Detection and localization of myocardial infarction based on a convolutional autoencoder
Twelve-lead electrocardiograms (ECG) are widely used for the diagnosis of myocardial infarction (MI). For MI detection and localization, 12 ECG signals should be comprehensively checked through visual observation. This process is time-consuming, requires significant effort, and is prone to inducing...
Saved in:
| Published in: | Knowledge-based systems Vol. 178; pp. 123 - 131 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
15.08.2019
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0950-7051, 1872-7409 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Twelve-lead electrocardiograms (ECG) are widely used for the diagnosis of myocardial infarction (MI). For MI detection and localization, 12 ECG signals should be comprehensively checked through visual observation. This process is time-consuming, requires significant effort, and is prone to inducing errors. Hence, computer-aided automatic detection technology is required. Many existing methods perform MI detection and localization using features extracted from normal and abnormal ECG data. However, abnormal ECG signals show various waveforms for the same heart disease; therefore, it is difficult to extract the waveform features common to all the waveforms. In addition, ECG data is extremely imbalanced, and the minority class, including abnormal ECG data, may not be adequately learned. Because of the difficulty of feature extraction in the imbalanced data, in this study, we propose a new method for MI detection and localization that learns only normal ECG data in the public ECG database. This method is based on a convolutional autoencoder (CAE) model for normal ECG waveforms. The CAE model is constructed for each lead and outputs reconstructed input ECG data if normal ECG data is inputted. Otherwise, the waveform is distorted and outputted. MI detection and localization is performed by a k-nearest neighbor (k-NN) classifier using an error vector whose dimension corresponds to each lead and whose element is a degree of deviation between the normal ECG data and the output waveform. In the experiments, the classification performance of the proposed method was evaluated using 353640 beats obtained from the ECG data of MI patients (10 class infarct sites) and healthy subjects. Consequently, the proposed scheme demonstrated a classification performance higher than or comparable to that of existing methods, and the false positive and false negative rates could be reduced compared to existing methods. |
|---|---|
| AbstractList | Twelve-lead electrocardiograms (ECG) are widely used for the diagnosis of myocardial infarction (MI). For MI detection and localization, 12 ECG signals should be comprehensively checked through visual observation. This process is time-consuming, requires significant effort, and is prone to inducing errors. Hence, computer-aided automatic detection technology is required. Many existing methods perform MI detection and localization using features extracted from normal and abnormal ECG data. However, abnormal ECG signals show various waveforms for the same heart disease; therefore, it is difficult to extract the waveform features common to all the waveforms. In addition, ECG data is extremely imbalanced, and the minority class, including abnormal ECG data, may not be adequately learned. Because of the difficulty of feature extraction in the imbalanced data, in this study, we propose a new method for MI detection and localization that learns only normal ECG data in the public ECG database. This method is based on a convolutional autoencoder (CAE) model for normal ECG waveforms. The CAE model is constructed for each lead and outputs reconstructed input ECG data if normal ECG data is inputted. Otherwise, the waveform is distorted and outputted. MI detection and localization is performed by a k-nearest neighbor (k-NN) classifier using an error vector whose dimension corresponds to each lead and whose element is a degree of deviation between the normal ECG data and the output waveform. In the experiments, the classification performance of the proposed method was evaluated using 353640 beats obtained from the ECG data of MI patients (10 class infarct sites) and healthy subjects. Consequently, the proposed scheme demonstrated a classification performance higher than or comparable to that of existing methods, and the false positive and false negative rates could be reduced compared to existing methods. |
| Author | Sugimoto, Kaiji Kon, Yudai Lee, Saerom Okada, Yoshifumi |
| Author_xml | – sequence: 1 givenname: Kaiji surname: Sugimoto fullname: Sugimoto, Kaiji email: sugimoto@cbrl.csse.muroran-it.ac.jp organization: Division of Information and Electronic Engineering, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan – sequence: 2 givenname: Yudai surname: Kon fullname: Kon, Yudai email: kon@cbrl.csse.muroran-it.ac.jp organization: Department of Information and Electronic Engineering, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan – sequence: 3 givenname: Saerom surname: Lee fullname: Lee, Saerom email: saerom@cbrl.csse.muroran-it.ac.jp organization: College of Information and Systems, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan – sequence: 4 givenname: Yoshifumi surname: Okada fullname: Okada, Yoshifumi email: okada@csse.muroran-it.ac.jp organization: College of Information and Systems, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan |
| BookMark | eNqFkE9LwzAYh4MouE2_gYeC59Y3adqsHgSZf2HgZQdvIU1SSO2SmbSD-elNV08e9L0EfvyelzfPHJ1aZzVCVxgyDLi8abMP68IhZARwlQHNgOQnaIaXjKSMQnWKZlAVkDIo8Dmah9ACACF4OUPvD7rXsjfOJsKqpHNSdOZLHAPXJNtDDLwyokuMbYSfmrUIWiUjkkhn964bxjh2xNA7baVT2l-gs0Z0QV_-vAu0eXrcrF7S9dvz6-p-nUoK0KdEMgVKUClrksuc5k2pyqKoVakZ0FKQWha6WaqS1LXQDauIpkXOKkGFipMv0PW0dufd56BDz1s3-HhL4IQUmEU9SxpbdGpJ70LwuuE7b7bCHzgGPirkLZ8U8lEhB8qjwojd_sKk6Y9uei9M9x98N8E6_n5vtOdBmihHK-Ojca6c-XvBNxSolHY |
| CitedBy_id | crossref_primary_10_1155_2021_6648116 crossref_primary_10_1016_j_compbiomed_2025_109653 crossref_primary_10_1109_TIM_2024_3418105 crossref_primary_10_1016_j_cmpb_2021_106035 crossref_primary_10_3390_s20041214 crossref_primary_10_1109_TBME_2022_3202962 crossref_primary_10_1007_s13042_022_01718_0 crossref_primary_10_3390_bioengineering9090430 crossref_primary_10_1109_LSENS_2024_3374790 crossref_primary_10_3390_electronics9010135 crossref_primary_10_1177_14727978241293897 crossref_primary_10_3389_fcvm_2022_860032 crossref_primary_10_1016_j_artmed_2024_102865 crossref_primary_10_1016_j_knosys_2020_106445 crossref_primary_10_1016_j_compbiomed_2020_103797 crossref_primary_10_1016_j_knosys_2020_106589 crossref_primary_10_1088_1361_6579_acaa1a crossref_primary_10_1007_s11760_024_03057_9 crossref_primary_10_1016_j_cmpb_2021_106024 crossref_primary_10_1016_j_engappai_2022_105428 crossref_primary_10_1016_j_eswa_2022_118398 crossref_primary_10_1109_TIM_2023_3258521 crossref_primary_10_1155_2021_4123471 crossref_primary_10_1109_TIM_2021_3104394 crossref_primary_10_3390_bios14040183 crossref_primary_10_1109_ACCESS_2023_3340735 |
| Cites_doi | 10.1161/01.CIR.101.23.e215 10.1007/s10489-018-1179-1 10.3390/e19090488 10.4236/jbise.2014.710081 10.1126/science.1127647 10.1109/TBME.2015.2405134 10.1016/j.ins.2016.10.013 10.1109/TIT.1967.1053964 10.1016/j.knosys.2017.06.026 10.1016/j.future.2017.08.039 10.1136/hrt.71.4.309 10.1016/j.ins.2018.01.051 10.1016/j.cmpb.2018.04.018 10.1136/bmj.301.6758.941 10.1016/j.ins.2019.02.065 10.1016/j.ins.2017.06.027 10.1109/RBME.2012.2184750 10.1007/s10916-010-9474-3 10.1007/BF00344251 10.1016/j.knosys.2016.01.040 10.1162/neco.1989.1.4.541 10.1016/j.compbiomed.2018.07.005 10.1016/j.patrec.2019.02.016 10.1016/j.ins.2018.07.063 10.1007/s10916-009-9314-5 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Aug 15, 2019 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Aug 15, 2019 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2019.04.023 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| EndPage | 131 |
| ExternalDocumentID | 10_1016_j_knosys_2019_04_023 S0950705119301960 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c400t-2c7d0da4ccb23c343f6d655bd6e7046a2bc5ef8d62bbaef792e45379a4adddd3 |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472687500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Fri Nov 14 18:49:57 EST 2025 Sat Nov 29 06:41:34 EST 2025 Tue Nov 18 22:27:10 EST 2025 Fri Feb 23 02:18:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Myocardial infarction k-nearest neighbor Convolutional autoencoder Electrocardiogram |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c400t-2c7d0da4ccb23c343f6d655bd6e7046a2bc5ef8d62bbaef792e45379a4adddd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2251701684 |
| PQPubID | 2035257 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2251701684 crossref_primary_10_1016_j_knosys_2019_04_023 crossref_citationtrail_10_1016_j_knosys_2019_04_023 elsevier_sciencedirect_doi_10_1016_j_knosys_2019_04_023 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-15 |
| PublicationDateYYYYMMDD | 2019-08-15 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Acharya, Fujita, Sudarshan, Oh, Adam, Koh, Tan, Ghista, Matis, Chua, Poo, Tan (b3) 2016; 99 Baloglu, Taro, Yildirim, Tan, Acharya (b21) 2019; 122 Acharya, Fujita, Oh, Hagiwara, Tan, Adam, Tan (b31) 2019; 49 Timmis (b5) 1990; 301 Fukushima (b25) 1980; 36 Cover, Hart (b29) 1967; 13 Nagatomo, Shimizu, Ikeda, Sashima, Kurumatani (b27) 2014; 13 LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackell (b26) 1989; 1 Fujita, Cimr (b35) 2019 National Institute of General Medical Sciences and National Institute of Biomedical Imaging and Bioengineering, PhysioBank. Timmis (b4) 1994; 71 Hinton, Salakhutdinov (b24) 2006; 313 Kumar, Pachori, Acharya (b18) 2017; 19 Kingma, Ba (b28) 2014 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b22) 2000; 101 Sharma, Tripath, Dandapat (b10) 2015; 62 safdarian, Dabanloo, Attarodi (b9) 2014; 7 National Heart, Lung, and Blood Institute, What is a Heart Attack? Sharma, Tripathy, Dandapat (b16) 2015; 62 Sharma, Tan, Acharya (b19) 2018; 102 Acharya, Fujita, Adam, Oh, Sudarshan, Tan, Koh, Hagiwara, Chua, Poo, Tan (b13) 2017; 377 Adam, Oh, Sudarshan, Koh, Hagiwara, Tan, Tan, Acharya (b17) 2018; 161 Faust, Acharya, Tamura (b7) 2012; 5 2018 (accessed 10 December 2018). Arif, Malagore, Afsar (b11) 2010 Jayachandran, Joseph, Acharya (b20) 2010; 34 Acharya, Fujita, Oh, Hagiwara, Tan, Adam (b14) 2017; 415 Fujita, Cimr (b30) 2019; 486 Hagiwara, Fujita, Oh, Tan, Tan, Ciaccio, Acharya (b32) 2018; 467 Acharya, Fujita, Oh, Raghavendra, Tan, Adam, Gertych, Hagiwara (b34) 2018; 79 Arif, Malagore, Afsar (b8) 2012; 36 Lewis, Handal (b6) 2000 Acharya, Fujita, Sudarshan, Oh, Adam, Tan, Koo, Jain, Lim, Chua (b15) 2017; 132 Guyton, Hall (b2) 2006 2018 (accessed 1 June 2018). Al-Kindi, Ali, Farghaly, Nathani, Tafreshi (b12) 2011 Raghavendra, Fujita, Bhandary, Gudigar, Tan, Acharya (b33) 2018; 441 Sharma (10.1016/j.knosys.2019.04.023_b19) 2018; 102 Acharya (10.1016/j.knosys.2019.04.023_b3) 2016; 99 Hinton (10.1016/j.knosys.2019.04.023_b24) 2006; 313 Sharma (10.1016/j.knosys.2019.04.023_b10) 2015; 62 Acharya (10.1016/j.knosys.2019.04.023_b13) 2017; 377 Guyton (10.1016/j.knosys.2019.04.023_b2) 2006 Fujita (10.1016/j.knosys.2019.04.023_b30) 2019; 486 safdarian (10.1016/j.knosys.2019.04.023_b9) 2014; 7 Adam (10.1016/j.knosys.2019.04.023_b17) 2018; 161 Raghavendra (10.1016/j.knosys.2019.04.023_b33) 2018; 441 Fujita (10.1016/j.knosys.2019.04.023_b35) 2019 Cover (10.1016/j.knosys.2019.04.023_b29) 1967; 13 Arif (10.1016/j.knosys.2019.04.023_b11) 2010 Nagatomo (10.1016/j.knosys.2019.04.023_b27) 2014; 13 Baloglu (10.1016/j.knosys.2019.04.023_b21) 2019; 122 Acharya (10.1016/j.knosys.2019.04.023_b34) 2018; 79 Lewis (10.1016/j.knosys.2019.04.023_b6) 2000 Acharya (10.1016/j.knosys.2019.04.023_b31) 2019; 49 Sharma (10.1016/j.knosys.2019.04.023_b16) 2015; 62 Goldberger (10.1016/j.knosys.2019.04.023_b22) 2000; 101 Kumar (10.1016/j.knosys.2019.04.023_b18) 2017; 19 Timmis (10.1016/j.knosys.2019.04.023_b5) 1990; 301 Arif (10.1016/j.knosys.2019.04.023_b8) 2012; 36 Timmis (10.1016/j.knosys.2019.04.023_b4) 1994; 71 Acharya (10.1016/j.knosys.2019.04.023_b14) 2017; 415 Fukushima (10.1016/j.knosys.2019.04.023_b25) 1980; 36 LeCun (10.1016/j.knosys.2019.04.023_b26) 1989; 1 Acharya (10.1016/j.knosys.2019.04.023_b15) 2017; 132 Faust (10.1016/j.knosys.2019.04.023_b7) 2012; 5 Al-Kindi (10.1016/j.knosys.2019.04.023_b12) 2011 10.1016/j.knosys.2019.04.023_b1 10.1016/j.knosys.2019.04.023_b23 Jayachandran (10.1016/j.knosys.2019.04.023_b20) 2010; 34 Kingma (10.1016/j.knosys.2019.04.023_b28) 2014 Hagiwara (10.1016/j.knosys.2019.04.023_b32) 2018; 467 |
| References_xml | – volume: 13 year: 2014 ident: b27 article-title: Database and R-wave detecting system for utilizing ECG data publication-title: FIT – volume: 49 start-page: 16 year: 2019 end-page: 27 ident: b31 article-title: Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals publication-title: Appl. Intell. – year: 2014 ident: b28 article-title: Adam: A Method for Stochastic Optimization – start-page: 454 year: 2011 end-page: 457 ident: b12 article-title: Towards real-time detection of myocardial infarction by digital analysis of electrocardiograms publication-title: 2011 1st Middle East Conference on Biomedical Engineering – volume: 301 start-page: 941 year: 1990 end-page: 942 ident: b5 article-title: Early diagnosis of acute myocardial infarction publication-title: BMJ – volume: 102 start-page: 341 year: 2018 end-page: 356 ident: b19 article-title: A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank publication-title: Comput. Biol. Med. – volume: 486 start-page: 231 year: 2019 end-page: 239 ident: b30 article-title: Computer aided detection for fibrillations and flutters using deep convolutional neural network publication-title: Inform. Sci. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b24 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 19 start-page: 488 year: 2017 ident: b18 article-title: Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework publication-title: Entropy – reference: National Heart, Lung, and Blood Institute, What is a Heart Attack? – volume: 79 start-page: 952 year: 2018 end-page: 959 ident: b34 article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network publication-title: Future Gener. Comput. Syst. – volume: 132 start-page: 156 year: 2017 end-page: 166 ident: b15 article-title: Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal publication-title: Knowl.-Based Syst. – volume: 122 start-page: 23 year: 2019 end-page: 30 ident: b21 article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN publication-title: Pattern Recognit. Lett. – volume: 34 start-page: 985 year: 2010 end-page: 992 ident: b20 article-title: Analysis of myocardial infarction using discrete wavelet transform publication-title: J. Med. Syst. – volume: 377 start-page: 17 year: 2017 end-page: 29 ident: b13 article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study publication-title: Inform. Sci. – reference: , 2018 (accessed 10 December 2018). – volume: 7 start-page: 818 year: 2014 end-page: 824 ident: b9 article-title: A new pattern recognition method for detection and localization of myocardial infarction using T-wave integral and total integral as extracted feature from one cycle of ECG signal publication-title: J. Biomed. Sci. Eng. – volume: 467 start-page: 99 year: 2018 end-page: 114 ident: b32 article-title: Computer-aided diagnosis of atrial fibrillation based on ECG signals: A review publication-title: Inform. Sci. – volume: 71 start-page: 309 year: 1994 end-page: 310 ident: b4 article-title: Will serum enzymes and other proteins find a clinical application in the early diagnosis of myocardial infarction? publication-title: Br. Heart J. – volume: 101 start-page: 215 year: 2000 end-page: 220 ident: b22 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 1 start-page: 541 year: 1989 end-page: 551 ident: b26 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. – year: 2006 ident: b2 article-title: Text Book of Medical Physiology – volume: 5 start-page: 15 year: 2012 end-page: 28 ident: b7 article-title: Formal design methods for reliable computer aided diagnosis: A review publication-title: IEEE Rev. Biomed. Eng. – volume: 62 start-page: 1827 year: 2015 end-page: 1837 ident: b16 article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction publication-title: IEEE Trans. Biomed. Eng. – volume: 62 start-page: 1827 year: 2015 end-page: 1837 ident: b10 article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction publication-title: IEEE Trans. Biomed. Eng. – volume: 36 start-page: 193 year: 1980 end-page: 202 ident: b25 article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybernet. – reference: , 2018 (accessed 1 June 2018). – volume: 441 start-page: 41 year: 2018 end-page: 49 ident: b33 article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images publication-title: Inform. Sci. – volume: 161 start-page: 133 year: 2018 end-page: 143 ident: b17 article-title: Automated characterization of cardiovascular diseases using relative wavelet nonlinear features extracted from ECG signals publication-title: Comput. Methods Programs Biomed. – year: 2000 ident: b6 article-title: Sensible Analysis of the 12 Lead ECG – volume: 99 start-page: 146 year: 2016 end-page: 156 ident: b3 article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads publication-title: Knowl.-Based Syst. – reference: National Institute of General Medical Sciences and National Institute of Biomedical Imaging and Bioengineering, PhysioBank. – start-page: 1 year: 2010 end-page: 4 ident: b11 article-title: Automatic detection and localization of myocardial infarction using back propagation neural networks publication-title: 2010 4th International Conference on Bioinformatics and Biomedical Engineering – start-page: 1 year: 2019 end-page: 9 ident: b35 article-title: Decision support system for arrhythmia prediction using convolutional neural network structure without preprocessing publication-title: Appl. Intell. – volume: 36 start-page: 279 year: 2012 end-page: 289 ident: b8 article-title: Detection and localization of myocardial infarction using K-nearest neighbor classifier publication-title: J. Med. Syst. – volume: 415 start-page: 190 year: 2017 end-page: 198 ident: b14 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inform. Sci. – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: b29 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inform. Theory – volume: 101 start-page: 215 issue: 23 year: 2000 ident: 10.1016/j.knosys.2019.04.023_b22 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 49 start-page: 16 issue: 1 year: 2019 ident: 10.1016/j.knosys.2019.04.023_b31 article-title: Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals publication-title: Appl. Intell. doi: 10.1007/s10489-018-1179-1 – volume: 19 start-page: 488 issue: 9 year: 2017 ident: 10.1016/j.knosys.2019.04.023_b18 article-title: Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework publication-title: Entropy doi: 10.3390/e19090488 – volume: 7 start-page: 818 issue: 10 year: 2014 ident: 10.1016/j.knosys.2019.04.023_b9 article-title: A new pattern recognition method for detection and localization of myocardial infarction using T-wave integral and total integral as extracted feature from one cycle of ECG signal publication-title: J. Biomed. Sci. Eng. doi: 10.4236/jbise.2014.710081 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.knosys.2019.04.023_b24 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 62 start-page: 1827 issue: 7 year: 2015 ident: 10.1016/j.knosys.2019.04.023_b16 article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2405134 – volume: 377 start-page: 17 year: 2017 ident: 10.1016/j.knosys.2019.04.023_b13 article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.10.013 – year: 2014 ident: 10.1016/j.knosys.2019.04.023_b28 – volume: 13 issue: 2 year: 2014 ident: 10.1016/j.knosys.2019.04.023_b27 article-title: Database and R-wave detecting system for utilizing ECG data publication-title: FIT – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 10.1016/j.knosys.2019.04.023_b29 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.1967.1053964 – volume: 132 start-page: 156 year: 2017 ident: 10.1016/j.knosys.2019.04.023_b15 article-title: Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.06.026 – volume: 79 start-page: 952 issue: 3 year: 2018 ident: 10.1016/j.knosys.2019.04.023_b34 article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.08.039 – volume: 71 start-page: 309 issue: 4 year: 1994 ident: 10.1016/j.knosys.2019.04.023_b4 article-title: Will serum enzymes and other proteins find a clinical application in the early diagnosis of myocardial infarction? publication-title: Br. Heart J. doi: 10.1136/hrt.71.4.309 – volume: 441 start-page: 41 year: 2018 ident: 10.1016/j.knosys.2019.04.023_b33 article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.01.051 – volume: 161 start-page: 133 year: 2018 ident: 10.1016/j.knosys.2019.04.023_b17 article-title: Automated characterization of cardiovascular diseases using relative wavelet nonlinear features extracted from ECG signals publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.04.018 – volume: 301 start-page: 941 issue: 6758 year: 1990 ident: 10.1016/j.knosys.2019.04.023_b5 article-title: Early diagnosis of acute myocardial infarction publication-title: BMJ doi: 10.1136/bmj.301.6758.941 – volume: 486 start-page: 231 year: 2019 ident: 10.1016/j.knosys.2019.04.023_b30 article-title: Computer aided detection for fibrillations and flutters using deep convolutional neural network publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.02.065 – start-page: 454 year: 2011 ident: 10.1016/j.knosys.2019.04.023_b12 article-title: Towards real-time detection of myocardial infarction by digital analysis of electrocardiograms – volume: 415 start-page: 190 year: 2017 ident: 10.1016/j.knosys.2019.04.023_b14 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.06.027 – ident: 10.1016/j.knosys.2019.04.023_b23 – volume: 5 start-page: 15 year: 2012 ident: 10.1016/j.knosys.2019.04.023_b7 article-title: Formal design methods for reliable computer aided diagnosis: A review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2012.2184750 – year: 2000 ident: 10.1016/j.knosys.2019.04.023_b6 – ident: 10.1016/j.knosys.2019.04.023_b1 – volume: 36 start-page: 279 issue: 1 year: 2012 ident: 10.1016/j.knosys.2019.04.023_b8 article-title: Detection and localization of myocardial infarction using K-nearest neighbor classifier publication-title: J. Med. Syst. doi: 10.1007/s10916-010-9474-3 – volume: 36 start-page: 193 issue: 4 year: 1980 ident: 10.1016/j.knosys.2019.04.023_b25 article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybernet. doi: 10.1007/BF00344251 – volume: 99 start-page: 146 issue: 1 year: 2016 ident: 10.1016/j.knosys.2019.04.023_b3 article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.01.040 – start-page: 1 year: 2010 ident: 10.1016/j.knosys.2019.04.023_b11 article-title: Automatic detection and localization of myocardial infarction using back propagation neural networks – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 10.1016/j.knosys.2019.04.023_b26 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – volume: 62 start-page: 1827 issue: 7 year: 2015 ident: 10.1016/j.knosys.2019.04.023_b10 article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2405134 – volume: 102 start-page: 341 year: 2018 ident: 10.1016/j.knosys.2019.04.023_b19 article-title: A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.07.005 – year: 2006 ident: 10.1016/j.knosys.2019.04.023_b2 – start-page: 1 year: 2019 ident: 10.1016/j.knosys.2019.04.023_b35 article-title: Decision support system for arrhythmia prediction using convolutional neural network structure without preprocessing publication-title: Appl. Intell. – volume: 122 start-page: 23 year: 2019 ident: 10.1016/j.knosys.2019.04.023_b21 article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.02.016 – volume: 467 start-page: 99 year: 2018 ident: 10.1016/j.knosys.2019.04.023_b32 article-title: Computer-aided diagnosis of atrial fibrillation based on ECG signals: A review publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.07.063 – volume: 34 start-page: 985 issue: 6 year: 2010 ident: 10.1016/j.knosys.2019.04.023_b20 article-title: Analysis of myocardial infarction using discrete wavelet transform publication-title: J. Med. Syst. doi: 10.1007/s10916-009-9314-5 |
| SSID | ssj0002218 |
| Score | 2.3774264 |
| Snippet | Twelve-lead electrocardiograms (ECG) are widely used for the diagnosis of myocardial infarction (MI). For MI detection and localization, 12 ECG signals should... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 123 |
| SubjectTerms | Cardiovascular diseases Classification Convolutional autoencoder Data Echocardiography Electrocardiogram Electrocardiography Errors Experiments Extraction False positive results Feature extraction Heart attacks Heart diseases k-nearest neighbor Localization Medical diagnosis Methods Myocardial infarction Patients Signal processing Ultrasonic imaging Visual observation Visual signals Waveforms |
| Title | Detection and localization of myocardial infarction based on a convolutional autoencoder |
| URI | https://dx.doi.org/10.1016/j.knosys.2019.04.023 https://www.proquest.com/docview/2251701684 |
| Volume | 178 |
| WOSCitedRecordID | wos000472687500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ohCQT5wQ0Fex4mTYwVFPKQKqXvYniLH40C2bVLtZqvyE_qvO34ku8sKFZC4RJGTSRzPZ89kPA9C3ohsXKVaxxGUdpuRlxynVAaRFsCYMcIkoF2xCXl0lE2n-bfR6LqPhbk8k02TXV3lF_-V1diGzLahs3_B7uGh2IDnyHQ8Itvx-EeM_2A6E-p_N_DWyaoQa-n20n9iw9xFi-DL8NPdBSvLwO4bKOeGHvpn0wgsu9amuoTgxBvU2K-9JS7ylIu1vOduh-m7hUDr3TXqWT0s636P_2QJamgLrkDHysz9aDib76kCp9aetIsfdbU8r9fNEzYiKot8gKa3mW3FzQTjI4skC6lmjV96M4m6vmD5xtrs6_uE1XXsQ5ODoB578bElA7w5YvbutGnx6633Xu6y2fbEG9m1j21XbE9QkbWpgtgdsstlkuMCuXvw-XD6ZRDrnDtj8dD1Pg7TOQtuv-t3es4vEt-pMZOH5H74_6AHHjePyMg0j8mDvrYHDUv9EzIdYEQRRnQdRrSt6ApGdAUj6sBALQndgBFdg9FTMvl4OHn_KQpVOHC-MtZFXEtgoITWJY91LOIqhTRJSkiNZCJVvNSJqTJIeVkqU8mcG5HEMlcCRSdA_IzsNG1jnhOaAP7sSshFkhihK5UZhdq4RBECXPJY7pG4H7JChwz1tlDKWdG7Is4KP9CFHeiCiQIHeo9EA9WFz9Byy_2y50YRtEyvPRYIoFso93vmFWHC43Wb8w8pMvHinx_8ktxbTZ19stPNl-YVuasvu3oxfx2AeAOBAbKI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+localization+of+myocardial+infarction+based+on+a+convolutional+autoencoder&rft.jtitle=Knowledge-based+systems&rft.au=Sugimoto%2C+Kaiji&rft.au=Kon%2C+Yudai&rft.au=Lee%2C+Saerom&rft.au=Okada%2C+Yoshifumi&rft.date=2019-08-15&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=178&rft.spage=123&rft.epage=131&rft_id=info:doi/10.1016%2Fj.knosys.2019.04.023&rft.externalDocID=S0950705119301960 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |