A Short-Term Power Load Forecasting Method Using CNN-GRU with an Attention Mechanism

This paper proposes a short-term electric load forecasting method combining convolutional neural networks and gated recurrent units with an attention mechanism. By integrating CNNs and GRUs, the method can fully leverage the strengths of CNNs in feature extraction and the advantages of GRUs in seque...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energies (Basel) Ročník 18; číslo 1; s. 106
Hlavní autori: Hua, Qingbo, Fan, Zengliang, Mu, Wei, Cui, Jiqiang, Xing, Rongxin, Liu, Huabo, Gao, Junwei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.01.2025
Predmet:
ISSN:1996-1073, 1996-1073
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes a short-term electric load forecasting method combining convolutional neural networks and gated recurrent units with an attention mechanism. By integrating CNNs and GRUs, the method can fully leverage the strengths of CNNs in feature extraction and the advantages of GRUs in sequence modeling, enabling the model to comprehend signal data more comprehensively and effectively extract features from sequential data. The introduction of the attention mechanism allows the traditional model to dynamically focus on important parts of the input data while ignoring the unimportant parts. This capability enables the model to utilize input information more efficiently, thereby enhancing model performance. This paper applies the proposed model to a dataset comprising regional electric load and meteorological data for experimentation. The results show that compared with other common models, the proposed model effectively reduces the mean absolute error and root mean square error (121.51 and 263.43, respectively) and accurately predicts the short-term change in regional power load.
AbstractList This paper proposes a short-term electric load forecasting method combining convolutional neural networks and gated recurrent units with an attention mechanism. By integrating CNNs and GRUs, the method can fully leverage the strengths of CNNs in feature extraction and the advantages of GRUs in sequence modeling, enabling the model to comprehend signal data more comprehensively and effectively extract features from sequential data. The introduction of the attention mechanism allows the traditional model to dynamically focus on important parts of the input data while ignoring the unimportant parts. This capability enables the model to utilize input information more efficiently, thereby enhancing model performance. This paper applies the proposed model to a dataset comprising regional electric load and meteorological data for experimentation. The results show that compared with other common models, the proposed model effectively reduces the mean absolute error and root mean square error (121.51 and 263.43, respectively) and accurately predicts the short-term change in regional power load.
Audience Academic
Author Xing, Rongxin
Gao, Junwei
Liu, Huabo
Fan, Zengliang
Cui, Jiqiang
Hua, Qingbo
Mu, Wei
Author_xml – sequence: 1
  givenname: Qingbo
  surname: Hua
  fullname: Hua, Qingbo
– sequence: 2
  givenname: Zengliang
  surname: Fan
  fullname: Fan, Zengliang
– sequence: 3
  givenname: Wei
  surname: Mu
  fullname: Mu, Wei
– sequence: 4
  givenname: Jiqiang
  surname: Cui
  fullname: Cui, Jiqiang
– sequence: 5
  givenname: Rongxin
  surname: Xing
  fullname: Xing, Rongxin
– sequence: 6
  givenname: Huabo
  orcidid: 0000-0002-4182-8934
  surname: Liu
  fullname: Liu, Huabo
– sequence: 7
  givenname: Junwei
  surname: Gao
  fullname: Gao, Junwei
BookMark eNptkUtvGyEUhVGVSM1r01-A1F2lSWCAGVhaVvOQnLRK7DW6w4CNZUMKRFH-fXDcKlEV7gK4Ot8Rl3OMDkIMFqFvlJwzpsiFDVQSWqv7go6oUl1DSc8OPpy_orOc16Quxihj7AjNJ_hhFVNp5jZt8e_4bBOeRRjxZUzWQC4-LPGtLas44kXeXaZ3d83V_QI_-7LCEPCkFBuKj6HKzAqCz9tTdOhgk-3Z3_0ELS5_zqfXzezX1c10MmsMJ6Q0DGQ78p4OdBhkK-sM3cgpsYoObpA9VYNSAI5KIQgfe25aTgRYVyEjQXF2gm72vmOEtX5MfgvpRUfw-q0R01JDKt5srDacCiasULR33HRyUJxwIoXrRSuqX_X6vvd6TPHPk81Fr-NTCvX5mlW0k20nSVWd71VLqKY-uFgSmFqj3XpT43C-9ieStYIwzlkFyB4wKeacrNPGF9h9VwX9RlOid9np9-wq8uM_5N9kn4hfAbG-lxo
CitedBy_id crossref_primary_10_3390_su17188101
crossref_primary_10_3390_en18154164
crossref_primary_10_3390_en18030668
crossref_primary_10_1049_rpg2_70087
crossref_primary_10_3390_forecast7030039
crossref_primary_10_3390_en18071855
crossref_primary_10_3390_en18184890
crossref_primary_10_3390_en18133229
crossref_primary_10_54097_9a0sxn59
crossref_primary_10_1049_gtd2_70060
crossref_primary_10_3390_pr13051452
Cites_doi 10.1016/j.apenergy.2022.118801
10.1109/TSG.2018.2805723
10.1016/j.compchemeng.2021.107513
10.1016/j.enconman.2020.112766
10.3390/en16104060
10.1016/j.heliyon.2023.e20468
10.3390/en11082163
10.1049/gtd2.12394
10.1016/j.apenergy.2024.123319
10.1016/j.comcom.2022.11.018
10.1109/TNNLS.2023.3262541
10.1016/j.apenergy.2017.12.051
10.2174/2666782701666210614223415
10.1080/15567036.2022.2053250
10.1016/j.resourpol.2022.102906
10.1016/j.dsm.2022.08.001
10.1088/1742-6596/2592/1/012067
10.1016/j.energy.2021.120480
10.1016/j.energy.2023.129753
10.1109/ICMIAM54662.2021.9715210
10.35833/MPCE.2020.000647
10.1109/EIConRus.2017.7910859
10.1016/j.energy.2021.120162
10.1038/s41598-024-73076-6
10.1016/j.egyr.2023.05.090
10.1109/TPWRS.2019.2924294
10.1016/j.neucom.2021.02.046
10.3390/en14237952
10.1109/ACCESS.2022.3190892
10.1109/TIM.2024.3381699
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en18010106
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_c41535e5917f4c68b9404085f7525d4c
A832503443
10_3390_en18010106
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c400t-3a82d471b1bb8283396d410e91bfb8719b99aaf185504d74c2405aef2d4c8a943
IEDL.DBID PIMPY
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001393590100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Tue Oct 14 19:09:00 EDT 2025
Mon Jun 30 13:14:57 EDT 2025
Tue Oct 28 04:01:31 EDT 2025
Sat Nov 29 07:17:59 EST 2025
Tue Nov 18 21:47:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-3a82d471b1bb8283396d410e91bfb8719b99aaf185504d74c2405aef2d4c8a943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4182-8934
OpenAccessLink https://www.proquest.com/publiccontent/docview/3153682680?pq-origsite=%requestingapplication%
PQID 3153682680
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_c41535e5917f4c68b9404085f7525d4c
proquest_journals_3153682680
gale_infotracacademiconefile_A832503443
crossref_citationtrail_10_3390_en18010106
crossref_primary_10_3390_en18010106
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_39) 2020; 212
Ge (ref_10) 2021; 9
Wang (ref_12) 2021; 1
Dong (ref_31) 2017; 2
Belletreche (ref_8) 2024; 14
Liyuan (ref_17) 2023; 2592
Yang (ref_34) 2020; 35
Wang (ref_23) 2023; 9
Wang (ref_30) 2024; 9
Chung (ref_13) 2022; 10
Liu (ref_24) 2022; 34
Deng (ref_9) 2020; 5
Niu (ref_27) 2022; 313
Gao (ref_40) 2022; 51
Huang (ref_15) 2024; 35
Du (ref_29) 2024; 73
Dogani (ref_16) 2023; 198
Weerakody (ref_22) 2021; 441
Peng (ref_37) 2022; 5
Wang (ref_38) 2024; 288
Rahman (ref_35) 2018; 212
Ozdemir (ref_36) 2022; 78
Peng (ref_25) 2022; 1
ref_42
Dolatabadi (ref_14) 2022; 12
Xu (ref_26) 2022; 44
Zhu (ref_41) 2021; 11
Busari (ref_21) 2021; 155
ref_2
Yang (ref_3) 2022; 4
Li (ref_11) 2018; 42
Xu (ref_33) 2022; 49
Sun (ref_43) 2023; 70
Chiu (ref_19) 2023; 9
Zhao (ref_6) 2023; 60
Tong (ref_28) 2022; 16
Wang (ref_1) 2024; 8
ref_5
Wang (ref_32) 2019; 10
ref_4
Derk (ref_20) 2023; 97
ref_7
Maryam (ref_18) 2021; 227
References_xml – volume: 313
  start-page: 118801
  year: 2022
  ident: ref_27
  article-title: Short-term multi-energy load forecasting for integrated energy systems based on CNN BiGRU optimized by attention mechanism
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118801
– volume: 10
  start-page: 2593
  year: 2019
  ident: ref_32
  article-title: Deep learning-based sociodemographic information identification from smart meter data
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2805723
– volume: 4
  start-page: 73
  year: 2022
  ident: ref_3
  article-title: Short-term Load Forecasting Based on Holt-Winters Exponential Smoothing and Temporal Convolutional Network
  publication-title: Autom. Electr. Power Syst.
– volume: 155
  start-page: 107513
  year: 2021
  ident: ref_21
  article-title: Crude oil price prediction: A com-parison between AdaBoost-ISTM and AdaBoost-CRU for improving forecasting perfomance
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107513
– volume: 34
  start-page: 99
  year: 2022
  ident: ref_24
  article-title: Short-term load forecasting method based on sparrow search optimized Attention-CRU
  publication-title: Proc. CSU-EPSA
– volume: 212
  start-page: 112766
  year: 2020
  ident: ref_39
  article-title: A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112766
– ident: ref_4
  doi: 10.3390/en16104060
– volume: 5
  start-page: 593
  year: 2020
  ident: ref_9
  article-title: Short-term electric load forecasting based on EEMD-GRU-MLR
  publication-title: Power Syst. Technol.
– volume: 12
  start-page: 229219
  year: 2022
  ident: ref_14
  article-title: Hybrid deep learningbased model for wind speed forecasting based on DWPT and bidirectional LSTM network
  publication-title: IEEE Access
– volume: 9
  start-page: 20468
  year: 2023
  ident: ref_23
  article-title: Research on fast marking method for indicator diagram of pumping well based on K-means clustering
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e20468
– ident: ref_42
  doi: 10.3390/en11082163
– volume: 16
  start-page: 1680
  year: 2022
  ident: ref_28
  article-title: Temporal inception convolutional network based on multihead attention for ultra-short-term load forecasting
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/gtd2.12394
– volume: 11
  start-page: 116
  year: 2021
  ident: ref_41
  article-title: Short-term power load forecasting based on CNN-BiLSTM
  publication-title: Grid Technol.
– volume: 60
  start-page: 23
  year: 2023
  ident: ref_6
  article-title: Short-term power load prediction based on WD-LSSVM-LSTM model
  publication-title: Electr. Meas. Instrum.
– volume: 8
  start-page: 123319
  year: 2024
  ident: ref_1
  article-title: Embedding P2P transaction into demand response exchange: A cooperative demand response management framework for IES
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.123319
– volume: 198
  start-page: 157
  year: 2023
  ident: ref_16
  article-title: Host load prediction in cloud computing with Discrete Wavelet Transformation and Bidirectional Gated Recurrent Unit network
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2022.11.018
– volume: 35
  start-page: 2942
  year: 2024
  ident: ref_15
  article-title: Error-Triggered Adaptive Sparse Identification for Predictive Control and Its Application to Multiple Operating Conditions Processes
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2023.3262541
– volume: 212
  start-page: 372
  year: 2018
  ident: ref_35
  article-title: Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.051
– volume: 1
  start-page: E190721194078
  year: 2022
  ident: ref_25
  article-title: Application of Support Vector Regression and Time Series Method in Short-term Power Load Forecasting with Regional Difference
  publication-title: Chin. J. Artif. Intell.
  doi: 10.2174/2666782701666210614223415
– volume: 44
  start-page: 973
  year: 2022
  ident: ref_26
  article-title: Short-term power load forecasting based on bigruattention-senet model
  publication-title: Energy Sources
  doi: 10.1080/15567036.2022.2053250
– volume: 78
  start-page: 102906
  year: 2022
  ident: ref_36
  article-title: Medium-to long-term nickel price forecasting using LSTM anc GRU networks
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2022.102906
– volume: 5
  start-page: 117
  year: 2022
  ident: ref_37
  article-title: Pearson correlation and transferentropy in the Chinese stock market with time delay
  publication-title: Data Sci. Manag.
  doi: 10.1016/j.dsm.2022.08.001
– volume: 42
  start-page: 585
  year: 2018
  ident: ref_11
  article-title: An annual load forecasting model based on generalized regression neural network with multi-swarm fruit fly optimization algorithm
  publication-title: Power Syst. Technol.
– volume: 2592
  start-page: 012067
  year: 2023
  ident: ref_17
  article-title: Short-Term Load Forecasting Based on Improved VMD and KELM
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2592/1/012067
– volume: 227
  start-page: 120480
  year: 2021
  ident: ref_18
  article-title: Electrical load-temperature CNN for residen-tial load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120480
– volume: 288
  start-page: 129753
  year: 2024
  ident: ref_38
  article-title: High and low frequency wind power prediction based on Transformer and BiGRU-Attention
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129753
– ident: ref_7
  doi: 10.1109/ICMIAM54662.2021.9715210
– volume: 97
  start-page: 19
  year: 2023
  ident: ref_20
  article-title: Using Deep Neural Networks for Detecting Spurious Oscillations in Discontinuous Galerkin Solutions of Convection-Dominated Convection Diffusion Equations
  publication-title: J. Sci. Comput.
– volume: 9
  start-page: 1490
  year: 2021
  ident: ref_10
  article-title: Short-term Load Prediction of Integrated Energy System with Wavelet Neural Network Model Based on Improved Particle Swarm Optimization and Chaos Optimization Algorithm
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.35833/MPCE.2020.000647
– volume: 49
  start-page: 81
  year: 2022
  ident: ref_33
  article-title: Short-term electric load forecasting based on EMD-CNN-LSTM hybrid model
  publication-title: J. North China Electr. Power Univ.
– ident: ref_5
  doi: 10.1109/EIConRus.2017.7910859
– volume: 1
  start-page: 120162
  year: 2021
  ident: ref_12
  article-title: Comparison of different simplistic prediction models for forecasting PV power output:Assessment with experimental measurements
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120162
– volume: 14
  start-page: 21842
  year: 2024
  ident: ref_8
  article-title: Hybrd attenton-based deep neur nelwoks for shot-tem wind power forecasting usug meteorological data in desert regions
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-73076-6
– volume: 9
  start-page: 3414474
  year: 2024
  ident: ref_30
  article-title: Remote Robust State Estimation for Nonlinear Cyber-Physical Systems Under Denial-of-Service Attacks
  publication-title: IEEE Trans. Circuits Syst.
– volume: 9
  start-page: 94
  year: 2023
  ident: ref_19
  article-title: A hybrid CNN-GRU based probabilistic model for load forecasting from individual household to commercial building
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.05.090
– volume: 2
  start-page: 119
  year: 2017
  ident: ref_31
  article-title: Short-term load forecasting in smart grid:acombined CNN and K-Means clustering approach
  publication-title: IEEE Int. Conf. Big Data Smart Comput.
– volume: 35
  start-page: 188
  year: 2020
  ident: ref_34
  article-title: Using Bayesian deep learning to capture uncertainty for residential net load forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2924294
– volume: 441
  start-page: 161
  year: 2021
  ident: ref_22
  article-title: A review of irregular time series data handling with gated re-current neural networks
  publication-title: Neurcomputing
  doi: 10.1016/j.neucom.2021.02.046
– volume: 51
  start-page: 318
  year: 2022
  ident: ref_40
  article-title: Remaining useful life prediction of lithiumon battery based on CNN and BiLSTM fusion
  publication-title: Inf. Control.
– ident: ref_2
  doi: 10.3390/en14237952
– volume: 10
  start-page: 74012
  year: 2022
  ident: ref_13
  article-title: Residential electricity rate plans and their selections based on statistical learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3190892
– volume: 73
  start-page: 3381699
  year: 2024
  ident: ref_29
  article-title: Robust Fusion Estimation under DataDriven Transmission Strategy for Multi-Sensor Systems With Random Packet Drops
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2024.3381699
– volume: 70
  start-page: 4424
  year: 2023
  ident: ref_43
  article-title: (Q, S, R)-Dissipativity Analysis of Large-Scale Networked Systems
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
SSID ssj0000331333
Score 2.4332416
Snippet This paper proposes a short-term electric load forecasting method combining convolutional neural networks and gated recurrent units with an attention...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 106
SubjectTerms Accuracy
Algorithms
attention mechanism
convolutional neural network
Deep learning
Energy consumption
Environmental protection
Forecasting
Machine learning
Neural networks
power load forecasting
Power supply
Prediction theory
Support vector machines
Time series
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iHvQgfuL6RUBBPJRtm7RNjqu4eliXRVfxFpI0wQWt4lZ_vzNpV_egePFapiWZaWbywuQ9Qo49E06IzEVxCWHguc4j472FZJg66wrtk0DHcD8ohkPx8CBHc1Jf2BPW0AM3jutaqDAscxnACs9tLozkMbJy-SJLs5JbzL5xIefAVMjBjAH4Yg0fKQNc33VVIpBPDaWN5ipQIOr_LR2HGtNfI6vt5pD2mkGtkwVXbZCVOcrATTLu0dtH2DJHY0ipdIQaZ3TwokuKGptWT7GLmV4HWWga2gHo-XAYXd7cUTxxpbqivbpuWhzBDK_9TqbPW-SufzE-v4paZYTIwpqrI6ZFWkJZMYkxAJlggnnJk9jJxHgDEEgaKXXwcxbzsuAW6namnYeXrNCSs22yWL1UbodQ72yaG88T7TV3sTUy1QVjXhvhSyGTDjmdeUvZljYc1SueFMAH9Kz69myHHH3ZvjZkGT9anaHTvyyQ4Do8gLCrNuzqr7B3yAmGTOEyhOFY3d4mgEkhoZXqQabKkM6Qdcj-LKqqXZ9TxeDrOSArEe_-x2j2yHKKusDhaGafLNZv7-6ALNmPejJ9Owy_5idNNuT0
  priority: 102
  providerName: Directory of Open Access Journals
Title A Short-Term Power Load Forecasting Method Using CNN-GRU with an Attention Mechanism
URI https://www.proquest.com/docview/3153682680
https://doaj.org/article/c41535e5917f4c68b9404085f7525d4c
Volume 18
WOSCitedRecordID wos001393590100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BLgc48K7YUlaWQEIcok3iPJwT2lZbQOpGUdmicopsx4ZKkG03gSO_nRnHu-0BOHHJIZlIjmc8npmMvw_gleXCCJGaIGxQDUkms0BZq9EZxkabXNrIwTF8OsnLUpyfF5U_Ht35tsqtT3SOekB7pr5tdMKzZq2pYj7juFAzjIxF-PbyKiAOKfrX6gk1bsOYgLfCEYyrD8vq867mEnKOKRkfUEo5Zvsz00aCUNaI8OjGvuTg-__mpN3Oc_zg_475Idz3ESibDybzCG6Z9jHcu4FL-ARWc_bxK8blwQr9NquISI2drGXDiMhTy45apdnScU8z13PAjsoyeHd6xqisy2TL5n0_9FGiGJ0tvui-P4Wz48Xq6H3g6RcCjQu7D7gUcYN7l4qUwrwM5ytrkig0RaSswjyrUEUhnTLTMGnyRGNwkEpj8SUtZJHwPRi169Y8A2aNjjNlk0hamZhQqyKWOedWKmEbUUQTeLOd_Fp7bHKiyPhWY45CiqqvFTWBlzvZywGR449Sh6TDnQShaLsb682X2i_KWmP0wlOTYspqE50JVSQhIb7ZPI1T_IoJvCYLqGmt43C09EcW8KMINaueoztMCTORT-BgawG1dwJdfa3w_X8_fg53Y6IVdpWdAxj1mx_mBdzRP_uLbjOF8eGirE6nrlyA1-WvxdRb9m8tOAUN
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJw4BuxUMASIMQhahI7iX1AaCmUrrq7WsEWlVOwHRsqQbZsAog_xW9kJh_bHoBbD1wTx4rj5xnPZPwewCPPpZMycUFY4DSIVKeB8d6iMYyddZn2UUPH8G6SzWby8FDNN-BXfxaGyip7m9gY6mJpKUe-zXFpprgXluHz468BqUbR39VeQqOFxb77-QNDturZ-CXO7-M43n212NkLOlWBwCJe64BrGRdokk1kDIYbnKu0EFHoVGS8wfBBGaV0845JKIpMWPR5iXYeH7JSK8Gx33OwKRDs4QA25-Pp_P06qxNyjkEfb3lQsetw25WRJB43klQ65fkagYC_uYHGt-1e-d--ylW43O2i2aiF_TXYcOV1uHSKW_EGLEbs7SeMLYIF-h42JzE4NlnqgpEYqdUVlXuzaaOfzZq6CbYzmwWv3xwwSk0zXbJRXbe1oNiMzkcfVV9uwsGZDOsWDMpl6W4D887GqfEi0l4LF1qjYp1x7rWRvpAqGsLTfnpz2_Grk8zH5xzjLIJCfgKFITxctz1uWUX-2OoFoWTdgpjAmwvL1ce8Myy5xR0YT1yCYbcXNpVGiZBY63yWxAmOYghPCGM52St8Hau7Yxc4KGL-ykdo0hPifeRD2OoxlneGrMpPAHbn37cfwIW9xXSST8az_btwMSaZ5CZTtQWDevXN3YPz9nt9VK3ud2uGwYezBuRvqmRRQw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I1YKGAJEOIQbRLn4RwQ2j4Wqi7Rqmyr3ozt2G0lyJZNAPHX-HXM5LHtAbj1wDVxrDj-POOZjL8P4IXjwgoRW88vcBqiRCWeds6gMQytsalyQUPHcDhN81wcHWWzNfjVn4WhssreJjaGulgYypGPOC7NBPfCwh-5rixitj15e_bVIwUp-tPay2m0ENmzP39g-Fa92d3GuX4ZhpOd-dZ7r1MY8Axit_a4EmGB5lkHWmPowXmWFFHg2yzQTmMokeksU837xn5UpJFB_xcr6_AhI1QWcez3CqynHIOeAaxv7uSz_VWGx-ccA0DecqJi1_7IloEgTjeSV7rgBRuxgL-5hMbPTW79z1_oNtzsdtds3C6HO7Bmy7tw4wLn4j2Yj9nHE4w5vDn6JDYjkTg2XaiCkUipURWVgbMPja42a-op2Faee-_2DxilrJkq2biu2xpRbEbnpk-rL_fh4FKG9QAG5aK0D4E5a8JEuyhQTkXWNzoLVcq5U1q4QmTBEF73Uy1Nx7tO8h-fJcZfBAt5DoshPF-1PWvZRv7YapMQs2pBDOHNhcXyWHYGRxrcmfHYxohMF5lE6Czyic3OpXEY4yiG8IrwJsmO4esY1R3HwEERI5gco6mPiQ-SD2Gjx5vsDFwlz8H26N-3n8E1RKGc7uZ7j-F6SOrJTQJrAwb18pt9AlfN9_q0Wj7tlg-DT5eNx9-p0Vnd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Short-Term+Power+Load+Forecasting+Method+Using+CNN-GRU+with+an+Attention+Mechanism&rft.jtitle=Energies+%28Basel%29&rft.au=Hua%2C+Qingbo&rft.au=Fan%2C+Zengliang&rft.au=Mu%2C+Wei&rft.au=Cui%2C+Jiqiang&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=18&rft.issue=1&rft.spage=106&rft_id=info:doi/10.3390%2Fen18010106&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon