Detection and localization of myocardial infarction based on a convolutional autoencoder

Twelve-lead electrocardiograms (ECG) are widely used for the diagnosis of myocardial infarction (MI). For MI detection and localization, 12 ECG signals should be comprehensively checked through visual observation. This process is time-consuming, requires significant effort, and is prone to inducing...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems Vol. 178; pp. 123 - 131
Main Authors: Sugimoto, Kaiji, Kon, Yudai, Lee, Saerom, Okada, Yoshifumi
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 15.08.2019
Elsevier Science Ltd
Subjects:
ISSN:0950-7051, 1872-7409
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Twelve-lead electrocardiograms (ECG) are widely used for the diagnosis of myocardial infarction (MI). For MI detection and localization, 12 ECG signals should be comprehensively checked through visual observation. This process is time-consuming, requires significant effort, and is prone to inducing errors. Hence, computer-aided automatic detection technology is required. Many existing methods perform MI detection and localization using features extracted from normal and abnormal ECG data. However, abnormal ECG signals show various waveforms for the same heart disease; therefore, it is difficult to extract the waveform features common to all the waveforms. In addition, ECG data is extremely imbalanced, and the minority class, including abnormal ECG data, may not be adequately learned. Because of the difficulty of feature extraction in the imbalanced data, in this study, we propose a new method for MI detection and localization that learns only normal ECG data in the public ECG database. This method is based on a convolutional autoencoder (CAE) model for normal ECG waveforms. The CAE model is constructed for each lead and outputs reconstructed input ECG data if normal ECG data is inputted. Otherwise, the waveform is distorted and outputted. MI detection and localization is performed by a k-nearest neighbor (k-NN) classifier using an error vector whose dimension corresponds to each lead and whose element is a degree of deviation between the normal ECG data and the output waveform. In the experiments, the classification performance of the proposed method was evaluated using 353640 beats obtained from the ECG data of MI patients (10 class infarct sites) and healthy subjects. Consequently, the proposed scheme demonstrated a classification performance higher than or comparable to that of existing methods, and the false positive and false negative rates could be reduced compared to existing methods.
AbstractList Twelve-lead electrocardiograms (ECG) are widely used for the diagnosis of myocardial infarction (MI). For MI detection and localization, 12 ECG signals should be comprehensively checked through visual observation. This process is time-consuming, requires significant effort, and is prone to inducing errors. Hence, computer-aided automatic detection technology is required. Many existing methods perform MI detection and localization using features extracted from normal and abnormal ECG data. However, abnormal ECG signals show various waveforms for the same heart disease; therefore, it is difficult to extract the waveform features common to all the waveforms. In addition, ECG data is extremely imbalanced, and the minority class, including abnormal ECG data, may not be adequately learned. Because of the difficulty of feature extraction in the imbalanced data, in this study, we propose a new method for MI detection and localization that learns only normal ECG data in the public ECG database. This method is based on a convolutional autoencoder (CAE) model for normal ECG waveforms. The CAE model is constructed for each lead and outputs reconstructed input ECG data if normal ECG data is inputted. Otherwise, the waveform is distorted and outputted. MI detection and localization is performed by a k-nearest neighbor (k-NN) classifier using an error vector whose dimension corresponds to each lead and whose element is a degree of deviation between the normal ECG data and the output waveform. In the experiments, the classification performance of the proposed method was evaluated using 353640 beats obtained from the ECG data of MI patients (10 class infarct sites) and healthy subjects. Consequently, the proposed scheme demonstrated a classification performance higher than or comparable to that of existing methods, and the false positive and false negative rates could be reduced compared to existing methods.
Author Sugimoto, Kaiji
Kon, Yudai
Lee, Saerom
Okada, Yoshifumi
Author_xml – sequence: 1
  givenname: Kaiji
  surname: Sugimoto
  fullname: Sugimoto, Kaiji
  email: sugimoto@cbrl.csse.muroran-it.ac.jp
  organization: Division of Information and Electronic Engineering, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
– sequence: 2
  givenname: Yudai
  surname: Kon
  fullname: Kon, Yudai
  email: kon@cbrl.csse.muroran-it.ac.jp
  organization: Department of Information and Electronic Engineering, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
– sequence: 3
  givenname: Saerom
  surname: Lee
  fullname: Lee, Saerom
  email: saerom@cbrl.csse.muroran-it.ac.jp
  organization: College of Information and Systems, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
– sequence: 4
  givenname: Yoshifumi
  surname: Okada
  fullname: Okada, Yoshifumi
  email: okada@csse.muroran-it.ac.jp
  organization: College of Information and Systems, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
BookMark eNqFkE9LwzAYh4MouE2_gYeC59Y3adqsHgSZf2HgZQdvIU1SSO2SmbSD-elNV08e9L0EfvyelzfPHJ1aZzVCVxgyDLi8abMP68IhZARwlQHNgOQnaIaXjKSMQnWKZlAVkDIo8Dmah9ACACF4OUPvD7rXsjfOJsKqpHNSdOZLHAPXJNtDDLwyokuMbYSfmrUIWiUjkkhn964bxjh2xNA7baVT2l-gs0Z0QV_-vAu0eXrcrF7S9dvz6-p-nUoK0KdEMgVKUClrksuc5k2pyqKoVakZ0FKQWha6WaqS1LXQDauIpkXOKkGFipMv0PW0dufd56BDz1s3-HhL4IQUmEU9SxpbdGpJ70LwuuE7b7bCHzgGPirkLZ8U8lEhB8qjwojd_sKk6Y9uei9M9x98N8E6_n5vtOdBmihHK-Ojca6c-XvBNxSolHY
CitedBy_id crossref_primary_10_1155_2021_6648116
crossref_primary_10_1016_j_compbiomed_2025_109653
crossref_primary_10_1109_TIM_2024_3418105
crossref_primary_10_1016_j_cmpb_2021_106035
crossref_primary_10_3390_s20041214
crossref_primary_10_1109_TBME_2022_3202962
crossref_primary_10_1007_s13042_022_01718_0
crossref_primary_10_3390_bioengineering9090430
crossref_primary_10_1109_LSENS_2024_3374790
crossref_primary_10_3390_electronics9010135
crossref_primary_10_1177_14727978241293897
crossref_primary_10_3389_fcvm_2022_860032
crossref_primary_10_1016_j_artmed_2024_102865
crossref_primary_10_1016_j_knosys_2020_106445
crossref_primary_10_1016_j_compbiomed_2020_103797
crossref_primary_10_1016_j_knosys_2020_106589
crossref_primary_10_1088_1361_6579_acaa1a
crossref_primary_10_1007_s11760_024_03057_9
crossref_primary_10_1016_j_cmpb_2021_106024
crossref_primary_10_1016_j_engappai_2022_105428
crossref_primary_10_1016_j_eswa_2022_118398
crossref_primary_10_1109_TIM_2023_3258521
crossref_primary_10_1155_2021_4123471
crossref_primary_10_1109_TIM_2021_3104394
crossref_primary_10_3390_bios14040183
crossref_primary_10_1109_ACCESS_2023_3340735
Cites_doi 10.1161/01.CIR.101.23.e215
10.1007/s10489-018-1179-1
10.3390/e19090488
10.4236/jbise.2014.710081
10.1126/science.1127647
10.1109/TBME.2015.2405134
10.1016/j.ins.2016.10.013
10.1109/TIT.1967.1053964
10.1016/j.knosys.2017.06.026
10.1016/j.future.2017.08.039
10.1136/hrt.71.4.309
10.1016/j.ins.2018.01.051
10.1016/j.cmpb.2018.04.018
10.1136/bmj.301.6758.941
10.1016/j.ins.2019.02.065
10.1016/j.ins.2017.06.027
10.1109/RBME.2012.2184750
10.1007/s10916-010-9474-3
10.1007/BF00344251
10.1016/j.knosys.2016.01.040
10.1162/neco.1989.1.4.541
10.1016/j.compbiomed.2018.07.005
10.1016/j.patrec.2019.02.016
10.1016/j.ins.2018.07.063
10.1007/s10916-009-9314-5
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Aug 15, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Aug 15, 2019
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2019.04.023
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 131
ExternalDocumentID 10_1016_j_knosys_2019_04_023
S0950705119301960
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c400t-2c7d0da4ccb23c343f6d655bd6e7046a2bc5ef8d62bbaef792e45379a4adddd3
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472687500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:49:57 EST 2025
Sat Nov 29 06:41:34 EST 2025
Tue Nov 18 22:27:10 EST 2025
Fri Feb 23 02:18:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Myocardial infarction
k-nearest neighbor
Convolutional autoencoder
Electrocardiogram
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-2c7d0da4ccb23c343f6d655bd6e7046a2bc5ef8d62bbaef792e45379a4adddd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2251701684
PQPubID 2035257
PageCount 9
ParticipantIDs proquest_journals_2251701684
crossref_primary_10_1016_j_knosys_2019_04_023
crossref_citationtrail_10_1016_j_knosys_2019_04_023
elsevier_sciencedirect_doi_10_1016_j_knosys_2019_04_023
PublicationCentury 2000
PublicationDate 2019-08-15
PublicationDateYYYYMMDD 2019-08-15
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Acharya, Fujita, Sudarshan, Oh, Adam, Koh, Tan, Ghista, Matis, Chua, Poo, Tan (b3) 2016; 99
Baloglu, Taro, Yildirim, Tan, Acharya (b21) 2019; 122
Acharya, Fujita, Oh, Hagiwara, Tan, Adam, Tan (b31) 2019; 49
Timmis (b5) 1990; 301
Fukushima (b25) 1980; 36
Cover, Hart (b29) 1967; 13
Nagatomo, Shimizu, Ikeda, Sashima, Kurumatani (b27) 2014; 13
LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackell (b26) 1989; 1
Fujita, Cimr (b35) 2019
National Institute of General Medical Sciences and National Institute of Biomedical Imaging and Bioengineering, PhysioBank.
Timmis (b4) 1994; 71
Hinton, Salakhutdinov (b24) 2006; 313
Kumar, Pachori, Acharya (b18) 2017; 19
Kingma, Ba (b28) 2014
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b22) 2000; 101
Sharma, Tripath, Dandapat (b10) 2015; 62
safdarian, Dabanloo, Attarodi (b9) 2014; 7
National Heart, Lung, and Blood Institute, What is a Heart Attack?
Sharma, Tripathy, Dandapat (b16) 2015; 62
Sharma, Tan, Acharya (b19) 2018; 102
Acharya, Fujita, Adam, Oh, Sudarshan, Tan, Koh, Hagiwara, Chua, Poo, Tan (b13) 2017; 377
Adam, Oh, Sudarshan, Koh, Hagiwara, Tan, Tan, Acharya (b17) 2018; 161
Faust, Acharya, Tamura (b7) 2012; 5
2018 (accessed 10 December 2018).
Arif, Malagore, Afsar (b11) 2010
Jayachandran, Joseph, Acharya (b20) 2010; 34
Acharya, Fujita, Oh, Hagiwara, Tan, Adam (b14) 2017; 415
Fujita, Cimr (b30) 2019; 486
Hagiwara, Fujita, Oh, Tan, Tan, Ciaccio, Acharya (b32) 2018; 467
Acharya, Fujita, Oh, Raghavendra, Tan, Adam, Gertych, Hagiwara (b34) 2018; 79
Arif, Malagore, Afsar (b8) 2012; 36
Lewis, Handal (b6) 2000
Acharya, Fujita, Sudarshan, Oh, Adam, Tan, Koo, Jain, Lim, Chua (b15) 2017; 132
Guyton, Hall (b2) 2006
2018 (accessed 1 June 2018).
Al-Kindi, Ali, Farghaly, Nathani, Tafreshi (b12) 2011
Raghavendra, Fujita, Bhandary, Gudigar, Tan, Acharya (b33) 2018; 441
Sharma (10.1016/j.knosys.2019.04.023_b19) 2018; 102
Acharya (10.1016/j.knosys.2019.04.023_b3) 2016; 99
Hinton (10.1016/j.knosys.2019.04.023_b24) 2006; 313
Sharma (10.1016/j.knosys.2019.04.023_b10) 2015; 62
Acharya (10.1016/j.knosys.2019.04.023_b13) 2017; 377
Guyton (10.1016/j.knosys.2019.04.023_b2) 2006
Fujita (10.1016/j.knosys.2019.04.023_b30) 2019; 486
safdarian (10.1016/j.knosys.2019.04.023_b9) 2014; 7
Adam (10.1016/j.knosys.2019.04.023_b17) 2018; 161
Raghavendra (10.1016/j.knosys.2019.04.023_b33) 2018; 441
Fujita (10.1016/j.knosys.2019.04.023_b35) 2019
Cover (10.1016/j.knosys.2019.04.023_b29) 1967; 13
Arif (10.1016/j.knosys.2019.04.023_b11) 2010
Nagatomo (10.1016/j.knosys.2019.04.023_b27) 2014; 13
Baloglu (10.1016/j.knosys.2019.04.023_b21) 2019; 122
Acharya (10.1016/j.knosys.2019.04.023_b34) 2018; 79
Lewis (10.1016/j.knosys.2019.04.023_b6) 2000
Acharya (10.1016/j.knosys.2019.04.023_b31) 2019; 49
Sharma (10.1016/j.knosys.2019.04.023_b16) 2015; 62
Goldberger (10.1016/j.knosys.2019.04.023_b22) 2000; 101
Kumar (10.1016/j.knosys.2019.04.023_b18) 2017; 19
Timmis (10.1016/j.knosys.2019.04.023_b5) 1990; 301
Arif (10.1016/j.knosys.2019.04.023_b8) 2012; 36
Timmis (10.1016/j.knosys.2019.04.023_b4) 1994; 71
Acharya (10.1016/j.knosys.2019.04.023_b14) 2017; 415
Fukushima (10.1016/j.knosys.2019.04.023_b25) 1980; 36
LeCun (10.1016/j.knosys.2019.04.023_b26) 1989; 1
Acharya (10.1016/j.knosys.2019.04.023_b15) 2017; 132
Faust (10.1016/j.knosys.2019.04.023_b7) 2012; 5
Al-Kindi (10.1016/j.knosys.2019.04.023_b12) 2011
10.1016/j.knosys.2019.04.023_b1
10.1016/j.knosys.2019.04.023_b23
Jayachandran (10.1016/j.knosys.2019.04.023_b20) 2010; 34
Kingma (10.1016/j.knosys.2019.04.023_b28) 2014
Hagiwara (10.1016/j.knosys.2019.04.023_b32) 2018; 467
References_xml – volume: 13
  year: 2014
  ident: b27
  article-title: Database and R-wave detecting system for utilizing ECG data
  publication-title: FIT
– volume: 49
  start-page: 16
  year: 2019
  end-page: 27
  ident: b31
  article-title: Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals
  publication-title: Appl. Intell.
– year: 2014
  ident: b28
  article-title: Adam: A Method for Stochastic Optimization
– start-page: 454
  year: 2011
  end-page: 457
  ident: b12
  article-title: Towards real-time detection of myocardial infarction by digital analysis of electrocardiograms
  publication-title: 2011 1st Middle East Conference on Biomedical Engineering
– volume: 301
  start-page: 941
  year: 1990
  end-page: 942
  ident: b5
  article-title: Early diagnosis of acute myocardial infarction
  publication-title: BMJ
– volume: 102
  start-page: 341
  year: 2018
  end-page: 356
  ident: b19
  article-title: A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank
  publication-title: Comput. Biol. Med.
– volume: 486
  start-page: 231
  year: 2019
  end-page: 239
  ident: b30
  article-title: Computer aided detection for fibrillations and flutters using deep convolutional neural network
  publication-title: Inform. Sci.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b24
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 19
  start-page: 488
  year: 2017
  ident: b18
  article-title: Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework
  publication-title: Entropy
– reference: National Heart, Lung, and Blood Institute, What is a Heart Attack?
– volume: 79
  start-page: 952
  year: 2018
  end-page: 959
  ident: b34
  article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network
  publication-title: Future Gener. Comput. Syst.
– volume: 132
  start-page: 156
  year: 2017
  end-page: 166
  ident: b15
  article-title: Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal
  publication-title: Knowl.-Based Syst.
– volume: 122
  start-page: 23
  year: 2019
  end-page: 30
  ident: b21
  article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN
  publication-title: Pattern Recognit. Lett.
– volume: 34
  start-page: 985
  year: 2010
  end-page: 992
  ident: b20
  article-title: Analysis of myocardial infarction using discrete wavelet transform
  publication-title: J. Med. Syst.
– volume: 377
  start-page: 17
  year: 2017
  end-page: 29
  ident: b13
  article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study
  publication-title: Inform. Sci.
– reference: , 2018 (accessed 10 December 2018).
– volume: 7
  start-page: 818
  year: 2014
  end-page: 824
  ident: b9
  article-title: A new pattern recognition method for detection and localization of myocardial infarction using T-wave integral and total integral as extracted feature from one cycle of ECG signal
  publication-title: J. Biomed. Sci. Eng.
– volume: 467
  start-page: 99
  year: 2018
  end-page: 114
  ident: b32
  article-title: Computer-aided diagnosis of atrial fibrillation based on ECG signals: A review
  publication-title: Inform. Sci.
– volume: 71
  start-page: 309
  year: 1994
  end-page: 310
  ident: b4
  article-title: Will serum enzymes and other proteins find a clinical application in the early diagnosis of myocardial infarction?
  publication-title: Br. Heart J.
– volume: 101
  start-page: 215
  year: 2000
  end-page: 220
  ident: b22
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  ident: b26
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
– year: 2006
  ident: b2
  article-title: Text Book of Medical Physiology
– volume: 5
  start-page: 15
  year: 2012
  end-page: 28
  ident: b7
  article-title: Formal design methods for reliable computer aided diagnosis: A review
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 62
  start-page: 1827
  year: 2015
  end-page: 1837
  ident: b16
  article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 62
  start-page: 1827
  year: 2015
  end-page: 1837
  ident: b10
  article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 36
  start-page: 193
  year: 1980
  end-page: 202
  ident: b25
  article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybernet.
– reference: , 2018 (accessed 1 June 2018).
– volume: 441
  start-page: 41
  year: 2018
  end-page: 49
  ident: b33
  article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images
  publication-title: Inform. Sci.
– volume: 161
  start-page: 133
  year: 2018
  end-page: 143
  ident: b17
  article-title: Automated characterization of cardiovascular diseases using relative wavelet nonlinear features extracted from ECG signals
  publication-title: Comput. Methods Programs Biomed.
– year: 2000
  ident: b6
  article-title: Sensible Analysis of the 12 Lead ECG
– volume: 99
  start-page: 146
  year: 2016
  end-page: 156
  ident: b3
  article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads
  publication-title: Knowl.-Based Syst.
– reference: National Institute of General Medical Sciences and National Institute of Biomedical Imaging and Bioengineering, PhysioBank.
– start-page: 1
  year: 2010
  end-page: 4
  ident: b11
  article-title: Automatic detection and localization of myocardial infarction using back propagation neural networks
  publication-title: 2010 4th International Conference on Bioinformatics and Biomedical Engineering
– start-page: 1
  year: 2019
  end-page: 9
  ident: b35
  article-title: Decision support system for arrhythmia prediction using convolutional neural network structure without preprocessing
  publication-title: Appl. Intell.
– volume: 36
  start-page: 279
  year: 2012
  end-page: 289
  ident: b8
  article-title: Detection and localization of myocardial infarction using K-nearest neighbor classifier
  publication-title: J. Med. Syst.
– volume: 415
  start-page: 190
  year: 2017
  end-page: 198
  ident: b14
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inform. Sci.
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: b29
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inform. Theory
– volume: 101
  start-page: 215
  issue: 23
  year: 2000
  ident: 10.1016/j.knosys.2019.04.023_b22
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 49
  start-page: 16
  issue: 1
  year: 2019
  ident: 10.1016/j.knosys.2019.04.023_b31
  article-title: Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1179-1
– volume: 19
  start-page: 488
  issue: 9
  year: 2017
  ident: 10.1016/j.knosys.2019.04.023_b18
  article-title: Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework
  publication-title: Entropy
  doi: 10.3390/e19090488
– volume: 7
  start-page: 818
  issue: 10
  year: 2014
  ident: 10.1016/j.knosys.2019.04.023_b9
  article-title: A new pattern recognition method for detection and localization of myocardial infarction using T-wave integral and total integral as extracted feature from one cycle of ECG signal
  publication-title: J. Biomed. Sci. Eng.
  doi: 10.4236/jbise.2014.710081
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.knosys.2019.04.023_b24
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 62
  start-page: 1827
  issue: 7
  year: 2015
  ident: 10.1016/j.knosys.2019.04.023_b16
  article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2405134
– volume: 377
  start-page: 17
  year: 2017
  ident: 10.1016/j.knosys.2019.04.023_b13
  article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.10.013
– year: 2014
  ident: 10.1016/j.knosys.2019.04.023_b28
– volume: 13
  issue: 2
  year: 2014
  ident: 10.1016/j.knosys.2019.04.023_b27
  article-title: Database and R-wave detecting system for utilizing ECG data
  publication-title: FIT
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.knosys.2019.04.023_b29
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 132
  start-page: 156
  year: 2017
  ident: 10.1016/j.knosys.2019.04.023_b15
  article-title: Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.06.026
– volume: 79
  start-page: 952
  issue: 3
  year: 2018
  ident: 10.1016/j.knosys.2019.04.023_b34
  article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.08.039
– volume: 71
  start-page: 309
  issue: 4
  year: 1994
  ident: 10.1016/j.knosys.2019.04.023_b4
  article-title: Will serum enzymes and other proteins find a clinical application in the early diagnosis of myocardial infarction?
  publication-title: Br. Heart J.
  doi: 10.1136/hrt.71.4.309
– volume: 441
  start-page: 41
  year: 2018
  ident: 10.1016/j.knosys.2019.04.023_b33
  article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.01.051
– volume: 161
  start-page: 133
  year: 2018
  ident: 10.1016/j.knosys.2019.04.023_b17
  article-title: Automated characterization of cardiovascular diseases using relative wavelet nonlinear features extracted from ECG signals
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.04.018
– volume: 301
  start-page: 941
  issue: 6758
  year: 1990
  ident: 10.1016/j.knosys.2019.04.023_b5
  article-title: Early diagnosis of acute myocardial infarction
  publication-title: BMJ
  doi: 10.1136/bmj.301.6758.941
– volume: 486
  start-page: 231
  year: 2019
  ident: 10.1016/j.knosys.2019.04.023_b30
  article-title: Computer aided detection for fibrillations and flutters using deep convolutional neural network
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.02.065
– start-page: 454
  year: 2011
  ident: 10.1016/j.knosys.2019.04.023_b12
  article-title: Towards real-time detection of myocardial infarction by digital analysis of electrocardiograms
– volume: 415
  start-page: 190
  year: 2017
  ident: 10.1016/j.knosys.2019.04.023_b14
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.06.027
– ident: 10.1016/j.knosys.2019.04.023_b23
– volume: 5
  start-page: 15
  year: 2012
  ident: 10.1016/j.knosys.2019.04.023_b7
  article-title: Formal design methods for reliable computer aided diagnosis: A review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2012.2184750
– year: 2000
  ident: 10.1016/j.knosys.2019.04.023_b6
– ident: 10.1016/j.knosys.2019.04.023_b1
– volume: 36
  start-page: 279
  issue: 1
  year: 2012
  ident: 10.1016/j.knosys.2019.04.023_b8
  article-title: Detection and localization of myocardial infarction using K-nearest neighbor classifier
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-010-9474-3
– volume: 36
  start-page: 193
  issue: 4
  year: 1980
  ident: 10.1016/j.knosys.2019.04.023_b25
  article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybernet.
  doi: 10.1007/BF00344251
– volume: 99
  start-page: 146
  issue: 1
  year: 2016
  ident: 10.1016/j.knosys.2019.04.023_b3
  article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.01.040
– start-page: 1
  year: 2010
  ident: 10.1016/j.knosys.2019.04.023_b11
  article-title: Automatic detection and localization of myocardial infarction using back propagation neural networks
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 10.1016/j.knosys.2019.04.023_b26
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– volume: 62
  start-page: 1827
  issue: 7
  year: 2015
  ident: 10.1016/j.knosys.2019.04.023_b10
  article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2405134
– volume: 102
  start-page: 341
  year: 2018
  ident: 10.1016/j.knosys.2019.04.023_b19
  article-title: A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.07.005
– year: 2006
  ident: 10.1016/j.knosys.2019.04.023_b2
– start-page: 1
  year: 2019
  ident: 10.1016/j.knosys.2019.04.023_b35
  article-title: Decision support system for arrhythmia prediction using convolutional neural network structure without preprocessing
  publication-title: Appl. Intell.
– volume: 122
  start-page: 23
  year: 2019
  ident: 10.1016/j.knosys.2019.04.023_b21
  article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.02.016
– volume: 467
  start-page: 99
  year: 2018
  ident: 10.1016/j.knosys.2019.04.023_b32
  article-title: Computer-aided diagnosis of atrial fibrillation based on ECG signals: A review
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.07.063
– volume: 34
  start-page: 985
  issue: 6
  year: 2010
  ident: 10.1016/j.knosys.2019.04.023_b20
  article-title: Analysis of myocardial infarction using discrete wavelet transform
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-009-9314-5
SSID ssj0002218
Score 2.3774264
Snippet Twelve-lead electrocardiograms (ECG) are widely used for the diagnosis of myocardial infarction (MI). For MI detection and localization, 12 ECG signals should...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 123
SubjectTerms Cardiovascular diseases
Classification
Convolutional autoencoder
Data
Echocardiography
Electrocardiogram
Electrocardiography
Errors
Experiments
Extraction
False positive results
Feature extraction
Heart attacks
Heart diseases
k-nearest neighbor
Localization
Medical diagnosis
Methods
Myocardial infarction
Patients
Signal processing
Ultrasonic imaging
Visual observation
Visual signals
Waveforms
Title Detection and localization of myocardial infarction based on a convolutional autoencoder
URI https://dx.doi.org/10.1016/j.knosys.2019.04.023
https://www.proquest.com/docview/2251701684
Volume 178
WOSCitedRecordID wos000472687500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ohCQT5wQ0Fex4mTYwVFPKQKqXvYniLH40C2bVLtZqvyE_qvO34ku8sKFZC4RJGTSRzPZ89kPA9C3ohsXKVaxxGUdpuRlxynVAaRFsCYMcIkoF2xCXl0lE2n-bfR6LqPhbk8k02TXV3lF_-V1diGzLahs3_B7uGh2IDnyHQ8Itvx-EeM_2A6E-p_N_DWyaoQa-n20n9iw9xFi-DL8NPdBSvLwO4bKOeGHvpn0wgsu9amuoTgxBvU2K-9JS7ylIu1vOduh-m7hUDr3TXqWT0s636P_2QJamgLrkDHysz9aDib76kCp9aetIsfdbU8r9fNEzYiKot8gKa3mW3FzQTjI4skC6lmjV96M4m6vmD5xtrs6_uE1XXsQ5ODoB578bElA7w5YvbutGnx6633Xu6y2fbEG9m1j21XbE9QkbWpgtgdsstlkuMCuXvw-XD6ZRDrnDtj8dD1Pg7TOQtuv-t3es4vEt-pMZOH5H74_6AHHjePyMg0j8mDvrYHDUv9EzIdYEQRRnQdRrSt6ApGdAUj6sBALQndgBFdg9FTMvl4OHn_KQpVOHC-MtZFXEtgoITWJY91LOIqhTRJSkiNZCJVvNSJqTJIeVkqU8mcG5HEMlcCRSdA_IzsNG1jnhOaAP7sSshFkhihK5UZhdq4RBECXPJY7pG4H7JChwz1tlDKWdG7Is4KP9CFHeiCiQIHeo9EA9WFz9Byy_2y50YRtEyvPRYIoFso93vmFWHC43Wb8w8pMvHinx_8ktxbTZ19stPNl-YVuasvu3oxfx2AeAOBAbKI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+localization+of+myocardial+infarction+based+on+a+convolutional+autoencoder&rft.jtitle=Knowledge-based+systems&rft.au=Sugimoto%2C+Kaiji&rft.au=Kon%2C+Yudai&rft.au=Lee%2C+Saerom&rft.au=Okada%2C+Yoshifumi&rft.date=2019-08-15&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=178&rft.spage=123&rft.epage=131&rft_id=info:doi/10.1016%2Fj.knosys.2019.04.023&rft.externalDocID=S0950705119301960
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon