title: IEEE Access
– start-page: 2066
  year: 2012
  end-page: 2073
  ident: b15
  article-title: Geodesic flow kernel for unsupervised domain adaptation
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– reference: Y. Wu, C. DuBois, A.X. Zheng, M. Ester, Collaborative denoising auto-encoders for top-N recommender systems, in: WSDM 2016 - Proceedings of the 9th ACM International Conference on Web Search and Data Mining, Feb., 2016, pp. 153–162,
– year: 2017
  ident: b23
  article-title: Towards diverse and natural image descriptions via a conditional GaN
– year: 2016
  ident: b34
  article-title: Unsupervised domain adaptation with residual transfer networks
– volume: 8689
  start-page: 818
  year: 2014
  end-page: 833
  ident: b30
  article-title: Visualizing and understanding convolutional networks
  publication-title: LNCS
– volume: 194
  start-page: 781
  year: 2021
  end-page: 789
  ident: b33
  article-title: A survey on transfer learning
  publication-title: SIST
– volume: 22
  start-page: 79
  year: 1951
  end-page: 86
  ident: b40
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
– volume: 100
  year: 2021
  ident: b2
  article-title: Application of LSTM approach for modelling stress-strain behaviour of soil
  publication-title: Appl. Soft Comput.
– volume: 17
  start-page: 189
  year: 2017
  end-page: 209
  ident: b35
  article-title: Domain-adversarial training of neural networks
  publication-title: Adv. Comput. Vis. Pattern Recognit.
– reference: M.D. Zeiler, G.W. Taylor, R. Fergus, R, Adaptive deconvolutional networks for mid and high level feature learning, in: Proceedings of 2011 International Conference on Computer Vision, 2011, pp. 2018–2025.
– reference: A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, in: Proceedings of the 4th International Conference on Learning Representations, 2016, pp. 1–16.
– year: 2005
  ident: b29
  article-title: Convolutional Neural Networks in Visual Computing
– volume: 17
  start-page: 1
  year: 2016
  end-page: 35
  ident: b10
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 165
  start-page: 474
  year: 2019
  end-page: 487
  ident: b11
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowl. Based. Syst.
– reference: Y. Ganin, V. Lempitsky, Unsupervised domain adaptation by backpropagation, in: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, vol. 2, 2015, pp. 1180–1189.
– volume: 63
  start-page: 227
  year: 2017
  end-page: 235
  ident: b1
  article-title: A deep learning approach to estimate chemically treated collagenous tissue nonlinear anisotropic stress-strain responses from microscopy images
  publication-title: Acta Biomater.
– start-page: 453
  year: 2020
  end-page: 464
  ident: b48
  article-title: Finding the best k for the dimension of the latent space in autoencoders
  publication-title: Computational Collective Intelligence
– reference: .
– year: 2013
  ident: b38
  article-title: Auto-encoding variational bayes
– volume: 13
  start-page: 723
  year: 2012
  end-page: 773
  ident: b41
  article-title: A kernel two-sample test
  publication-title: J. Mach. Learn. Res.
– volume: 191
  year: 2022
  ident: b17
  article-title: ClawGAN: Claw connection-based generative adversarial networks for facial image translation in thermal to RGB visible light
  publication-title: Expert Syst. Appl.
– year: 2017
  ident: b45
  article-title: A ten-minute introduction to sequence-to-sequence learning in Keras
  publication-title: The Keras Blog
– start-page: 601
  year: 2007
  end-page: 608
  ident: b13
  article-title: Correcting sample selection bias by unlabeled data
  publication-title: Proceedings of Advances in Neural Information Processing Systems, vol. 19
– year: 2014
  ident: b7
  article-title: Deep domain confusion: Maximizing for domain invariance
– volume: 177
  start-page: 232
  year: 2020
  end-page: 243
  ident: b27
  article-title: Application of the residue number system to reduce hardware costs of the convolutional neural network implementation
  publication-title: Math. Comput. Simulation
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b28
  article-title: Deep learning
  publication-title: Nature
– volume: 100
  year: 2021
  ident: 10.1016/j.knosys.2022.108827_b2
  article-title: Application of LSTM approach for modelling stress-strain behaviour of soil
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106959
– year: 2013
  ident: 10.1016/j.knosys.2022.108827_b38
– ident: 10.1016/j.knosys.2022.108827_b8
– year: 2017
  ident: 10.1016/j.knosys.2022.108827_b3
– start-page: 999
  year: 2011
  ident: 10.1016/j.knosys.2022.108827_b14
  article-title: Domain adaptation for object recognition: An unsupervised approach
– volume: 22
  start-page: 79
  year: 1951
  ident: 10.1016/j.knosys.2022.108827_b40
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– volume: 9915
  start-page: 443
  year: 2016
  ident: 10.1016/j.knosys.2022.108827_b6
  article-title: Deep CORAL: Correlation alignment for deep domain adaptation
  publication-title: LNCS
– volume: 41
  start-page: 2008
  year: 2019
  ident: 10.1016/j.knosys.2022.108827_b39
  article-title: Advances in variational inference
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2889774
– volume: 177
  start-page: 232
  year: 2020
  ident: 10.1016/j.knosys.2022.108827_b27
  article-title: Application of the residue number system to reduce hardware costs of the convolutional neural network implementation
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2020.04.031
– volume: 191
  year: 2022
  ident: 10.1016/j.knosys.2022.108827_b17
  article-title: ClawGAN: Claw connection-based generative adversarial networks for facial image translation in thermal to RGB visible light
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116269
– year: 2005
  ident: 10.1016/j.knosys.2022.108827_b29
– year: 2020
  ident: 10.1016/j.knosys.2022.108827_b37
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.knosys.2022.108827_b10
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 11765
  start-page: 823
  year: 2019
  ident: 10.1016/j.knosys.2022.108827_b26
  article-title: Variational AutoEncoder for regression: Application to brain aging analysis
  publication-title: LNCS
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.knosys.2022.108827_b28
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2021
  ident: 10.1016/j.knosys.2022.108827_b19
  article-title: Generative adversarial network in mechanical fault diagnosis under small sample: A systematic review on applications and future perspectives
  publication-title: ISA Trans.
– volume: 194
  start-page: 781
  year: 2021
  ident: 10.1016/j.knosys.2022.108827_b33
  article-title: A survey on transfer learning
  publication-title: SIST
– volume: 119
  year: 2022
  ident: 10.1016/j.knosys.2022.108827_b18
  article-title: Generating ultrasonic images indistinguishable from real images using generative adversarial networks
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2021.106610
– start-page: 5716
  year: 2017
  ident: 10.1016/j.knosys.2022.108827_b36
  article-title: Unified deep supervised domain adaptation and generalization
– volume: 63
  start-page: 227
  year: 2017
  ident: 10.1016/j.knosys.2022.108827_b1
  article-title: A deep learning approach to estimate chemically treated collagenous tissue nonlinear anisotropic stress-strain responses from microscopy images
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.09.025
– ident: 10.1016/j.knosys.2022.108827_b20
– volume: 17
  start-page: 189
  issue: 9783319583464
  year: 2017
  ident: 10.1016/j.knosys.2022.108827_b35
  article-title: Domain-adversarial training of neural networks
  publication-title: Adv. Comput. Vis. Pattern Recognit.
  doi: 10.1007/978-3-319-58347-1_10
– year: 2016
  ident: 10.1016/j.knosys.2022.108827_b34
– ident: 10.1016/j.knosys.2022.108827_b43
  doi: 10.1145/3336191.3371831
– start-page: 601
  year: 2007
  ident: 10.1016/j.knosys.2022.108827_b13
  article-title: Correcting sample selection bias by unlabeled data
– year: 2014
  ident: 10.1016/j.knosys.2022.108827_b7
– year: 2015
  ident: 10.1016/j.knosys.2022.108827_b24
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
– volume: 2
  start-page: 67
  year: 2002
  ident: 10.1016/j.knosys.2022.108827_b42
  article-title: On the influence of the kernel on the consistency of support vector machines
  publication-title: J. Mach. Learn. Res.
– volume: 10435
  start-page: 72
  issue: 2017
  year: 2017
  ident: 10.1016/j.knosys.2022.108827_b47
  article-title: Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data
  publication-title: LNCS
– start-page: 2066
  year: 2012
  ident: 10.1016/j.knosys.2022.108827_b15
  article-title: Geodesic flow kernel for unsupervised domain adaptation
– year: 2017
  ident: 10.1016/j.knosys.2022.108827_b45
  article-title: A ten-minute introduction to sequence-to-sequence learning in Keras
– year: 2016
  ident: 10.1016/j.knosys.2022.108827_b21
– ident: 10.1016/j.knosys.2022.108827_b31
  doi: 10.1109/ICCV.2011.6126474
– volume: 374
  year: 2016
  ident: 10.1016/j.knosys.2022.108827_b49
  article-title: Principal component analysis: A review and recent developments
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2015.0202
– volume: 63
  start-page: 139
  year: 2020
  ident: 10.1016/j.knosys.2022.108827_b16
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– volume: 8
  start-page: 71050
  year: 2020
  ident: 10.1016/j.knosys.2022.108827_b4
  article-title: Driven by data or derived through Physics? A review of hybrid physics guided machine learning techniques with cyber-physical system (CPS) focus
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2987324
– start-page: 453
  year: 2020
  ident: 10.1016/j.knosys.2022.108827_b48
  article-title: Finding the best k for the dimension of the latent space in autoencoders
– volume: 79
  start-page: 151
  year: 2010
  ident: 10.1016/j.knosys.2022.108827_b5
  article-title: A theory of learning from different domains
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-009-5152-4
– ident: 10.1016/j.knosys.2022.108827_b12
– year: 2017
  ident: 10.1016/j.knosys.2022.108827_b23
– year: 2019
  ident: 10.1016/j.knosys.2022.108827_b46
– volume: 13
  start-page: 723
  year: 2012
  ident: 10.1016/j.knosys.2022.108827_b41
  article-title: A kernel two-sample test
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.knosys.2022.108827_b44
  doi: 10.1145/2835776.2835837
– ident: 10.1016/j.knosys.2022.108827_b9
– volume: 165
  start-page: 474
  year: 2019
  ident: 10.1016/j.knosys.2022.108827_b11
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2018.12.019
– volume: 27
  start-page: 231
  year: 2020
  ident: 10.1016/j.knosys.2022.108827_b25
  article-title: Deep clustering with variational autoencoder
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2020.2965328
– volume: 8689
  start-page: 818
  year: 2014
  ident: 10.1016/j.knosys.2022.108827_b30
  article-title: Visualizing and understanding convolutional networks
  publication-title: LNCS
– start-page: 1520
  year: 2015
  ident: 10.1016/j.knosys.2022.108827_b32
  article-title: Learning deconvolution network for semantic segmentation
– ident: 10.1016/j.knosys.2022.108827_b22
SSID ssj0002218
Score 2.4351792
Snippet Applying data-driven methods such as deep learning in material mechanics is challenging because producing a sufficiently large, labeled dataset is costly...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108827
SubjectTerms Aluminum base alloys
Convolutional neural network
Data
Deep learning
Domains
Finite element method
Four-point bending
Imagery
Knowledge management
Labeling
Mathematical models
Mechanics (physics)
Predictions
Scarcity
Stainless steels
Stress analysis
Unsupervised domain adaptation
Variational autoencoder
Title Application of domain-adaptive convolutional variational autoencoder for stress-state prediction
URI https://dx.doi.org/10.1016/j.knosys.2022.108827
https://www.proquest.com/docview/2686211799
Volume 248
WOSCitedRecordID wos000799850400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLe2ssMusE_BYJMP3CZXidPG9rGbmNgmENKY1FuW-mMqbEkFBbH_fu85dhK6D-DAJarcxLH6nt_7-fXnnwnZzZ2BLGLHzElj2Mha1IDUOdPZ2Jicp07a0h82IQ4P5XSqjgKt6NwfJyCqSl5dqcW9mhrawNi4dfYO5m47hQb4DEaHK5gdrrcy_KT7SxqRoKl_wuKflaZceJYQ0szD-8E6l7BUjuXA8mJZo6wlqksg-bDZRsL8liPUEjBz3VoxwNnPsSLHMBuaoAvdwvTA8vlSVt_fHsxbNzwK_GxsZxhuOo5B7ckF735hDGL7db8mwT1_NUS-WFxMmEiClGyIs7yR1AyRMkVsL_4axJt6wsnwtKph2EN8wbC7_bpm9kouaxmGkbx2UjS9FNhL0fTykKxxMVZyQNYmH_emn9rMzbmvB7ejj1stPR_wz9H8C8qsJHWPVI6fkPWwxKCTxjWekge2ekY24vEdNETz5-Rbz1No7eiKp9BrnkJ7nkJ7nkLBU2jfU2jnKS_I1w97x-_3WThwg2kI5UuWmdQ5LcuZdrmyUjlnM2URtPJ0NnYwdWdJrkdGAqjj5cjliTBK8JwrbXKnRPaSDKq6spuEosq_c6mB_AEIFxe9OpOoLWUBD-sk2SJZ_O0KHdTo8VCUH8X_LLdFWPvUolFjueF-Ec1SBETZIMUCfO2GJ3eiFYswueF73E7lNRRf3XEg2-RxN092yGB5dmFfk0f6cjk_P3sT_PA3ZlGoRg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+domain-adaptive+convolutional+variational+autoencoder+for+stress-state+prediction&rft.jtitle=Knowledge-based+systems&rft.au=Lee%2C+Sang+Min&rft.au=Park%2C+Sang-Youn&rft.au=Choi%2C+Byoung-Ho&rft.date=2022-07-19&rft.issn=0950-7051&rft.volume=248&rft.spage=108827&rft_id=info:doi/10.1016%2Fj.knosys.2022.108827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2022_108827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon