A variational Expectation–Maximization algorithm for temporal data clustering

The problem of temporal data clustering is addressed using a dynamic Gaussian mixture model. In addition to the missing clusters used in the classical Gaussian mixture model, the proposed approach assumes that the means of the Gaussian densities are latent variables distributed according to random w...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis Vol. 103; pp. 206 - 228
Main Authors: El Assaad, Hani, Samé, Allou, Govaert, Gérard, Aknin, Patrice
Format: Journal Article
Language:English
Published: Elsevier B.V 01.11.2016
Elsevier
Subjects:
ISSN:0167-9473, 1872-7352
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The problem of temporal data clustering is addressed using a dynamic Gaussian mixture model. In addition to the missing clusters used in the classical Gaussian mixture model, the proposed approach assumes that the means of the Gaussian densities are latent variables distributed according to random walks. The parameters of the proposed algorithm are estimated by the maximum likelihood approach. However, the EM algorithm cannot be applied directly due to the complex structure of the model, and some approximations are required. Using a variational approximation, an algorithm called VEM-DyMix is proposed to estimate the parameters of the proposed model. Using simulated data, the ability of the proposed approach to accurately estimate the parameters is demonstrated. VEM-DyMix outperforms, in terms of clustering and estimation accuracy, other state-of-the-art algorithms. The experiments performed on real world data from two fields of application (railway condition monitoring and object tracking from videos) show the strong potential of the proposed algorithms.
AbstractList The problem of temporal data clustering is addressed using a dynamic Gaussian mixture model. In addition to the missing clusters used in the classical Gaussian mixture model, the proposed approach assumes that the means of the Gaussian densities are latent variables distributed according to random walks. The parameters of the proposed algorithm are estimated by the maximum likelihood approach. However, the EM algorithm cannot be applied directly due to the complex structure of the model, and some approximations are required. Using a variational approximation, an algorithm called VEM-DyMix is proposed to estimate the parameters of the proposed model. Using simulated data, the ability of the proposed approach to accurately estimate the parameters is demonstrated. VEM-DyMix outperforms, in terms of clustering and estimation accuracy, other state-of-the-art algorithms. The experiments performed on real world data from two fields of application (railway condition monitoring and object tracking from videos) show the strong potential of the proposed algorithms.
Author El Assaad, Hani
Aknin, Patrice
Samé, Allou
Govaert, Gérard
Author_xml – sequence: 1
  givenname: Hani
  orcidid: 0000-0003-3437-2251
  surname: El Assaad
  fullname: El Assaad, Hani
  email: hani.el-assaad@ifsttar.fr
  organization: Université Paris-Est, IFSTTAR, GRETTIA, F-77447 Champs-Sur-Marne, France
– sequence: 2
  givenname: Allou
  surname: Samé
  fullname: Samé, Allou
  organization: Université Paris-Est, IFSTTAR, GRETTIA, F-77447 Champs-Sur-Marne, France
– sequence: 3
  givenname: Gérard
  surname: Govaert
  fullname: Govaert, Gérard
  organization: Université de technologie de Compiègne, UMR CNRS 7253 Heudiasyc, F-60205 Compiègne, France
– sequence: 4
  givenname: Patrice
  surname: Aknin
  fullname: Aknin, Patrice
  organization: Université Paris-Est, IFSTTAR, GRETTIA, F-77447 Champs-Sur-Marne, France
BackLink https://hal.science/hal-01381345$$DView record in HAL
BookMark eNqFkb9OwzAQhy0EEuXPCzBlhCHhbMe1I7FUCChSEQvMlus44CqJi-1WwMQ78IY8CS6BhQEm--6-z5Lvt4e2e9cbhI4wFBjw-HRR6FCrgqR7AawA4FtohAUnOaeMbKNRGvC8KjndRXshLACAlFyM0O0kWytvVbSuV2128bw0On5VH2_vN-rZdvb1q8xU--C8jY9d1jifRdMtnU9GraLKdLsK0XjbPxygnUa1wRx-n_vo_vLi7nyaz26vrs8ns1yXADGnosG8YYRAKYRh87qpK07mfM40pQo4xrhhmlUwr9mYY1YJUwtFIcG0KXlJ99HJ8O6jauXS2075F-mUldPJTG56gKnAtGRrnNjjgV1697QyIcrOBm3aVvXGrYIkhFFCBGX0XxQLxigfk2qcUDGg2rsQvGmktsPmole2lRjkJhq5kJto5CYaCUymaJJKfqk_P_hTOhskk9a6tsbLoK3ptamtT5nJ2tm_9E_896m-
CitedBy_id crossref_primary_10_1007_s11042_021_10786_3
crossref_primary_10_1016_j_ins_2025_122422
crossref_primary_10_1088_2632_2153_acd7c3
crossref_primary_10_1016_j_jvcir_2024_104339
crossref_primary_10_1016_j_neucom_2022_05_038
crossref_primary_10_1007_s42994_025_00196_6
Cites_doi 10.1023/A:1007665907178
10.1007/BF01202266
10.1007/s11063-004-2024-6
10.1111/j.2517-6161.1977.tb01600.x
10.1214/aos/1176344136
10.1016/j.jneumeth.2010.12.002
10.1162/089976600300015619
10.1016/j.csda.2007.09.007
10.1007/BF01897167
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7S9
L.6
1XC
DOI 10.1016/j.csda.2016.05.007
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 1872-7352
EndPage 228
ExternalDocumentID oai:HAL:hal-01381345v1
10_1016_j_csda_2016_05_007
S0167947316301098
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
7S9
L.6
1XC
ID FETCH-LOGICAL-c400t-38f17f5220488e5bdfd972b7b5c33a07111f5c590bd5671598ed8a3088e3f4743
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381163300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-9473
IngestDate Tue Oct 14 20:11:50 EDT 2025
Wed Oct 01 11:48:29 EDT 2025
Thu Oct 02 19:11:17 EDT 2025
Sat Nov 29 03:40:44 EST 2025
Tue Nov 18 21:43:31 EST 2025
Fri Feb 23 02:23:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Kalman filter
Dynamic latent variable model
Mixture model
Variational approximation
Maximum likelihood
Clustering
EM algorithm
Temporal data clustering
DYNAMIC LATENT VARIABLE MODEL
TEMPORAL DATA CLUSTERING
CLUSTERING
MODELE DE MELANGE
ALGORITHME ESPERANCE-MAXIMISATION
FILTRE DE KALMAN
VARIATIONAL APPROXIMATION
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-38f17f5220488e5bdfd972b7b5c33a07111f5c590bd5671598ed8a3088e3f4743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3437-2251
0000-0003-3557-0225
PQID 1855376296
PQPubID 23500
PageCount 23
ParticipantIDs hal_primary_oai_HAL_hal_01381345v1
proquest_miscellaneous_2253228353
proquest_miscellaneous_1855376296
crossref_citationtrail_10_1016_j_csda_2016_05_007
crossref_primary_10_1016_j_csda_2016_05_007
elsevier_sciencedirect_doi_10_1016_j_csda_2016_05_007
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Computational statistics & data analysis
PublicationYear 2016
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wauthier, F., Motion tracking in image sequences, 2012. online available
DeSarbo, Cron (br000020) 1988; 5
Harvey (br000045) 1990
Jordan, Ghahramani, Jaakkola, Saul (br000065) 1999; 37
McLachlan, Peel (br000085) 2004
McLachlan, Krishnan (br000075) 1997
Calabrese, Paninski (br000010) 2011; 196
Shumway, Stoffer (br000105) 2011
Singla (br000110) 2014; 4
McLachlan, Krishnan (br000080) 2008
Govaert, Nadif (br000040) 2008; 52
Jaakkola, Jordan (br000050) 1997
Keribin, C., Govaert, G., Celeux, G., Estimation d’un modèle à blocs latents par l’algorithme SEM, 2010.
Ramsay, Silverman (br000095) 2005
Wang, Titterington (br000120) 2004; 20
Durbin, Koopman (br000025) 2012
Biemer (br000005) 2011
Titterington, Smith, Makov (br000115) 1985
Neal, Hinton (br000090) 1998
Ghahramani, Beal (br000030) 2000
.
Zivot, Wang (br000135) 2007
Ghahramani, Hinton (br000035) 2000; 12
Dempster, Laird, Rubin (br000015) 1977
Jackson (br000055) 2005
Schwarz (br000100) 1978; 6
Wedel, DeSarbo (br000130) 1995; 12
Jordan, Ghahramani, Jaakkola, Saul (br000060) 1998
McLachlan (10.1016/j.csda.2016.05.007_br000075) 1997
Titterington (10.1016/j.csda.2016.05.007_br000115) 1985
Wedel (10.1016/j.csda.2016.05.007_br000130) 1995; 12
Shumway (10.1016/j.csda.2016.05.007_br000105) 2011
Zivot (10.1016/j.csda.2016.05.007_br000135) 2007
Calabrese (10.1016/j.csda.2016.05.007_br000010) 2011; 196
Jackson (10.1016/j.csda.2016.05.007_br000055) 2005
10.1016/j.csda.2016.05.007_br000070
Biemer (10.1016/j.csda.2016.05.007_br000005) 2011
Harvey (10.1016/j.csda.2016.05.007_br000045) 1990
Durbin (10.1016/j.csda.2016.05.007_br000025) 2012
Singla (10.1016/j.csda.2016.05.007_br000110) 2014; 4
Jordan (10.1016/j.csda.2016.05.007_br000060) 1998
DeSarbo (10.1016/j.csda.2016.05.007_br000020) 1988; 5
Schwarz (10.1016/j.csda.2016.05.007_br000100) 1978; 6
10.1016/j.csda.2016.05.007_br000125
Ramsay (10.1016/j.csda.2016.05.007_br000095) 2005
Jaakkola (10.1016/j.csda.2016.05.007_br000050) 1997
Neal (10.1016/j.csda.2016.05.007_br000090) 1998
Govaert (10.1016/j.csda.2016.05.007_br000040) 2008; 52
Jordan (10.1016/j.csda.2016.05.007_br000065) 1999; 37
Ghahramani (10.1016/j.csda.2016.05.007_br000030) 2000
Wang (10.1016/j.csda.2016.05.007_br000120) 2004; 20
McLachlan (10.1016/j.csda.2016.05.007_br000085) 2004
Dempster (10.1016/j.csda.2016.05.007_br000015) 1977
Ghahramani (10.1016/j.csda.2016.05.007_br000035) 2000; 12
McLachlan (10.1016/j.csda.2016.05.007_br000080) 2008
References_xml – year: 2012
  ident: br000025
  article-title: Time Series Analysis by State Space Methods
– start-page: 355
  year: 1998
  end-page: 368
  ident: br000090
  article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants
  publication-title: Learning in Graphical Models
– volume: 4
  start-page: 1559
  year: 2014
  end-page: 1565
  ident: br000110
  article-title: Motion detection based on frame difference method
  publication-title: Int. J. Inf. Comput. Technol.
– start-page: 37
  year: 2000
  end-page: 50
  ident: br000030
  article-title: Graphical models and variational methods
  publication-title: Advanced Mean Field Method, Theory and Practice
– year: 2005
  ident: br000055
  article-title: A User’s Guide to Principal Components, Vol. 587
– year: 2004
  ident: br000085
  article-title: Finite Mixture Models
– year: 1997
  ident: br000050
  article-title: Variational methods for inference and estimation in graphical models
– volume: 37
  start-page: 183
  year: 1999
  end-page: 233
  ident: br000065
  article-title: An introduction to variational methods for graphical models
  publication-title: Mach. Learn.
– year: 1985
  ident: br000115
  article-title: Statistical Analysis of Finite Mixture Distributions, Vol. 7
– year: 1997
  ident: br000075
  article-title: The EM Algorithm and Extensions
– year: 1990
  ident: br000045
  article-title: Forecasting, Structural Time Series Models and the Kalman Filter
– year: 1998
  ident: br000060
  article-title: An Introduction to Variational Methods for Graphical Models
– reference: Wauthier, F., Motion tracking in image sequences, 2012. online available:
– year: 2011
  ident: br000105
  article-title: Time Series Analysis and its Applications: With R Examples
– volume: 196
  start-page: 159
  year: 2011
  end-page: 169
  ident: br000010
  article-title: Kalman filter mixture model for spike sorting of non-stationary data
  publication-title: J. Neurosci. Methods
– volume: 52
  start-page: 3233
  year: 2008
  end-page: 3245
  ident: br000040
  article-title: Block clustering with bernoulli mixture models: Comparison of different approaches
  publication-title: Comput. Statist. Data Anal.
– volume: 5
  start-page: 249
  year: 1988
  end-page: 282
  ident: br000020
  article-title: A maximum likelihood methodology for clusterwise linear regression
  publication-title: J. Classification
– start-page: 1
  year: 1977
  end-page: 38
  ident: br000015
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 20
  start-page: 151
  year: 2004
  end-page: 170
  ident: br000120
  article-title: Lack of consistency of mean field and variational Bayes approximations for state space models
  publication-title: Neural Process. Lett.
– reference: .
– year: 2007
  ident: br000135
  article-title: Modeling Financial Time Series with S-PLUS
– year: 2005
  ident: br000095
  publication-title: Functional Data Analysis
– reference: Keribin, C., Govaert, G., Celeux, G., Estimation d’un modèle à blocs latents par l’algorithme SEM, 2010.
– volume: 12
  start-page: 21
  year: 1995
  end-page: 55
  ident: br000130
  article-title: A mixture likelihood approach for generalized linear models
  publication-title: J. Classification
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: br000100
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
– year: 2011
  ident: br000005
  publication-title: Latent Class Analysis of Survey Error
– volume: 12
  start-page: 831
  year: 2000
  end-page: 864
  ident: br000035
  article-title: Variational learning for switching state-space models
  publication-title: Neural Comput.
– year: 2008
  ident: br000080
  publication-title: The EM Algorithm and Extensions
– year: 1997
  ident: 10.1016/j.csda.2016.05.007_br000050
– year: 2008
  ident: 10.1016/j.csda.2016.05.007_br000080
– start-page: 37
  year: 2000
  ident: 10.1016/j.csda.2016.05.007_br000030
  article-title: Graphical models and variational methods
– volume: 37
  start-page: 183
  year: 1999
  ident: 10.1016/j.csda.2016.05.007_br000065
  article-title: An introduction to variational methods for graphical models
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007665907178
– year: 2007
  ident: 10.1016/j.csda.2016.05.007_br000135
– year: 2012
  ident: 10.1016/j.csda.2016.05.007_br000025
– year: 2005
  ident: 10.1016/j.csda.2016.05.007_br000095
– year: 1985
  ident: 10.1016/j.csda.2016.05.007_br000115
– year: 2004
  ident: 10.1016/j.csda.2016.05.007_br000085
– year: 1998
  ident: 10.1016/j.csda.2016.05.007_br000060
– year: 2011
  ident: 10.1016/j.csda.2016.05.007_br000105
– year: 2005
  ident: 10.1016/j.csda.2016.05.007_br000055
– volume: 12
  start-page: 21
  year: 1995
  ident: 10.1016/j.csda.2016.05.007_br000130
  article-title: A mixture likelihood approach for generalized linear models
  publication-title: J. Classification
  doi: 10.1007/BF01202266
– volume: 20
  start-page: 151
  year: 2004
  ident: 10.1016/j.csda.2016.05.007_br000120
  article-title: Lack of consistency of mean field and variational Bayes approximations for state space models
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-004-2024-6
– start-page: 1
  year: 1977
  ident: 10.1016/j.csda.2016.05.007_br000015
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 10.1016/j.csda.2016.05.007_br000070
– year: 1990
  ident: 10.1016/j.csda.2016.05.007_br000045
– volume: 6
  start-page: 461
  year: 1978
  ident: 10.1016/j.csda.2016.05.007_br000100
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176344136
– volume: 196
  start-page: 159
  year: 2011
  ident: 10.1016/j.csda.2016.05.007_br000010
  article-title: Kalman filter mixture model for spike sorting of non-stationary data
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.12.002
– volume: 4
  start-page: 1559
  year: 2014
  ident: 10.1016/j.csda.2016.05.007_br000110
  article-title: Motion detection based on frame difference method
  publication-title: Int. J. Inf. Comput. Technol.
– volume: 12
  start-page: 831
  year: 2000
  ident: 10.1016/j.csda.2016.05.007_br000035
  article-title: Variational learning for switching state-space models
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015619
– year: 2011
  ident: 10.1016/j.csda.2016.05.007_br000005
– year: 1997
  ident: 10.1016/j.csda.2016.05.007_br000075
– volume: 52
  start-page: 3233
  year: 2008
  ident: 10.1016/j.csda.2016.05.007_br000040
  article-title: Block clustering with bernoulli mixture models: Comparison of different approaches
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2007.09.007
– ident: 10.1016/j.csda.2016.05.007_br000125
– start-page: 355
  year: 1998
  ident: 10.1016/j.csda.2016.05.007_br000090
  article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants
– volume: 5
  start-page: 249
  year: 1988
  ident: 10.1016/j.csda.2016.05.007_br000020
  article-title: A maximum likelihood methodology for clusterwise linear regression
  publication-title: J. Classification
  doi: 10.1007/BF01897167
SSID ssj0002478
Score 2.2112837
SecondaryResourceType review_article
Snippet The problem of temporal data clustering is addressed using a dynamic Gaussian mixture model. In addition to the missing clusters used in the classical Gaussian...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 206
SubjectTerms Algorithms
Approximation
Clustering
Data Analysis, Statistics and Probability
Dynamic latent variable model
EM algorithm
Estimates
Gaussian
Kalman filter
Mathematical models
Maximum likelihood
Mixture model
Parameter estimation
Parameters
Physics
statistical analysis
Temporal data clustering
Variational approximation
Title A variational Expectation–Maximization algorithm for temporal data clustering
URI https://dx.doi.org/10.1016/j.csda.2016.05.007
https://www.proquest.com/docview/1855376296
https://www.proquest.com/docview/2253228353
https://hal.science/hal-01381345
Volume 103
WOSCitedRecordID wos000381163300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002478
  issn: 0167-9473
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELbSlgMcEE-R8tCC6Gm1KLte7-MYQUJAacohlXKz9mHTlO0mzUs58h-Q-IH8EmbW9mYpalUOXFaRY8eR59uZsT3zDSFvPZp6HV8kTpRR2KCIGMu8COn4gcxoJNyA5UlVbCIcjaLJJP7Sav00uTCbIizLaLuN5_9V1NAGwsbU2X8Qd_2j0ACfQejwBLHD81aC79ob2P-aMz6kMs7UdbuJa6DHyXZ6ofMv7aT4OltMV2cXKuBQMVUVNkaO2lmxRh4FY90MoUFVCMJMgBlJmuwZUVSNSzTTyS4wBGGQKDQNknJan-sAHKubepVrU8zWdTzQbJPodKKPqstC5_9X8PxWKu4DVWFANM8u3EAn8TWOM0FNx74qZlLr4w61kUk0cDydN651aydomGn93V8WQB1GnL_LljnSSrlBRcyqKuv-Sbc9OuH90-GQj3uT8RHtzy8drEWGd_ZH9IPCxR458EIWg8I_6H7qTT7XNt7zlY03_1-nY6nIwatTX-fy7J1h7O0VF6Dya8YPyH29IbG6CkgPSUuUj8i945rNd_mYnHStBqSsBqR-ff_RBJNVg8kCMFkGTBaCwtqB6Qk57ffG7weOLsThZKDiVw6NpBtK8NRR3QuW5jKPQy8NU5ZRmoCT6rqSZSzupDkLQnCQI5FHCQUDJqj0wUd9SvbLWSmeEYvlEkak4DmFri-jFGxtkIbUT6UM_DhjbeKateKZZqnHYikFN-GI5xzXl-P68g7jsL5tYtdj5oqj5cbezIiAay9TeY8cIHTjuDcgr3oCpGUfdIcc2_C236U-27ht8tqIk4Oexsu3pBSz9ZKDX4zMSV4cXN8HbCtFOipGD2_R5zm5u3unXpD91WItXpI72Qbe-sUrjdjfQfW-tA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+variational+Expectation%E2%80%93Maximization+algorithm+for+temporal+data+clustering&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=El+Assaad%2C+Hani&rft.au=Sam%C3%A9%2C+Allou&rft.au=Govaert%2C+G%C3%A9rard&rft.au=Aknin%2C+Patrice&rft.date=2016-11-01&rft.issn=0167-9473&rft.volume=103+p.206-228&rft.spage=206&rft.epage=228&rft_id=info:doi/10.1016%2Fj.csda.2016.05.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon